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Introduction

DDPG Training

This work explores the efficacy of a data-driven deep learning (DL) approach for continuous
control. We propose a framework utilising Long-Short Term Memory (LSTM) networks for
system identification and Deep Deterministic Policy Gradient (DDPG) for control. This
framework is evaluated on the TCLab platform, offering a versatile testbed for nonlinear
Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) control problems.
Hyperparameter optimisation revealed that the proposed DL-based controller outperforms the

conventional approach employing a linear First-Order Plus Dead Time (FOPDT) model for
prediction and a DRL controller.

In this project we use TCLab (temperature control lab)[1] as thermal process and
control by connect TCLab with computer with serialport to comunication

TCLab development and test : Build TClab and test to collect
data.

System identifcation and hyperparameter tunning for LSTM :
use data collected to train LSTM model of TCLab and select
optimal structure of the LSTM model

Policy

(/ D rr DDPG training in simulation : use LSTM model of TCLab as
—'@/ Environment to train DDPG controller and test in simulation
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LSTM Model

Deployment of DDPG on actual system : Implement DDPG
model to actual system to test performance of the model
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LSTM Model

Collect data from TCLab and creat model of TCLab : search optimal structure of LSTM model

Lags| 15 | 30 | 45 | 60 Optimal model : Lag = 30, Structure {10}

100 4

R ‘U'*“

—— L5TM Predicted (T1)}

Model Structure

(10}
(25} _
50} al e

(10, 10} 0 400
{25, 25}
{50, 50}
{10,10, 10}
25, 25, 25} ' — ewer2 0
{50, 50, 50} : a0

Time (sec)

Temperature (*C)

=== Measured (T1)

Heater (%)
5] S

Conclusion

» This project successfully demonstrated the superiority of a data-driven deep learning approach for
continuous control. Our framework, leveraging LSTMs and DDPG, outperformed conventional
methods in various control scenarios.

Future Work:

e Reduced Training Time: Investigate methods to accelerate training (e.g., efficient algorithms,
transfer learning).

e MIMO DDPG with Single Actor: Explore implementing MIMO DDPG with a single actor for improved
efficiency.

o Adaptive Control: Develop adaptive control mechanisms using transfer learning and online training
for dynamic systems.
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Config MAE Roughness | Training Time (s) Training DDPG h
£:=5, Np= 32 2.66 7.91e-03 1950.07 raining : sgarc
€= 0.5 nn = 32 1.30 5.80e-02 2038.20 structure of DDPG in model
=5 nn=16 1.37 9.20e-03 2057.63 training By adjusting the
e:=0.5n, =16 1.40 5.09e-02 2077.19 number of nhodes in each layer
€=5n,=8 1.55 9.99e-03 1915.05 of the actor network (nh) and
€=05m=8 1.56 /.81e-03 1984.02 the value of g, or the tolerance
€ =5Mn=4 2.63 2.74e02 1217.20 of the system. to train actor
g=0.5n,=4 1.27 2.87e-02 1222.15 . .
and test in simulation
g=5np=2 1.52 2.20e-02 1804.09
g.=0.5,Np =2 1.20 1.44e-02 1862.58
State : Input Hidden Laver 1 Hidden Laver 2 Dutput Layer
o STATE 5 Nodes 2 Nodes 2 Nodes 1 Node
Activation : ReLU Activation : ReLU Activation : tanh
STATE = {u(t — 1), u(t — 2),e(t),e(t — 1), e(t — 2)}
e REWARD

Reward = wy - (le(t)| < &) —ws - |e(t)]| — w3 - |u(t) — u(t — 1))

u = control signal

e = error signal

w; = weight

g, = error tolerances
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Control Method MAE Roughness
LSTM + DDPG 1.20 1.44e-02
FOPDT + DDPG 1.46 2.24e-01

Implement on Actual system

Implement on Actual system : transfer actor model and test on actual system
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LSTM Model FOPDT Model
Control Method MAE Roughness
LSTM + DDPG 1.67 1.48e-01
FOPDT + DDPG 3.85 1.36e-01
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