
Modeling and Control of an Experimental
pH Neutralization Plant using Neural Networks

based Approximate Predictive Control
Ireneus Wior

Institute of Automation Technology
Helmut-Schmidt-University, Germany

Email: ireneuswior@arcor.de

Sudchai Boonto
Hossam Seddik Abbas

and Herbert Werner
Institute of Control Systems

Hamburg University of Technology, Germany

Abstract—A nonlinear experimental pH neutralization plant is
controlled using a neural networks based Approximate Predictive
Control (APC) strategy. First a closed-loop identification is
performed, further, using neural networks, a black-box modeling
of the experimental plant is conducted. Then the approximate pre-
dictive controller is realized, where a linear model of the plant is
extracted at each sampling period from the neural network model.
This strategy is used to control the experimental neutralization
plant for set point tracking and disturbance rejection.

Index Terms—pH Neutralization Plant, Neural Networks,
Approximate Predictive Control

I. INTRODUCTION

Monitoring and controlling the pH level is often performed
in many chemical, industrial processes. It is important to
improve the productivity and at the same time the robustness
of these processes.

A PID controller is often used to deal with this process;
however, it can only react to changes in a reference signal. On
the other hand, a Model Predictive Control (MPC) approach
is proactive and makes use of the information of the future
reference signal which is usually known beforehand in a pH
neutralization process. Although the MPC approach can not
follow a step function directly it can follow it much better than
a PID (justifiably assuming that the maximal possible slope of
the change is the same). Furthermore a MPC approach is more
sophisticated than a PID in terms of handling input and output
constraints, as well as dealing with difficult system behaviors
like high nonlinearity and long time delays, see e.g. [1].

Nonlinear Model Predictive Control (NMPC) is a well-
established research approach to deal with nonlinear plants.
Currently the NMPC is limited to processes with relatively
slow dynamics due to the usage of nonlinear optimization
approaches. Different techniques have been proposed to deal
with this problem, see e.g. [2] and [3]. One of these techniques
is the Approximate Predictive Control (APC) which uses a lin-
earized model of the plant at each sampling period [4]. By this
way, only a linear optimization problem has to be performed
every sampling instant, this reduces the computational load and
enables to deal with faster processes.

The APC approach is already known since more than ten
years and some simulation studies were introduced in [5]

to control gas turbine engines and in [4] for a pneumatic
servomechanism. Although there is a vast literature on MPC
in connection with neural networks there are not many appli-
cations of APC approaches based on neural network models
used on real problem instances. One of the exceptions is the
experimental 3-DOF Helicopter presented in [6].

To deal with the pH neutralization process in [7] a PID
controller based on a neural network model is presented, which
uses a genetic algorithm to tune the parameters of the PID
controller offline on the nonlinear neural network model. In
[8] on this problem an adaptive nonlinear control strategy is
used.

Fig. 1. The experimental pH neutralization plant.

In this paper an APC strategy is used to control the experi-
mental pH neutralization plant shown in Figure 1. We consider
the set point tracking and disturbance rejection problem. All
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Fig. 2. Schema of the problem in its SISO arrangement.

these in order to assist the capability of APC to control such
highly nonlinear process.

The rest of the paper is structured as follows: Section II
describes the system under consideration. In Section III a
system identification of the experimental pH neutralization
plant is performed. Here a data set is collected in closed-loop
and based on which a neural network is trained to represent the
experimental plant. A short introduction to the APC strategy
is given in Section IV. Section V presents the experimental
results in terms of a set point tracking and a disturbance
rejection problems. Finally in Section VI some conclusions
are drawn.

II. PROBLEM DESCRIPTION

The pH neutralization process considered in this work is
technically realized in a mixing tank with two input streams
and one output stream. Figure 1 and Figure 2 show the ex-
perimental plant and a draft of it, respectively. The cylindrical
tank is initially filled to three-fourths of its volume with water
and the mixer is arranged in the lower fourth of the tank.

Separate control loops, one for the temperature and one
for the liquid level, are used for holding the environmental
conditions approximately constant. These controllers are sim-
ple On/Off-Controllers and as such are independent from the
control method for the pH neutralization process.

One of the input streams is an alkaline solution (NaOH) and
has a constant flow rate as well as a constant pH-value. The
second input stream is acid (HCl) with a constant pH-value
but its flow rate is manipulated to control the pH-value in the
tank. The output stream is controlled in the mentioned sepa-
rated On/Off-Control loop and hence the outflow is discrete
depending on the liquid level within the tank. Finally a pH
sensor is attached near the bottom of the tank precisely above
the opening for the output stream. The reference signal which
is a desired pH-value in the tank is known beforehand.

The whole system can be formulated as a SISO system: the
pH-value of the liquid in the tank is the output and the acid
flow rate is the input to this system. The right acid flow rate
results in the desired pH-value within the tank. Insufficient
acid results in an excessively alkaline pH-value; conversely,
excessive acid inflow leads to an exceedingly acidic pH value.

In the following the nonlinearities of the experimental pH
neutralization process are summarized:

• The neutralization process proceeds nonlinearly and has
a high sensitivity around the pH-value of 7.

• The neutralization process has two regions of saturation:
one in the very acidic (pH-value < 5 approximately)
and one in the very alkaline region (pH-value > 9
approximately). If one of the regions is reached, it is very
difficult to lead the pH-value out of the saturation.

• Although a mixer blends the liquids in the tank, a
continuous homogenous distribution can not be reached
immediately. One reason for this is the positions of the
mixer relative to the location of the inflow stream, with
the first being placed at the bottom of the tank, while the
latter is found at the top.

• As a consequence of inhomogeneous liquid distribution,
the liquid level, as well as other effects, the whole system
has a noticeable time delay.

Furthermore the experimental build-up has some limita-
tions:

• The available storage volume for the acid solution is
limited and leads to a limitation of the measurement
duration. Hence the data set which can be collected is
relatively small.

• The pH sensors used have a measuring range from 0 to 14
pH, a smallest measuring range of 0.5 pH and an accuracy
of ± 0.2%. This accuracy of the pH sensors defines the
highest accuracy for the control.

III. SYSTEM IDENTIFICATION

To handle the nonlinear character of the plant a black-box
modeling method is used. First the data has to be generated
with which a neural network is then trained.

A. Data generation

For black-box modeling a set of input and output data
must contain all important information about the behavior
of the plant. To get all important information of a nonlinear
system, the whole range of amplitudes and frequencies must
be stimulated within which the plant shall be operated. The
resulting data is a set of data input uk and output yk of the
experimental plant with N being the number of samples k:
ZN = {uk, yk | k = 1, 2, . . . , N}. Because of the saturation
regions of the neutralization process the amplitude range of the
pH-value which has to be covered is from around 5 to around
9.

With the relay feedback method [9] the critical frequency fc;
with different step responses the rise time tr and finally using
(1) the sampling frequency fs and hence the sampling time
Ts are determined as fc = 1

60Hz, tr = 90sec and Ts = 9sec,
respectively.

fs = (5 ∼ 10) · fc and fs = (5 ∼ 10) · 1

tr
(1)

A multisine signal [10] is used to excite the system. This
is a periodic non-binary multifrequency signal given as:



u(t) =

ns∑
i=1

Ai · cos(ωi · t), (2)

where Ai and ωi are the i-th amplitude and frequency of
the multisine. With a multisine a desired frequency spectrum
with constant amplitudes in a desired frequency range can be
designed easily. Additionally a relatively small crest factor
can be achieved (hence it has a good signal-to-noise ratio).
Following [11] the minimum number of samples N and the
minimum number of different frequencies ns of the multisine
can be computed by:

N ≥ 2 · π · βs · τdom
T

, (3)

ns ≥
N · Ts · αs

2 · π · τdom
, (4)

where τdom is the dominant plant time constant, βs specifies
how much low-frequency information will be in the signal and
here it is chosen as βs = 3 to get low-frequency information.
The constant αs denotes how much faster the closed-loop
response is expected to be in comparison with the open-loop
one, it is chosen as αs = 1. In addition, N and ns are chosen
as 350 and 20, respectively, which fulfil (3) and (4).

Figure 3 shows a typical spectrum of an input signal for
the identification purpose, where fn is the Nyquist frequency,
fb is the bandwidth of the closed loop system which is taken
as fb = 1

60Hz with fb = αs · fc. The low frequency part up to
fb stimulates the range in which the plant shall be operated.
The amplitude of the high frequency part from fb to fn is only
half of the amplitude of the low frequency part. Therefor, the
high frequency noise is not significantly amplified.

Fig. 3. The frequency spectrum of the input signal.

The closed-loop shown in Figure 4 is used to generate
the data set for identification. By using the feedback control
scheme one can force the output signal to get out of the
saturation. This counteracts the problem of getting stuck in
the saturation which otherwise occurs with the open-loop
approach. A proportional controller is used in the closed-
loop and the input signal is added just after the proportional
controller. It is known that closed-loop identification based on
a direct approach [10] is sensitive to noise since the noise of
the input to the plant is correlated with the noise of the output;
however, the high signal-to-noise ratio allows to assume that
the amount of the noise in the output signal is neglectable.

The data set generated in this way is shown in Figure 5
and will be used in the following section for the training of
the neural network.

Fig. 4. Closed loop structure for the identification of the data set.
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Fig. 5. Input and output signals of the training data set.

B. System identification with neural networks

A neural network is trained to capture the nonlinear behav-
ior of the plant. The structure of the neural network is chosen to
correspond to an ARX (AutoRegressive with eXogenous input)
model structure in linear systems [10]. We refer to a neural
network with this structure as a NNARX model structure, see
Figure 6.

The input vector ϕ of the neural network consists of the
past n output signals yk−1 until yk−n and of the past m input
signals uk−d until uk−d−m+1 which are shifted by the delay d.
The output of the neural network is ŷk which is a prediction of
the plant’s output at instant k. A multilayer preceptron neural
network type is used [4], with two layers, p neurons and which
is described as:

ŷ = f2(W 2f1(W 1ϕ+ ω1
0) + ω2

0), (5)

where f1 and f2 are the tangent hyperbolic and linear
functions, respectively, W 1 and W 2 are matrices containing
the network weights and ω1

0 as well as ω2
0 are the weights of

the biases. θ in Figure 6 contains all weights, i.e. it includes
the weights W 1, W 2, ω1

0 and ω2
0 .

Fig. 6. NNARX model structure.

To train the network, i.e. to find the weights, the Levenberg-
Marquardt Backpropagation algorithm [4] is used. The method
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Fig. 7. Validation signal (solid) and 10-step-ahead prediction (dashed) of a
NNARX model with p = 11, n = 11, m = 10 and d = 1.

seeks to minimize the sum of the mean squared prediction
errors given as:

VN (θ, ZN , α) =
1

2N

N∑
k=1

((yk− ŷk(θ))2+
1

2N
θT ·αI ·θ). (6)

During the training of the neural network an undesired
effect may occur, which is known as overfitting [4], [12].
In overfitting, the neural network is not only trained on the
plant dynamics but also on the plant disturbance. In order
to deal with this, two methods can be used: training with a
regularization term and pruning [4], [12]. Both methods are
used in this paper. The regularization term α can be found in
(6) and it is tuned to be as α = 10−3.

To implement these methods the Neural Network Based
System Identification TOOLBOX [13] is used. It contains
algorithms for the training and the validation of multilayer
perceptron neural networks together with methods for pruning
and the regularization term.

Using the data generated in the closed-loop, a NNARX
model of the experimental neutralization plant is found. The
result is a neural network which has p = 11 neurons, uses
n = 11 past outputs as well as m = 10 past inputs and
has a delay of d = 1. The number of past inputs m and
past outputs n was determined with an order index criterion
based on Liptschitz quotients [4]. The 10-step ahead prediction
with the NNARX model in comparison to the validation signal
can be seen in Figure 7. It has to be noted that the data set
used to train the neural network and the data set used for
validation are two different ones. Since the storage volume
of the acid solution is limited the measurement period is also
limited. This may reduce the quality of the nonlinear model;
however, as shown in Figure 7 the plant behavior has been
identified with satisfactory in the 10-step ahead prediction. In
the following sections this neural network model is used for
the APC controller as well as for tuning the controller in a
simulation build-up.

IV. APPROXIMATE PREDICTIVE CONTROL

The main concept behind common predictive control strate-
gies is to predict the future outcome of different plant inputs
and to choose the best out of these. Its calculations are
relatively time consuming, this being its main disadvantage.

Fig. 8. Block structure of Approximate predictive control.

The minimization problem:

min
Ũk

Jk = min
Ũk

(

N2∑
i=N1

(rk+i − ŷk+i)
2 + ρ

Nu∑
j=1

∆u2k+j−1), (7)

where Jk is the cost function, rk+i is the known future
reference signal and ρ is a factor which penalizes the influence
of the input signals on the cost function has to be solved at
each instant k. Moreover Ũk is a vector with the most recent
control input changes given as:

Ũk = [∆uk ∆uk+1 . . . ∆uk+Nu−1]T , (8)

where ∆ = 1 − z−1 with z−1 is a time delay operator
(i.e. z−puk = uk−p). At each instant only the first computed
input change ∆uk is applied to the plant and then the whole
computation is repeated for the next instant.

To solve this minimization problem the predicted outputs
ŷk+i within the fixed prediction horizon have to be determined.
To reduce the calculation time requirements the General Pre-
dictive Control (GPC) approaches use a linear model to predict
the future outputs [14], [15]. This results in a linear optimiza-
tion problem with a new linear model for each sampling period.
Approximate Predictive Control (APC) is a special case of the
GPC approach, where the linear model is extracted from a
neural network. This is known as instantaneous linearization
[4]. In Figure 8 the block structure of the APC is shown.

A detailed introduction of the APC can be found in [4], and
a toolkit which uses these formulas is implemented in [16].

V. EXPERIMENTAL STUDY

In this section the experimental results of the APC on the
pH neutralization plant are presented. A set point tracking
problem as well as a disturbance rejection problem are con-
sidered. It is difficult to adjust the parameter values of the
controller directly in the real experimental plant because of its
nonlinear behavior, the time intensive preparations to run the
plant and the long measurement duration to obtain sufficient
measurements. Therefore, first the parameter values of the APC
are adjusted off-line with the neural network model identified
earlier, then the APC is tried on the experimental plant.
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Fig. 9. Simulation results of a set point tracking problem with APC (N1 = 1,
N2 = 10, Nu = 2 and ρ = 2000).

A. Off-line parameter values adjustment

The neural network model found in Section III-B which
provides the results shown in Figure 7 is used to tune the APC
off-line. The model is used twofold: first it is applied inside
the APC structure (for this purpose the neural network model
is constructed as shown in Figure 8), and second it simulates
the plant that has to be controlled.

The parameter values of the APC are adjusted as follows:
N1 = 1 is fixed and equals the delay of the system. N2 is
selected as tr

Ts
= 10 so that the prediction horizon covers at

least the rise time of the plant; Nu = 2 is chosen relatively
small in comparison with N2. It has been observed that the
choice of N2 and Nu is mostly unproblematic and gives good
results for different values. The value of ρ in (7), which
penalizes the control signal, should be carefully tuned. With
ρ = 2000 a satisfactory tracking capability has been achieved
in simulation.

Figure 9 shows the simulation results of the set point
tracking problem. The reference signal is a three level signal
that changes each 500 seconds. The APC produces reasonable
control inputs and the output tracks the reference signal
in a satisfactory manner. Finally, in Figure 9 the proactive
characteristic of the APC can be observed because the control
action begins earlier than the change in the reference. Next,
the above parameter values are used with the real experimental
plant.

B. Experimental results

The same obtained controller parameters have been utilized
when the APC is tested on the real experimental pH neu-
tralization plant. However, to improve the tracking capability
and to reduce some oscillations which appear during the
implementation, the value of ρ has been further tuned online,
and it turns out that its best value is ρ = 20000.

The resulted measurement on the set point tracking problem
is shown in Figure 10. The first change from pH-value 7 to 5.5
is unproblematic and relatively well done. The changes from
pH 5.5 to 8 and then back to 7 are not ideal, but the control
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Fig. 10. Experimental results of a set point tracking problem with APC
(N1 = 1, N2 = 10, Nu = 2 and ρ = 20000).

signal touches its limits, in particular, the lower one. Overall
the results are reasonable and almost the same as the simulated
ones.

From Figure 10 it can be also seen that the prediction
is close to the real output, which shows that the model can
capture the dynamics of the plant very well.

Finally the performance of the APC on a disturbance
rejection problem is considered. The same parameter values
as in the set point tracking problem are used. The task for
the controller is to hold a constant pH-value equal 6, while
some unmeasured disturbances are acting on the alkaline
input stream. In Figure 11 the results are presented. The first
disturbance is done by increasing the base valve opening for
one sampling period from 0.2 to 0.4, which is equivalent to a
three times higher alkaline flow rate. The second disturbance is
obtained by reducing the valve opening from 0.2 to 0 for two
sampling periods. It can be observed that the controller directly
reacts with a change of the acid inflow when a deviation in
the pH value occurs. Furthermore, it can be seen that the
disturbance can not bring the pH-value far from the reference.

VI. CONCLUSION

In this work an approximate predictive control strategy for
an experimental pH neutralization plant has been carried out.
In closed-loop, with a multisine input signal, an identification
data set has been gathered. A multilayer preceptron network
with a NNARX model structure has been trained. Based on
the trained neural network model, an APC has been off-line
tuned and then implemented on the experimental plant.

The experimental results of a set point tracking and a dis-
turbance rejection problems have demonstrated the capability
of the APC to control the experimental pH neutralization plant
successfully.
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