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Learning Outcomes

Students should be able to:
▶ Identify the properties of three-phase sources and the advantages of

three-phase systems for power transfer
▶ Analyze a three-phase circuit with a balanced Wye or Delta load.
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Balanced Three-Phase Circuits

▶ A power system supplied by one AC source is called a a single-phase (1− ϕ)
circuit.

▶ At large power levels, the oscillatory behavior of the instantaneous power in a
single-phase circuit puts severe pulsating strain on the generating and load
equipment.

▶ Polyphase circuits with multiple sources were developed in response to this
problem.

▶ The most common polyphase configuration is the balanced three-phase (3− ϕ)
circuit, which has three AC sources arrange to achieve constant instantaneous
power.

▶ This type of circuit delivers more watts per kilogram of conductor than an
equivalent single-phase circuit. (4 vs 6 wires).

▶ For these reasons, almost all bulk electric power generation, distribution, and
consumption take place via three-phase systems.
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Balanced Three-Phase Circuits
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√
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Van = 220 0◦ Vrms, van(t) = 220
√
2 cos(ωt) V

Vbn = 220 −120◦ Vrms, vbn(t) = 220
√
2 cos(ωt− 120◦) V

Vcn = 220 −240◦ = 220 120◦ Vrms, vcn(t) = 220
√
2 cos(ωt+ 120◦) V
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Balanced Three-Phase Circuits

Let us examine the instantaneous power generated by a three-phase system. Assume
that the voltage in the generator are

van(t) = Vm cos(ωt) V, vbn(t) = Vm cos(ωt− 120◦) V,

vcn(t) = Vm cos(ωt− 240◦) V

If the load is balanced, the currents produced by the sources are

ia(t) = Im cos(ωt− θ) A, ib(t) = Im cos(ωt− θ − 120◦) A,

ic(t) = Im cos(ωt− θ − 240◦) A

The instantaneous power produced by the system is

p(t) = pa(t) + pb(t) + pc(t)

= VmIm [cosωt cos(ωt− θ) + cos(ωt− 120◦) cos(ωt− θ − 120◦)

+ cos(ωt− 240◦) cos(ωt− θ − 240◦)]

Using the trigonometric identity cosA cosB = 1
2
[cos(A−B) + cos(A+B)] 5



Balanced Three-Phase Circuits

We have

p(t) =
1

2
VmIm [cos(θ) + cos(2ωt− θ) + cos(θ) + cos(2ωt− θ − 240◦)

+ cos(θ) + cos(2ωt− θ − 480◦]

=
1

2
VmIm [3 cos(θ) + cos(2ωt− θ) + cos(2ωt− θ − 120◦) + cos(2ωt− θ + 120◦)]

We know that

cosA+ cos(A− 120◦) + cos(A+ 120◦) = cosA

+ cos(A) cos(120◦) + sin(A) sin(120◦)

+ cos(A) cos(120◦)− sin(A) sin(120◦)

= 0

Then p(t) =
3

2
VmIm cos(θ) W

The power delivery from a three-phase voltage source is very smooth (no sinusoidal
terms).
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Balanced Three-Phase Circuits

We are now in a position to make two statements of profound significance about this
balanced three-phase circuit:

▶ The three-phase circuit requires fewer conductors than three single-phase
circuits handling the same total power.

▶ The total instantaneous power is constant, rather than pulsating as in a
single-phase circuit.

The latter property implies less vibration and mechanical strain at the generator and
smoother power delivery to the load equipment.
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Balanced Three-Phase Circuits

Simple three-phase circuit.
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▶ The reference terminals have been joined at node n, called the neutral.
▶ The remaining three source terminals and the neutral are connected by four

wires to a load consisting of three equal resistances tied together at the load’s
neutral N .

▶ Such loads having three identical branches are said to be balanced.
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Balanced Three-Phase Circuits
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We turn to the frequency domain diagram:
▶ Descriptively named a wye (Y) generator.
▶ The neutral point n may or may not be exteranlly

available, or safety considerations may call for it
to be grounded.

▶ The generator is labeled with two sets of voltage
phasors: the phase voltages Van , Vbn , Vcn ,
defined with respect to the neutral; Van = Vϕ θ.

▶ line voltage Vab , Vbc , and Vca , defined across
pairs of terminals.

The line volate voltages are related tothe phase voltages via
Vab = Van −Vbn, Vbc = Vbn −Vcn, Vca = Vcn −Van . Consider only Vab ,
we have

Vab = Van −Vbn = Vϕ 0◦ − Vϕ −120◦ = Vϕ − Vϕ(cos(−120◦) + j sin(−120◦))

= Vϕ − Vϕ

[
−
1

2
− j

√
3

2

]
=

√
3Vϕ

[√
3

2
+ j

1

2

]
=

√
3Vϕ 30◦
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Balanced Three-Phase Circuits

▶ The line voltages are Vab , Vbc , and Vca . These voltages are easily measured
and three phase generators are commonly rated in terms fo line voltage because
phase voltages can be measured only when the neutral point is accessible.

▶ However, the phase voltages of a Wye generator correspond directly to the
source voltages.

▶ From previous slide, we have

Vab =
√
3Vϕ 30◦, Vbc =

√
3Vϕ 30◦ − 120◦ =

√
3Vϕ −90◦,

Vca =
√
3Vϕ 30◦ + 120◦ =

√
3Vϕ 150◦

▶ Hence Vl =
√
3Vϕ . (A line voltage is equal to

√
3 of a phase voltage.)

▶ If we rearranged Van , Vbn , and Vcn head to tail, then they would form an
equilateral triangle, confirming that

Van +Vbn +Vcn = 0
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Balanced Three-Phase Circuits

The relationship between the phase and line voltages.
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Balanced Three-Phase Circuits

Find vab(t) , vbc(t), and vca(t) for a three-phase generator with Van = 15 90◦ kVrms
and abc− sequence.
Solution: Since Vϕ = 15 kVrms, the rms line voltage is

Vl =
√
3(15kV) = 26 kVrms

Then Vab = Van + 30◦ , Vbc = Vab − 120◦ , and Vac = Vab + 120◦

= Vab − 240◦ , so

Vab = 26 120◦ kV, Vbc = 26 0◦ kV, Vca = 26 −120 kV

Finally, converting to the peak voltage
√
2(26 kV) = 36.8 kV, we obtain

vab(t) = 36.8 cos(ωt+ 120◦) kV

vbc(t) = 36.8 cos(ωt) kV

vca(t) = 36.8 cos(ωt− 120◦) kV
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Balanced Wye Loads
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▶ A three-phase load consists of three impedance branches. This branches might
correspond to three separate devices or to a three-phase device such as a
motor with three windings.

▶ When the impedances are connecteed in a Wye configuration, they form a Wye
load. The load is balanced if each branch has the same impedance
ZY = |ZY | θ.

▶ The balanced condition has practical importance because the total
instantaneous power to the load will be constant, even when the load includes
energy-storage elements as well as resistance. 13



Balanced Wye Loads

A three-phase circuit with a balanced Wye load can be analyzed using an equivalent
circuit for just one phase. We assume that the lines from the generator are ideal
conductors (no impedance). We also temporarily assume a Wye generator whose
neutral point is connected to the load neutral N through an ideal conductor indicated
by the dashed line.
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Here VNn = 0 and the source voltage Van appears across the branch impedance, so
Ia = Van/ZY , Ib = Vbn/ZY , and Ic = Vcn/ZY . 14



Balanced Wye Loads

Since |Ia| = |Ib| = |Ic| = Vϕ/|ZY | and Vϕ = Vl/
√
3 all three lines carry the same

rms line current given by

Il =
Vϕ

|ZY |
=

Vl√
3|ZY |

Then, taking Van = 0◦ , we have ( load RL we have θi lag θv)

Ia = Il −θ, Ib = Il −120◦ − θ, Ic = Il 120◦ − θ

Note: The currents form a symmetrical three-phase set, regardless of the value of ZY .
Hence, the neutral wire again carries no current and it may be removed from the
network. Nonetheless, the symmetry still ensures that

VNn = 0

In Wye connection, the current in the line connecting the source to the load is the
same as the phase current flow through the impedance ZY . Therefore, in the
Wye-Wye connection Il = IY , where Il is the magnitude of the line current and IY is
the magnitude of the current in the Wye-connected load. 15



Balanced Wye Loads

Each phase has rms voltage Vϕ , rms current Il and impedance ZY , so the real and
reactive power per phase are

Pϕ = Re{ZY }I2l = VϕIl cos θ

Qϕ = Im{ZY }I2l = VϕIl sin θ

Since the generator supplies three identical phases, the total real and reactive power
from the generator are

PT = 3Pϕ = 3VϕIl cos θ =
√
3VlIl cos θ

QT = 3Qϕ = 3VϕIl sin θ =
√
3VlIl sin θ

Where Vl =
√
3Vϕ , The total apparent power is

|S| =
√

P 2 +Q2 =
√
3VlIl

from which pf = P/|S| = cos θ. Thus, the three-phase power factor exactly equals the
power factor of a single branch impedance.
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Three-Phase Circuit (Wye-Wye)

An abc-sequence three-phase voltage source connected in a balanced Wye havs a line
voltage of Vab = 380 −30◦ Vrms. We wish to determine the phase voltages.
Solution: The magnitude of the phase voltage is given by the expression

Vϕ =
380
√
3

≈ 220 Vrms

The phase relationships between the line and phase voltages are shown in the phasor
diagram. We note that

Van = 220 −30◦ − 30◦ = 220 −60◦

Vbn = 220 −60◦ − 120◦ = 220 −180◦

Vcn = 220 −180◦ − 120◦ = 220 60◦

The magnitudes of these voltages are quite common and one often hears that the
electric service in a building, for example, is three-phase 380/220 V
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Three-Phase Circuit with Line Impedances (Wye-Wye)
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The network above depicts a three-phase transmission line connecting a high-voltage
generator to a load. Each phase of the line has impedance Zl , and the load is a
balanced Wye with branch impedance Z. We are given that

|Vab| = 45 kV, Zl = 0.5 + j3 Ω, Z = 4.5 + j9 Ω

Our task is to find the rms line current and the various powers. Since the load plus
transmission line presents a balanced Wye condition to the generator, we can
expedite the analysis using an equivalent circuit for one phase.
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Three-Phase Circuit with Line Impedances (Wye-Wye)

First, we calculate the phase voltage at the generator with Vl = |Vab|, so

Vϕ =
45
√
3
= 26 kV

Second, we take Van as the reference and draw the equivalent phase-a loop in the
Figure below:

−
+

26 0◦ kV

a

n

0.5 Ω I j3 Ω A

4.5 Ω

j9 Ω

N

The total phase impedance is

ZY = Zl + Z = 5 + j12 Ω = 13 67.4◦ Ω
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Three-Phase Circuit with Line Impedances

Then, we have

Il = |Ia| =
|Van|
13

=
26 kV
13

= 2 kA

Thus

P = 3I2l (R) = 3(2× 103)(5) = 60 MW

Q = 3I2l (X) = 3(2× 103)(12) = 144 MVar

Note: 60 MW supplied by the generator, the power that reaches the load is
PL = 3(4.5)(2× 103)2 = 54 MW, so

PL/P = 54/60 = 90%

The power factor need to be improve!.
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Balanced Three-Phase Circuits (Delta-Connection)

Three-phase windings can be connected in a Delta (∆) generator.
▶ The line voltages equal the source voltages in this case, but we will continue to

user Vl for the rms line voltage.
▶ The neutral point and the phase voltages do not physically exist in a Delta

generator.
▶ The equivalent neutral point and phase voltages are defined by the

accompanying phasor diagram, where Vab has been taken as the reference.
Thus,

Vab = Vl 0◦, Van = (Vl/
√
3) −30◦ and so forth.

▶ A Delta generator acts externally just like a three-terminal Wye generator with
the same rms line voltage. Delta generators differ internally from Wye
generators by the absence of the neutral point and the presence of the Delta
mesh.

▶ The interior mesh current I∆ equals zero because Vab +Vbc +Vca = 0.
However, any deviation from that voltage condition would produce a large and
unwanted circulating current. Consequently, Delta generators are usually found
only in special applications. 21



Balanced Three-Phase Circuits (Delta-Connection)
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(a) Diagram of a Delta generator
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(b) Phasers with Vab 0◦

If the delta source are

Vab = Vl 0◦, Vbc = Vl −120◦, Vca = Vl 120◦,

where Vl is the magnitude of the line voltage.
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Balanced Three-Phase Circuits (Delta-Connection)

The equivalent Wye sources are

Van =
Vl√
3

−30◦ = Vϕ −30◦,

Vbn =
Vl√
3

−150◦ = Vϕ −150◦,

Vcn =
Vl√
3

−220◦ = Vϕ 90◦,

where Vϕ is the magnitude of the phae voltage of an equivalent Wye-connected
source.

▶ Therefore, if we encounter a network containing a Delta-connected source, we
can easily convert the source from Delta to Wye so that all the techniques we
have discussed previously can be applied in the analysis.
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Balanced Three-Phase Circuits (Delta-Connection)

Consider the network shown in Figure below. We wish to determine the line currents
and the magnitude of the line voltage at the load. We have Vab = 380 0◦ ,
Vbc = 380 −120◦ , and Vca = 380 −240◦ Vrms.
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Delta-to-Wye: The single-phase diagram in (b) have Van = 380√
3

−30◦ Vrms. The line
current IaA is

IaA =
(380/

√
3) −30◦

12.1 + j4.2
=

220 −30◦

12.81 19.14◦
= 17.17 −49.14◦ Arms

and IbB = 17.17 −169.146◦ Arms and IcC = 17.17 70.86◦ Arms. 24



Balanced Three-Phase Circuits (Delta-Connection)

The voltage VAN = IaAZ is then

VAN = (17.17 −49.14◦)(12 + j4) = (17.17 −49.14◦)(12.65 18.43)

= 217.2 −30.71◦ Vrms

Therefore, the magnitude of the line voltage at the load (Vl =
√
3Vϕ) is

Vl =
√
3(217.2) = 376.2 Vrms

The phase voltage at the source is Vϕ = 380/
√
3 = 220 Vrms, while the phase voltage

at the load is Vϕ = 376.2/
√
3 = 217.2 Vrms.
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Delta-Connected Load

Consider now the ∆-connected load show below . Note that in this connection the
line-to-line voltage is the voltage across each load impedance.

− +

Van

a IaA A

− +

Vbn

b IbB B
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IAB
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Vcn

c
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Z∆
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Z∆

ICA

+

Vab

−

+

Vbc

− −

Vca

+ The phase voltage of the source
are

Van = Vϕ 0◦

Vbn = Vϕ −120◦

Vcn = Vϕ 120◦

Then the line voltages are

Vab =
√
3Vϕ 30◦ = Vl 30◦ = VAB , Vbc =

√
3Vϕ −90◦ = Vl −90◦ = VBC

Vca =
√
3Vϕ −210◦ = Vl −210◦ = VCA

where Vl is the magnitude of the line voltage at both the Delta-connected load and at
the source.
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Delta-Connected Load

We note that if Z∆ = Z∆ θ, the phase currents at the load are

IAB =
VAB

Z∆
= I∆

where IBC and ICA have the same magnitude but lag IAB by 120◦ and 240◦ ,
respectively. Using KCL, we have

IaA = IAB + IAC = IAB − ICA

It is more simpler to convert the balanced ∆-connected load to a balanced
Y -connected load using the ∆− Y transformation

ZY =
1

3
Z∆ =⇒ IaA =

Van

ZY
= IY =

1√
3
VAB

1
3
Z∆

=
√
3I∆

Finally, the magnitudes of the phase currents in the ∆-connected load and the line
currents is

Il =
√
3I∆
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Delta-Connected Load

A balanced Delta-connected load contains a 10 Ω resistor in series with a 20 mH
inductor in each phase. The voltage source is an abc-sequence three-phase 50 Hz,
balanced Wye with a voltage Van = 220 30◦ Vrms. We wish to determine all ∆
currents and line currents.

Van

n

a

Van

Vcn
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−

van

+

A

N

ZY

−
vcn

+
ZY

−
vbn

+

Z∆Z∆

I∆

Z∆

b B
Cc

IaA

IcC

IbB

We have jωL = j(50(2π))(20× 103) = j6.28 Ω. Then the impedance per phase in the
delta load is Z∆ = 10 + j6.28 Ω. The line voltage Vab =

√
3Vϕ = 220

√
3 60◦ Vrms.

Since thre is no line impedance, VAB = Vab = 220
√
3 60◦ Vrms. 28



Delta-Connected Load

Hence

IAB =
220

√
3 60◦

10 + j6.28
=

380 60◦

11.8 32.13◦
= 32.18 27.87◦ Arms

Change Delta to Wye:

Van

n

a
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−

vAN
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N
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−
vCN

+
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−
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+
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Z∆Z∆
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Z∆

b B
Cc

iaA
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Delta-Connected Load

Since Z∆ = 10 + j6.28 Ω , then we change them to Y-connection (blue color)

ZY =
1

3
Z∆ = 3.33 + j2.1 = 3.94 32.24◦ Ω

then the line current (See Figure in the previous slide.)

IaA =
Van

ZY
=

220 30◦

3.94 32.24◦
= 55.84 −2.24◦ Arms

Therefore, the remaining phase and line currents are

IBC = 32.18 −92.23◦Arms IbB = 55.84 −122.24◦Arms

ICA = 32.18 152.24◦Arms IcC = 55.84 117.76◦Arms

Note: Il =
√
3Iϕ .
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Power Relationships

Weather the load is connected in a Wye or a Delta, the real and reactive power per
phase is

Pϕ = VϕIϕ cos(θ), Qϕ = VϕIϕ sin(θ),

where θ is the angle between the phase voltage and the line current, or

Pϕ =
VlIl√

3
cos(θ), Qϕ =

VlIl√
3

sin(θ)

The total real and reactive power for all three phases is then

PT = 3Pϕ =
√
3VlIl cos(θ), QT = 3Qϕ

√
3VlIl sin(θ)

and, therefore, the magnitude of the complex power (apparent power) is

|ST | =
√

P 2
T +Q2

T =
√
3VlIl and ST = θ
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Power Relationships: Example I

A three-phase balanced Wye-Delta system has a line voltage of 380 Vrms. The total
real power absorbed by the load is 1200 W. If the power factor angle of the load is 20◦

lagging, we wish to determine the magnitude of the line current and the value of the
load impedance per phase in the Delta.
Solution:

Van

n

a

Van

Vcn
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−

van

+

A

N

ZY

−
vcn

+
ZY

−
vbn

+

Z∆Z∆

I∆

Z∆

b B
Cc

IaA

IcC
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The line current can be obtained from

Pϕ =
VlIl√

3
cos(θ) =

380Il√
3

cos(20◦) =
PT

3
=

1200

3
= 400 W 32



Power Relationships: Example I

Il =
400

√
3

380 cos(20◦)
= 1.94 Arms

The magnitude of the current in each leg of the Delta-connected load is

I∆ =
Il√
3
=

1.94
√
3

= 1.12 Arms

Therefore, the magnitude of the Delta impedance in each phase of the load is

|Z∆| =
Vl

I∆
=

380

1.12
= 339.29 Ω

Since the power factor angle is 20◦ lagging, the load impedance is

Z∆ = 339.29 20◦

= 319.82 + j116 Ω
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Power Relationships: Example II

A three-phase Wye-connected load is supplied by an abc-sequence balanced
three-phase Wye-connected source with a phase voltage of 220 Vrms. If the line
impedance and load impedance per phase are 1 + j1 and 20 + j10 Ω respectively, we
wish to determine the value of the line currents and the load voltage. Moreover we
wish to determine the real and reactive power per phase at the load and the total real
power, reactive power, and the complex power at the source.
Solution: The phase voltages are

Van = 220 0◦ Vrms, Vbn = 220 −120◦ Vrms, Vcn = 220 +120◦ Vrms.

The per phase circuit diagram is shown below

−
+

Van

a

n

1 ΩIaA
j1 Ω

A

20 Ω

j10 Ω

N

+

VAN

−
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Power Relationships: Example II

The line current for the a phase is

Il = IaA =
220 0◦

21 + j11
=

220 0◦

23.71 27.65
= 9.28 −27.65◦ = Iϕ −27.65◦

The load voltage for the a phase, which we call VaN , is

VAN = 9.28 −27.65◦(20 + j10) = 9.28 −27.65◦(22.36 26.57◦) = 207.50 −1.08◦ Vrms

The corresponding line currents and load voltages for the b and c phases are

IbB = 9.28 −147.65◦ Arms VBN = 207.50 −121.08◦

IcC = 9.28 −267.65◦ Arms VCN = 207.50 −241.08◦

From the data above the complex power per phase at the load is

Sload = VI∗ = (207.50 −1.08◦)(9.28 27.65◦) = 1925.6 26.57◦

= 1722.23 + j861.30 VA = Pϕ + jQϕ VA
35



Power Relationships: Example II

Therefore, the real and reactive power per phase at the load are 1722.23 W and 861.30
Var, respectively.
The complex poser per phase at the source is

Ssource = VI∗ = (220 0◦)(9.28 27.65◦) = 2041.6 27.65

= 1808.45 + j947.44 VA = Psource + jQsource VA

Therefore, total real power, reactive power, and apparent power at the source are

PT = (3)(1808.45) = 5425.35 W, QT = (3)(947.44) = 2842.32 Var

ST = (3)2041.6 = 6124.8 VA
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