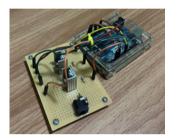


Pattarwut Choychuadee, Sirintorn Rattanatraiwong, Advisor : Asst.Prof.Dr. Sarawan Wongsa


Introduction

This work explores the efficacy of a data-driven deep learning (DL) approach for continuous control. We propose a framework utilising Long-Short Term Memory (LSTM) networks for system identification and Deep Deterministic Policy Gradient (DDPG) for control. This framework is evaluated on the TCLab platform, offering a versatile testbed for nonlinear Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) control problems. Hyperparameter optimisation revealed that the proposed DL-based controller outperforms the conventional approach employing a linear First-Order Plus Dead Time (FOPDT) model for prediction and a DRL controller.

Methods

In this project we use TCLab (temperature control lab)[1] as thermal process and control by connect TCLab with computer with serialport to comunication

TCLab development and test : Build TClab and test to collect data.

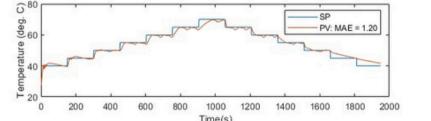
$\begin{array}{ c c c c c c c } \hline Config & MAE & Roughness & Training Time (s) \\ \hline $\epsilon_t = 5, n_h = 32 & 2.66 & 7.91e-03 & 1950.07 \\ \hline $\epsilon_t = 0.5, n_h = 32 & 1.30 & 5.80e-02 & 2038.20 \\ \hline $\epsilon_t = 5, n_h = 16 & 1.37 & 9.20e-03 & 2057.63 \\ \hline $\epsilon_t = 0.5, n_h = 16 & 1.40 & 5.09e-02 & 2077.19 \\ \hline $\epsilon_t = 5, n_h = 8 & 1.55 & 9.99e-03 & 1915.05 \\ \hline $\epsilon_t = 0.5, n_h = 8 & 1.56 & 7.81e-03 & 1984.02 \\ \hline $\epsilon_t = 5, n_h = 4 & 2.63 & 2.74e-02 & 1217.20 \\ \hline $\epsilon_t = 0.5, n_h = 4 & 1.27 & 2.87e-02 & 1222.15 \\ \hline $\epsilon_t = 5, n_h = 2 & 1.52 & 2.20e-02 & 1804.09 \\ \hline \end{array}$		1	1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Config	MAE	Roughness	Training Time (s)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϵ_{t} = 5, n_{h} = 32	2.66	7.91e-03	1950.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε _t = 0.5, n _h = 32	1.30	5.80e-02	2038.20
$\begin{array}{c c} \hline \epsilon_t = 5, n_h = 8 \\ \hline \epsilon_t = 5, n_h = 8 \\ \hline \epsilon_t = 0.5, n_h = 8 \\ \hline \epsilon_t = 5, n_h = 4 \\ \hline \epsilon_t = 5, n_h = 4 \\ \hline \epsilon_t = 0.5, n_h = 4 $	ε _t = 5, n _h = 16	1.37	9.20e-03	2057.63
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε _t = 0.5, n _h = 16	1.40	5.09e-02	2077.19
$\begin{array}{c c} \epsilon_t = 5, n_h = 4 \\ \epsilon_t = 0.5, n_h = 4 \\ \end{array} \begin{array}{c} 2.63 \\ 1.27 \\ \end{array} \begin{array}{c} 2.74e-02 \\ 2.87e-02 \\ \end{array} \begin{array}{c} 1217.20 \\ 1222.15 \\ \end{array}$	ε _t = 5, n _h = 8	1.55	9.99e-03	1915.05
$\epsilon_t = 0.5, n_h = 4$ 1.27 2.87e-02 1222.15	ε _t = 0.5, n _h = 8	1.56	7.81e-03	1984.02
	ε _t = 5, n _h = 4	2.63	2.74e-02	1217.20
$\epsilon_t = 5, n_h = 2$ 1.52 2.20e-02 1804.09	ε _t = 0.5, n _h = 4	1.27	2.87e-02	1222.15
	ε _t = 5, n _h = 2	1.52	2.20e-02	1804.09
$\epsilon_t = 0.5, n_h = 2$ 1.20 1.44e-02 1862.58	ε _t = 0.5, n _h = 2	1.20	1.44e-02	1862.58

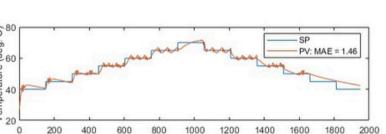
DDPG Training

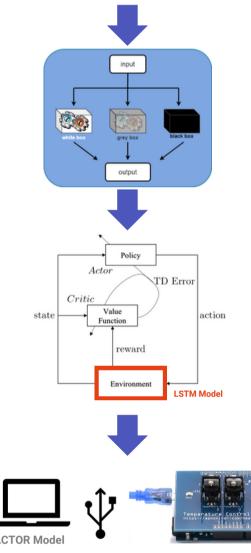
State : Inp

Training DDPG : search

structure of DDPG in model training By adjusting the number of nodes in each layer of the actor network $(\mathbf{n}_{\mathbf{h}})$ and the value of $\boldsymbol{\epsilon}_t$ or the tolerance of the system. to train actor and test in simulation

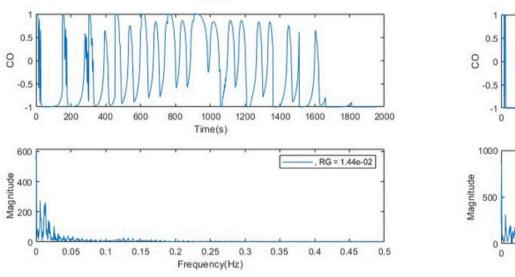

Hidden Layer 1	Hidden Layer 2	Output Layer
2 Nodes	2 Nodes	1 Node
Activation : ReLU	Activation : ReLU	Activation : tanl


• STATE


STATE = {u(t-1), u(t-2), e(t), e(t-1), e(t-2)}

• **REWARD**

Reward = $w_1 \cdot (|e(t)| < \varepsilon_t) - w_2 \cdot |e(t)| - w_3 \cdot |u(t) - u(t-1)|$ u = control signale = error signal $w_i = \text{weight}$ $\varepsilon_t = \text{error tolerances}$



System identifcation and hyperparameter tunning for LSTM : use data collected to train LSTM model of TCLab and select optimal structure of the LSTM model

DDPG training in simulation : use LSTM model of TCLab as

Environment to train DDPG controller and test in simulation

Trained with LSTM Model

Frequency(Hz) **Trained with FOPDT Model**

0.2 0.25 0.3

0.15

0.1

1000

Time(s)

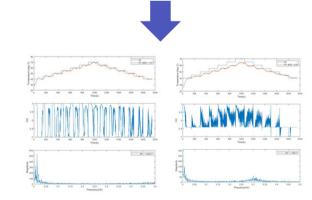
1200

1400

0.35

0.4

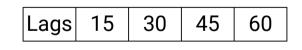
1600 1800 200


____, RG = 2.24e-01

0.45

0.5

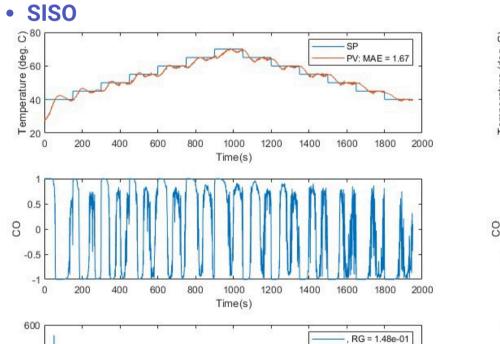
Control Method	MAE	Roughness
LSTM + DDPG	1.20	1.44e-02
FOPDT + DDPG	1.46	2.24e-01

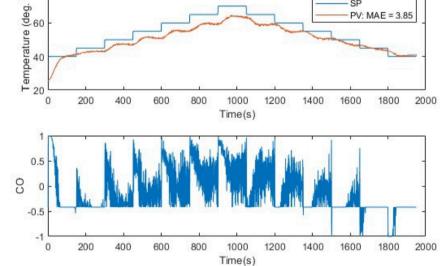

Deployment of DDPG on actual system : Implement DDPG model to actual system to test performance of the model

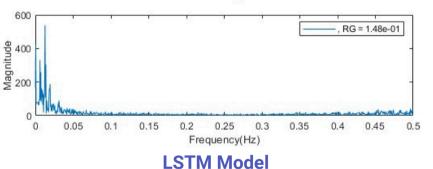
Performance evaluation: evaluate performance data-driven model with FOPDT model

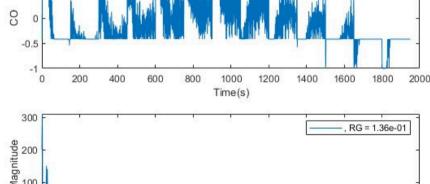
LSTM Model

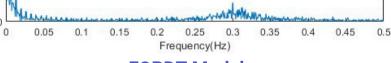
Collect data from TCLab and creat model of TCLab : search optimal structure of LSTM model

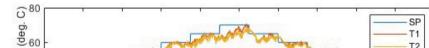


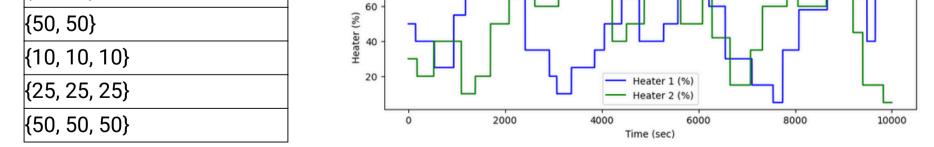

Мо	del S	Structur	е
{10}			
{25}			
{50}			
{10, 10}			
{25, 25}			


Optimal model : Lag = 30, Structure {10} STM Predicted (T1 Measured (T1) LSTM Predicted (T2) --- Measured (T2) 10000 2000 8000 4000 6000


Implement on Actual system


Implement on Actual system : transfer actor model and test on actual system





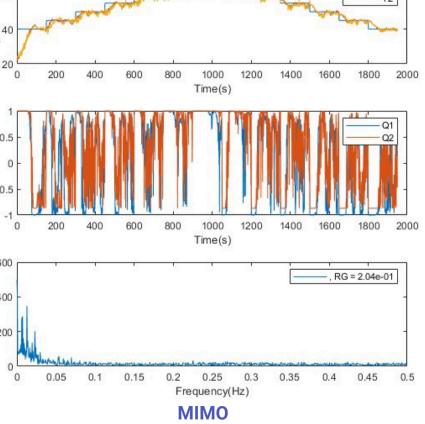
FOPDT Model

Control Method	MAE	Roughness
LSTM + DDPG	1.67	1.48e-01
FOPDT + DDPG	3.85	1.36e-01

80

60

Conclusion

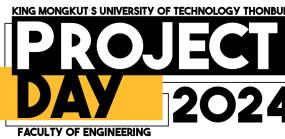

• This project successfully demonstrated the superiority of a data-driven deep learning approach for continuous control. Our framework, leveraging LSTMs and DDPG, outperformed conventional methods in various control scenarios.

Future Work:

- Reduced Training Time: Investigate methods to accelerate training (e.g., efficient algorithms, transfer learning).
- MIMO DDPG with Single Actor: Explore implementing MIMO DDPG with a single actor for improved efficiency.
- Adaptive Control: Develop adaptive control mechanisms using transfer learning and online training for dynamic systems.

• MIMO : in this version, we separate the controller into 2 actor models to control 2 actuators of TCLab

Control Method	MAE	Roughness	
MIMO V1	2.16	2.04e-01	



References

[1] Junho Park, R. Abraham Martin, Jeffrey D. Kelly and John D. Hedengren., 2020, "Benchmark temperature microcontroller for process dynamics and control", Computers and Chemical Engineering, Vol.135, pp.106736-106748.

Department of Control Systems and Instrumentation Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi (KMUTT)

