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Abstract

This thesis focuses on the identification of Linear Parameter-Varying (LPV) input-
output models. Three problems are considered: the approximation of the nonlinear
scheduling function of LPV systems, the unbiased identification of LPV systems, and
the state-space realization of LPV input-output models.

The approximation of the nonlinear scheduling function of LPV systems is con-
ducted by using cubic spline basis functions which are more easily tunable and less
oscillatory than polynomial functions. A Separable Least-Squares (SLS) algorithm is
proposed to reduce the number of parameters by separating them into linear and non-
linear parameters. Moreover for unstable systems, models are identified in closed-loop
by using a two-step method with a neural network as a noise filter. Simulation and
experimental results are given; they demonstrate the efficiency of the presented ap-
proach.

Concerning the unbiased identification of LPV systems, the bias error is reduced
by using the “instrumental variable with auxiliary model” method. To improve the
performance while still maintaining simplicity, an auxiliary model with output error
structure, which is estimated by the output error method, is used. The proposed
approach gives a significant improvement in terms of bias error and variance. A com-
parison with an existing method is illustrated with several simulation examples.

A state-space realization of LPV input-output models using a Linear Time-Invariant
(LTI) framework introduces undesired dynamic dependence on the parameters. To
solve this problem, the identification of LPV systems in a Left Polynomial Representa-
tion (LPR) is proposed. By using skew polynomials, a systematic realization procedure
for LPV systems is presented. The resulting state-space models involve only static
dependence on the scheduling parameters and are in observable form and minimal.
Therefore standard LPV controller synthesis techniques can be used without loosing
closed-loop performance. The efficiency of the proposed method is demonstrated by
applying it to a laboratory scale magnetic levitation plant and an arm-driven inverted
pendulum.
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Chapter 1

Introduction

In real life many systems to be controlled are nonlinear. One technique that can be
used to deal with nonlinear systems is gain-scheduling control. The classical gain-
scheduling approach consists of two steps: one designs local linear controllers based on
linearization of the nonlinear system at several different operating points; the overall
nonlinear controller is then obtained by interpolating or scheduling among the designed
local operation points. The main drawback of the linearization-based gain-scheduling
controller design methods is that the controlled system may exhibit a poor response
or go unstable when operating points are not at the equilibrium [Rugh and Shamma,
2000].

To overcome the limitations of the classical gain-scheduling technique, the gain-
scheduling controller design method based on Linear Parameter-Varying (LPV) sys-
tems was introduced to the control community in the 1990s, see [Shamma and Athans,
1991; Packard, 1994]. An LPV system has the form of a linear system in which the
system matrices in state-space representation or the system transfer operator matrices
in input-output representation depend on static functions of the measured scheduling
parameters. In contrast to the classical gain-scheduling method, the gain-scheduling
controller design based on LPV systems can guarantee stability and optimal perfor-
mance over the entire range of operation of the system. This design technique has
gained a lot of attention since LPV gain scheduling based on H∞ and H2 synthesis
using linear matrix inequalities (LMIs) optimization was proposed by Apkarian et al.
[1995]; Apkarian and Gahinet [1995]. The LPV framework has been applied to a wide
area of application, for example; wind turbines [Bianchi et al., 2007], aircraft [Marcos
and Balas, 2004], Diesel engines [Kwiatkowski, 2007], etc.

Notwithstanding the above attractive features of LPV systems, it has to be men-
tioned that the performance of the closed-loop control system depends strongly on the
quality of the LPV model being used for controller synthesis. Assuming that the nonlin-
ear dynamic equations of the plant are available, there are several methods to construct
LPV models from them. The nonlinear terms can be made linear in parameters by
linearization, substituting with functions and considered as linear varying parameters,
etc. (see [Kwiatkowski, 2007]). However, with these techniques the models may end up
with too many scheduling parameters. Models that have many scheduling parameters
are too complicated and unsuitable for LPV controller design [Kwiatkowski, 2007].

1



2 Chapter 1. Introduction

Instead of constructing LPV models from nonlinear equations, experimental system
identification can be considered as an alternative. In system identification, the aim is
to estimate dynamic models directly from measured input and output data. The iden-
tification framework of Linear Time-invariant (LTI) systems is now firmly established
and well known [Ljung, 1999] while the identification of LPV models is still developing.
Several problems and challenges have not yet been solved [Tóth, 2010].

The identification of LPV systems has a long history. Here we discuss just some
aspects related to the thesis, for the rest the reader is referred to [Tóth, 2010]. LPV
identification was first discussed in [Nemani et al., 1995], by assuming that the system
has only one varying parameter and the state vector can be measured. The problem
can be shown to be equivalent to a linear regression problem and solved by a Least-
Squares (LS) method. Keeping this track, the most general and widely used technique
of LPV input-output model identification, was introduced in the work of Bamieh and
Giarré [2002], where the method can be used not only for Single-Input Single-Output
(SISO) models but also for Multi-Input Multi-Output (MIMO) models. The approach
uses a linear parameterization of function dependent coefficients with polynomials of
scheduling parameters. Then, LS methods and Recursive Least Square (RLS) methods
can be applied to estimate the models [Bamieh and Giarré, 2002; Wei, 2006]. How-
ever, noise issues in the identification were neglected. Due to an interest in applications
which are operated under noisy conditions, some attempts have been made to deal with
the identification of an LPV input-output model when the measured data is corrupted
by noise. The Instrumental Variable (IV) method and its variations have been intro-
duced to solve this problem by using auxiliary models in LPV Auto-Regressive with
Exogenous form (LPV-ARX), LPV Output Error (LPV-OE) and LPV Box-Jenkins
(LPV-BJ) structures [Butcher et al., 2008; Abbas and Werner, 2007; Laurain et al.,
2010]. In [Abbas et al., 2010a], this issue is also considered by using a Linear Recur-
rent Neural Network (LRNN). Nevertheless, all LPV input-output models share the
same disadvantage as they are not in a structure that is ready to be used by advanced
controller synthesis methods. The models have to be converted to state-space forms.

The closed-loop system identification of LPV input-output models is also becoming
an active research area. In [Boonto and Werner, 2008] a closed-loop identification
technique is proposed for the estimation of LPV models in ARX form by directly
extending the Output Error Method for the LTI case [Landau and Karimi, 1997]. Use
of IV method to the closed-loop problem is also considered in [Abbas and Werner,
2007].

In parallel, a subspace identification approach for LPV state-space models has been
developed in [Verdult and Verhaegen, 2000; Verdult, 2002]. This branch of methods
employs the concept of LTI subspace identification using the Multivariable Output-
Error State-Space (MOESP) algorithm (see [Verdult, 2002] and reference therein).
LPV descriptions with affine dependence on the time-varying parameters are considered
without full state measurements. A recent development of this technique depends on
only one single least squares problem and a Singular Value Decomposition (SVD) [van
Wingerden and Verhaegen, 2009]. The main advantage of subspace-based techniques is
that the resulting model can be directly used for MIMO state-space controller synthesis
methods. However, in this technique, the number of rows in the data matrices grows
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exponentially with the system order, which might be not suitable for identifying high-
order LPV models. Some significant improvements against this drawback have been
presented in [Felici et al., 2007]. The subspace method is also extended to tackle closed-
loop identification issues by tailoring the data generated in closed-loop [Felici et al.,
2007].

Apart from the two methods mentioned above, there are a few more approaches that
can be seen as separate categories of LPV identification, for examples an orthogonal
basis function approach [Tóth, 2008], set membership [Belforte et al., 2005; Cerone and
Regruto, 2008], nonlinear optimization [Lee and Poolla, 1999].

In this thesis, we aim to improve the LPV input-output identification framework
by solving some open problems that have not been adequately treated so far. This will
be discussed in the next Section.

1.1 Motivation and Objectives

This thesis deals with identification and control of nonlinear and time-varying systems
based on the concept of LPV input-output models. One of the main objectives is to
bridge the gap between the LPV identification framework and LPV controller synthesis,
with particular emphasis on the following.

1.1.1 Approximation of Nonlinear Scheduling Functions

To identify accurate LPV input-output models (2.6), one crucial issue is to approximate
a nonlinear scheduling function. In the initial work in this field [Bamieh and Giarré,
2002], simple polynomials of scheduling variables are used. However, their capabilities
are limited and they are difficult to tune.

In the literature, there are few reports that consider this problem. In [Previdi
and Lovera, 2003, 2004], nonlinear scheduling functions are identified through a neural
network model, while the linear part of the model is estimated in ARX form. Similarly,
in [Hsu et al., 2008], a non-parametric method is applied by using a dispersion function
to estimate the scheduling functions in terms of piece-wise linear functions.

One objective of this thesis is to develop an approximation algorithm which is fairly
simple but yet more effective than the polynomial approach.

1.1.2 Closed-Loop System Identification

The two-step method is a powerful technique for closed-loop identification [Leskens
et al., 2002]. Unfortunately, the method is limited to closed-loops composed of an LTI
plant and an LTI controller. In [Forssell and Ljung, 2000], a projection method has
been proposed and the restriction to LTI controllers has been removed. An extension
to LPV systems is however not considered.

Since the two-step method is attractive in the sense of simplicity, we extend the
idea to LPV system identification in closed-loop.
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1.1.3 Unbiased LPV Input-Output Model Identification

In the past, the identification of LPV input-output models has been considered as a
least squares or recursive least squares problem, see [Bamieh and Giarré, 2002; Wei,
2006; Qin and Wang, 2007a,b]. However, it is well known that these methods are biased
due to the correlation between output data and measured noise data [Butcher et al.,
2008; Landau and Zito, 2006]. This problem becomes important if the Signal to Noise
Ratio (SNR) is low. In [Butcher et al., 2008], this problem has been solved by using
an instrumental variable with auxiliary model [Landau and Zito, 2006]. The proposed
method simply uses an LPV-ARX† model as an auxiliary model. It turns out that the
method is applicable only when the corrupting noise is white. For the colored noise
case, a Refined Instrumental Variable (RIV) method with LPV-OE and LPV-BJ have
been proposed. However, this method requires knowledge of the noise model.

Another way to deal with this issue is a method using a LRNN proposed by Abbas
et al. [2010a]. By using an LPV-OE structure, a recurrent neural network is used
for searching the model parameters. Since the LPV model is estimated by employing
a predicted output which is free of noise, the identified model is unbiased. The main
drawback of this method is the large computation time. Moreover, since each recurrent
neural network is restricted to one LPV input-output model structure, the overall
network has to be reconstructed if the model order is changed.

This thesis extends the instrumental variable with auxiliary model method to LPV
identification problems when the corrupting noise is not white and the SNR is low.

1.1.4 Realization of LPV Input-Ouput Models

Since most of the LPV controller synthesis methods require LPV state-space models,
the realization of LPV input-output models is essential. It has been recently observed
that the realization of LPV input-output representations is not straightforward as in
the LTI case [Tóth et al., 2007], due to the fact that the shift operator and the time-
varying coefficient functions do not commute. In the LPV literature this problem has
been largely ignored [Wassink et al., 2005; Giarré et al., 2006] while it is well known
in the Linear Time-Varying (LTV) literature, see for example [Kamen, 1976; Verriest,
1993]. However, for the LPV case, the realization issue is more involved than the LTV
case because of the infinite dimensional space of the scheduling parameters. Using
a recently developed behavioral framework to solve such realization problems [Tóth,
2008], the equivalence between LPV state-space and LPV input-output representations
can be obtained by allowing a dynamic mapping between the scheduling parameters
and the system matrices. However, this increases the complexity of the resulting state-
space models.

In [Abbas et al., 2010b], three LPV input-output model structures for identifica-
tion, which can be transformed into LPV state-space models without any dynamic
dependence of the scheduling parameters, have been introduced. The resulting LPV
state-space models are also equivalent to the identified LPV input-output model.

†See Chapter 2
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In this thesis, we establish a practical and systematic framework for LPV state-
space realizations. Compared with the work in [Tóth et al., 2011], this technique
should be accessible to control engineers and can be used with both SISO and MIMO
systems.

1.1.5 Model Validation Method for LPV models

In closed-loop system identification of unstable models, the cross-validation between
simulated outputs of the identified models and the measured data may not give suf-
ficient information about the suitability of a model for controller design. This test
cannot show whether or not the model can be stabilized by the controller used for
identification. In [Codrons, 2005] and references therein, the ν-gap metric [Vinni-
combe, 1993a] is suggested as a validation tool for LTI models. The ν-gap metric can
provide a sufficient condition for closed-loop stability. If the ν-gap is larger than the
generalized stability margin, one can ensure that the model can be stabilized by the
controller used for identification. Moreover, the models can be used to design a better
controller than the one being used. In [Fujimori and Ljung, 2007; Wood, 1995] this idea
has been extended to LPV models by freezing the scheduling parameters at different
values and analyzing the ν-gap for each resulting LTI model. However, there is so far
no connection between the system identification and LPV controller design.

One of the objectives of this work is to develop a model validation procedure that
can be used as a tool to test whether or not the LPV models identified in closed-loop
are suitable for LPV controller design.

1.2 Contribution of This Thesis

The main contributions of this thesis are as follows:

1. An algorithm to approximate nonlinear scheduling functions based on cubic
splines is introduced. The algorithm is combined with the LPV input-output
identification method by using a Separable Least-Squares (SLS) framework and
the Levenberg-Marquardt Algorithm. The proposed algorithm gives better re-
sults than a polynomial-based method in terms of accuracy. Moreover, a recursive
version of the algorithm is also given to be used when the amount of data is too
large.

2. An extension of a two-step method for closed-loop identification to LPV models
is proposed. Since the plant is no longer assumed to be linear, a linear sensitivity
function cannot be used anymore. An NNARX network† is introduced to serve
as a noise filter. The network can be used not only to remove noise from an input
signal but from the scheduling signal also. The latter ability can reduce the bias
error of the identified models.

†See Chapter 2.
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3. An alternative IV method for an unbiased LPV input-output identification is
introduced. The method is based on the output error identification algorithm
which can construct a better auxiliary model than the traditional LPV-ARX
model. The proposed method provides with a much lower complexity a perfor-
mance comparable to methods such as Refined Instrumental Variable (RIV) and
Simplified RIV (SRIV) [Laurain et al., 2010], which require a larger computa-
tional effort.

4. Constructing a state-space realization of an LPV input-output model is a crucial
problem. Due to the noncommutativity of the shift operator with a parameter
dependent coefficient function of the LPV model, an LTI realization procedure
cannot be employed. In this thesis, we propose a realization method which takes
the noncommutativity into account by using a skew polynomial concept. The
resulting technique preserves the simplicity of the LTI realization and is suitable
for used in engineering applications.

5. A general LPV input-output model structure for SISO and MIMO identification
is given. Together with the proposed realization method, this model structure
can be directly transformed into an LPV state-space model which involves only
static dependence.

6. The proposed techniques of this thesis are applied to real plants: a magnetic
levitation system and an Arm Driven Inverted Pendulum (ADIP). Experimental
results show the efficiency of the proposed approaches.

1.3 Thesis Overview

This thesis is organized as follows:

Chapter 2 describes the preliminary background material that will be used through-
out the thesis. The LPV representations related to the controller synthesis and identi-
fication method are given. The difference between LPV and quasi-LPV systems is also
discussed. Finally, the neural network model structures, which are required for LPV
closed-loop identification, are provided.

In Chapter 3, we deal with the LPV input-output identification method. This
method is focused on a way to approximate nonlinear scheduling functions. The chapter
starts by giving a general review of the LPV input-output identification [Bamieh and
Giarré, 2002] approach. Then, the difference between a polynomial and a cubic splines
based approach is explained. A separable least-squares algorithm is used as a main tool
to estimate the parameters of the cubic splines. Recursive and non-recursive techniques
are also proposed. Moreover, the extension of the two-step method to identify LPV
models in closed-loop using neural networks is introduced. Application to the model
of an arm-driven inverted pendulum with experiment data illustrates the effectiveness
of the techniques presented in the chapter.
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Chapter 4 begins with an overview of LPV identification techniques used to identify
LPV models when the data is collected in noisy environments. A combination of the
output error and instrumental variable methods is proposed for unbiased identification.
The proposed method is compared with results in the literature. Finally, the extension
to quasi-LPV models is also given with numerical examples.

In Chapter 5, a realization method for LPV input-output models is developed.
The proposed method is based on the LTI realization method. The chapter starts
with introducing algebraic tools for the algorithm. The realizations to observable and
reachable forms are shown. Then, an LPV input-output model structure, that can be
directly converted into an LPV state-space model in observable form, is provided.

In Chapter 6, model validation of LPV models for controller design is discussed. The
application of the methods in Chapter 3 and 5 are shown. They include identification
and real-time control of a magnetic levitation system, and an arm-driven inverted
pendulum. The first plant is a nonlinear open-loop stable MIMO plant. The second
one is a nonlinear open-loop unstable SIMO plant. Both results are compared with
results in the literature.

Chapter 7 draws conclusions and gives an outlook on further research.
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Chapter 2

LPV System Representations and
Background Material

In this chapter, some material is presented concerning the representation, control and
identification of discrete-time LPV systems, that will be used throughout the thesis.
The representations of LPV systems in state-space and input-output structures are
described in Section 2.1 and 2.2. In Section 2.3, a brief review of the difference between
LPV and quasi-LPV systems is given. The Multi-Layer Perceptron (MLP) network
which is necessary for the two-step closed-loop LPV identification approach is given in
Section 2.4.

2.1 LPV State-Space Representation

In general, a discrete-time LPV state-space system is defined by (see e.g. [Verdult,
2002])

S(θ)

{
x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k)

y(k) = C(θ(k))x(k) +D(θ(k))u(k)
, (2.1)

where x(k) ∈ Rn is the state variable, u(k) ∈ Rnu is the input signal, y(k) ∈ Rny is
the output signal, A(θ(k)), B(θ(k)), C(θ(k)), and D(θ(k)) are the parameter-varying
system matrices, and θ ∈ Rnθ is the time-dependent parameter vector. To make the
notation of the LPV model more compact, the model can be represented as

S(θ) =

[
A(θ(k)) B(θ(k))
C(θ(k)) D(θ(k))

]
∈ R(n+ny)×(n+nu). (2.2)

The time-dependent parameter vector θ(k) depends on a vector of measurable schedul-
ing signals

ρ(k) =
[
ρ(k) ρ2(k) · · · ρnρ(k)

]T ∈ Rnρ , (2.3)

and is generated as

θ(k) = f(ρ(k)), (2.4)

9
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where f(ρ(k)) : Rnρ → Rnθ is a continuous function.
The scheduling parameter θ is taken from a compact set Pθ ⊂ Rnθ which is defined

as

Pθ :=
{
θ ∈ Rnθ | θi ≤ θi ≤ θi, ∀i ∈ {1, . . . , nθ}

}
, (2.5)

where

θi = min
k∈Z+

θi(k), θi = max
k∈Z+

θi(k).

2.2 LPV Input-Output Representation

The LPV input-output models, that are used in the LPV identification framework, are
commonly defined in a transfer operator form by separating a process and a noise part.
The general LPV MIMO model is defined as

S(θ)

{
A(q−1, θ(k))y(k) = B(q−1, θ(k))q−du(k)

ỹ(k) = y(k) +D−1(q−1, θ(k))C(q−1, θ(k))e(k),
(2.6)

where e(k) is a white signal, q−1 denotes the backward shift operator, y(k) ∈ Rny and
u(k) ∈ Rnu are output and input signals, d is the delay time between the input and
the output signals, and

A(q−1, θ(k)) = I +
na∑
i=1

Ai(θ(k))q−i, (2.7a)

B(q−1, θ(k)) =

nb∑
i=0

Bi(θ(k))q−i, (2.7b)

C(q−1, θ(k)) = I +
nc∑
i=1

Ci(θ(k))q−i, (2.7c)

D(q−1, θ(k)) = I +

nd∑
i=1

Di(θ(k))q−i (2.7d)

where the coefficients Ai(θ(k)), Bi(θ(k)), Ci(θ(k)) and Di(θ(k)) are matrices where
each element is analytic function with static dependence on the scheduling parameters
θ, and I is an identity matrix of appropriate dimension.

The special cases of (2.6) are defined similar to linear models case [Ljung, 1999]
and are presented in Table 2.1.

It should be noted that in general C(q−1, θ(k)) and D(q−1, θ(k)) are not parameter
dependent matrices. In many cases, we can define them like LTI transfer operators as
C(q−1) and D(q−1).

The coefficients of the LPV input-output model are functions of a varying parameter
θ. In [Bamieh and Giarré, 2002], it has been shown that the coefficient functions
of LPV system can be parameterized as a linear combination of the basis functions
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Table 2.1: Some special cased of the generalized LPV input-output model.

Name of model structure Special defined polynomials

LPV-FIR (Finite Impulse Response)
A(q−1, θ(k)) = C(q−1, θ(k)) = I
D(q−1, θ(k)) = I

LPV-ARX (AutoRegressive with
eXternal input)

C(q−1, θ(k)) = D(q−1, θ(k)) = I

LPV-ARMA (AutoRegressive
Moving Average)

B(q−1, θ(k)) = 0, D(q−1, θ(k)) = I

LPV-ARMAX (LPV-ARMA
with eXternal input)

D(q−1, θ(k)) = I

LPV-OE (Output Error) C(q−1, θ(k)) = D(q−1, θ(k)) = I

LPV-BJ (Box-Jenkins) None

of the scheduling parameters and the resulting model is linear-in-parameters. For
example, consider the case of SISO models, the matrix coefficient functions are reduced
to scalar coefficient functions. Define them as linear combinations of the polynomial
of a scheduling parameter as follows,

ai(q
−1, θ(k)) = ai0 +

n∑
l=1

ailθ
l(k), (2.8)

where ail ∈ R. The estimation of the coefficient ail can be obtained by linear regression
method [Bamieh and Giarré, 2002; Wei, 2006]. As a consequence, IV method and its
variations can be applied to the identification problem in a noisy environment [Laurain
et al., 2010; Butcher et al., 2008].

2.3 LPV and Quasi-LPV Systems

In the literature and this thesis, an LPV system is a system, that can be viewed as
an LTI system depending on the external scheduling signals, which is independent
of the state of the system. A vector of external scheduling signals is denoted by
ρext ∈ Rnρext . The real systems, which can be included in this class are, for example,
a robot manipulator or a crane system in which the models of the plants depend on
the external mass load, a spark-ignited (SI) engine, which depends on the engine speed
and the air mass flow [Kwiatkowski et al., 2006a] etc.

Another class of systems is referred to as a quasi-LPV system. In this case, the
scheduling signals are not limited to external scheduling signals ρext only, but include
also the internal signals ρint ∈ Rnρint that depend on inputs, states or output of the
system. The class of the quasi-LPV systems can be used to describe, of course, a wider
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range of nonlinear systems than LPV system. The difference between the LPV system
and the quasi-LPV system is shown in Figure 2.1.

S(θ)

f(ρ(k))

ρext(k)

θ(k)

u(k) y(k)

(a)

S(θ)

f(ρ(k))

ρext(k)

θ(k)

u(k) y(k)

(b)

Figure 2.1: LPV system (a) and quasi-LPV system (b)

2.4 Multi-Layer Perceptron Networks

This section provides a short introduction to the MLP Network, that can be trained to
approximate nonlinear functions. Throughout the Thesis, use is made of the networks
just to improve the quality of the identified LPV input-output models. The networks do
not identify the LPV models but the sensitivity functions which are used to generate
noise free signals, (see Chapter 3). For more details of using the neural network to
approximate nonlinear model, the reader is referred to [Nørgaard et al., 2003] and
references therein.

The MLP network which is widely used in control is a two-layer perceptron; one
hidden layer and one output layer. Each layer consist of several neurons, and one
neuron represents an operation weight sum of its input signals and a bias term. The
output of each neuron is fed through an activation function σ(·) to generate the output
of the perceptron. The network has sigmoidal activation functions in the hidden layer,
and linear activation functions in the output layer. The block diagram representation
of a two-layer perceptron network is shown in Figure 2.2.

W h

wb1

u

1

σh(·)

W o

wb2

σo(·)

y

1

Figure 2.2: Two-layer perceptron network
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In this case, the network output is

y = σo
(
W oσh

(
W hu+ wb1

)
+ wb2

)
, (2.9)

where u ∈ Rnu and y ∈ Rny are the input and output vector of the network, respectively
W o ∈ Rny×nu and W h ∈ Rnh×nu include output and hidden layer weights, respectively,
and nh is the number of hidden neurons. The vector wb1 ∈ Rnh and wb2 ∈ Rny are
vectors containing bias weight of hidden and output layers. This two-layer perceptron
network with sufficient hidden neurons can approximate any real continuous function
to any desired accuracy. This property is called universal approximation capability
[Suykens et al., 1996].

To identify nonlinear system using MLP, one can use a nonlinear regressor model

y(k) = g(ϕ(k), p) + e(k), (2.10)

where y(k) represents measured system outputs, the regressor vector ϕ(k) ∈ Rnr con-
tains samples of measured input and output signals, e(k) is a white noise sequence,
and p ∈ Rnp are vectors whose elements are the weights and bias of the MLP network
to be trained. In this case g(·) is a nonlinear function mapping the neural network
inputs into outputs. The predictor form of this model is

ŷ(k|k − 1) = g(ϕ(k), p). (2.11)

Similar to the linear model, we can use structure with similar assumptions on
the noise model for neural network based predictors. A neural network based ARX
structure (NNARX) is shown in Figure 2.3. Other types of neural networks, such as
NNARMAX, NNOE and NNBJ, can be constructed in the same way.

NN

p

ŷ(k)
y(k − n)
u(k − 1)

y(k − 1)

u(k − n)

...

...

...

...

Figure 2.3: NNARX model structure

2.5 Summary

This chapter summarizes some important material that will be used in this thesis.
The LPV representations of discrete-time LPV systems in various forms necessary for
identification and controller have been discussed in Section 2.1 and 2.2. The difference
between LPV and quasi-LPV is shown in 2.3. Finally, the multi-layer perceptron
network and the neural network model structures which are used for the closed-loop
LPV identification is summarized in Section 2.4.
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Chapter 3

Identification of LPV Input-Output
Models Using Cubic Splines

In the literature, e.g. [Belforte and Gay, 2002; Wei, 2006; Bamieh and Giarré, 2002], on
identification of LPV input-output models, the functional dependence on scheduling
parameters usually is approximated as a linear combination of basis functions. The
most frequently used basis function is a polynomial in the scheduling variables.

Using a polynomial function for approximation is rather simple but restricted and
difficult to tune. The only tuning parameter of this function is the order of the poly-
nomial; however high order polynomials may cause oscillation of the model output.
Instead of using a polynomial function, several other functions can be used. Among
them, the function which is considered in this thesis is a Cubic Spline function. This
function was used by Dempsey and Westwick [2004] and Zhu [2002] to identify a non-
linear system in block-structure form, and by Zhu and Xu [2008] as an interpolation
function for several local linear models to construct a global LPV model.

There are several advantages in using the cubic spline function instead of the poly-
nomial function. One of them is that cubic splines are defined by the position of their
knots and react locally; moving a single knot does not effect the whole function. How-
ever, unlike polynomial basis functions, cubic spline functions are nonlinear in their
parameters, therefore nonlinear optimization techniques have to be used to determine
the knot positions. In this work we use a Separable Least Squares (SLS) algorithm
proposed by Golub and Pereyra [1973] to improve the numerical condition of the non-
linear optimization by reducing the number of searching parameters in the nonlinear
optimization step.

In this work we not only consider an open-loop LPV input-output identification but
also identification in closed-loop. This is because there are many situations in which
identification in open-loop is difficult or even impossible, for example for unstable plants
and plants with integral behavior. To identify an LPV input-output model in closed-
loop, a two-step method, proposed by Van den Hof and Schrama [1993] for LTI systems,
will be extended to LPV systems. This can be done by using a neural network as a
noise filter. The neural network is also used to reduce the noise disturbance correlated
with the scheduling signals for the case of output-dependent LPV models (quasi-LPV
models).

15
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The proposed method is applied to two examples. The first one is a simulation result
on an open-loop two-tanks system. The system is a nonlinear system identification
demo example of the System Identification Toolbox of Matlab [Ljung, 2010]. This
plant is a SISO open loop stable system. The second example is a real experiment
with an Arm-Driven Inverted Pendulum (ADIP) [Kajiwara et al., 1999] by Quanser
Consulting Inc. [Quanser Consulting Inc., 1993]. This plant is a single-input multiple-
output (SIMO) system and open-loop unstable. In this case, a linear controller is used
to stabilize the system in an initial range. Multi-sine signals are then used to excite
all possible input-output levels of both outputs of the system. Applications of the
proposed method and simulations for both examples are shown.

This Chapter is organized as follows. In Section 3.1, the model class considered is
defined and the estimation method is presented. In Section 3.2, the structure of basis
functions used in this Chapter is explained and the separable least square algorithm
is discussed in Section 3.3. Section 3.4 presents the closed-loop system identification
method using a two-step method, and Section 3.5 gives the validation criteria. Section
3.6 and 3.7 show the results and discussion of the simulation results of the two-tanks
system and the experimental results of ADIP, respectively. Conclusions are drawn in
Section 3.8. Some results in this chapter have been presented in [Boonto and Werner,
2010].

3.1 LPV-ARX Input-Output Models

In this chapter, we consider the LPV-ARX MIMO model structure with one scheduling
parameter

A(q−1, θ(k))y(k) = B(q−1, θ(k))u(k − d) + e(k), (3.1)

where q−1 is the backward shift operator, θ(k) ∈ R represents a scheduling parameter,
nθ is the number of scheduling parameters, y(k) ∈ Rny and u(k) ∈ Rnu are the system
output and input signals at time k and nu and ny are number of input and output signals
respectively. The polynomial matrices A(q−1, θ(k)) and B(q−1, θ(k)) are defined by

A(q−1, θ(k)) = Iny + A1(θ(k))q−1 + · · ·+ Ana(θ(k))q−na

B(q−1, θ(k)) = B1(θ(k))q−1 + · · ·+Bnb(θ(k))q−nb ,
(3.2)

where Ai(θ(k)) ∈ Rny×ny and Bi(θ(k)) ∈ Rny×nu are coefficient matrices. The ele-
ments of the coefficient matrices Ai(θ(k)) and Bi(θ(k)) are continuous functions of the
scheduling parameter θ, which can be expressed as a linear combination of a set of
known fixed basis functions of scheduling parameters ψ(θ(k)). These functions usually
are collected in a vector form as:

ψT (θ(k)) =
[
1 ψ1(θ(k)) · · · ψnp−1(θ(k))

]
, (3.3)

where ψi(θ(k)) : R→ R , i = 1, 2, . . . , np−1 are basis functions of the online measurable
scheduling parameter θ(k), and np is the number of basis functions. In this thesis, we
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consider only the case of one scheduling parameter (θ(k) is a scalar); the extension to
multiple scheduling parameters system is straightforward.

The LPV-ARX model (3.1) can be rewritten in linear regressor form. For MIMO
systems, we form the predictor output as

ŷ(k) = PTφ(k), (3.4)

where φ(k) ∈ Rnp(na+nb) is a regressor vector given by

φ(k) = ϕ(k)⊗ ψ(θ(k)). (3.5)

Here ⊗ denotes the Kronecker product‡, and ϕ(k) ∈ Rna+nb is defined as

ϕ(k) =
[
yT (k − 1) · · · yT (k − na1) · · · yT (k − nany)

uT (k − d) · · · uT (k − d− nb1) · · · uT (k − d− nbnu)
]T
,

na =

ny∑
i=1

nai, nb =
nu∑
i=1

nbi,

ψT (θ(k)) =
[
1 ψ1(θ(k)) · · · ψnp−1(θ(k))

]
,

and P ∈ Rnp(na+nb)×ny is a matrix containing all coefficients to be identified as:

PT =

 a1111 · · · a111np · · · a1nynanp b1111 · · · b111np · · · b1nunbnp
...

any111 · · · any11np · · · anynynanp bny111 · · · bny11np · · · bnynunbnp

 .
The subscript vector contains the output channel, the correlation output and input

channel, the past output and input in a regressor vector ϕ(k) and the position of an
element in ψ(θ(k)), respectively.

Example 3.1 [ input-output MIMO LPV ] Consider a two-input two-output system with
one scheduling variable ρ of order two given as

y1(k) =
[
a1111 + a1112ρ(k) + a1113ρ

2(k)
]
y1(k − 1) +

[
a1121 + a1122ρ(k) + a1123ρ

2(k)
]
y1(k − 2)

+
[
a1211 + a1212ρ(k) + a1213ρ

2(k)
]
y2(k − 1) +

[
b1111 + b1112ρ(k) + b1113ρ

2(k)
]
u1(k − 1)

+
[
b1121 + b1122ρ(k) + b1123ρ

2(k)
]
u1(k − 2) +

[
b1211 + b1212ρ(k) + b1213ρ

2(k)
]
u2(k − 1)

y2(k) =
[
a2111 + a2112ρ(k) + a2113ρ

2(k)
]
y1(k − 1) +

[
a2121 + a2122ρ(k) + a2123ρ

2(k)
]
y1(k − 2)

+
[
a2211 + a2212ρ(k) + a2213ρ

2(k)
]
y2(k − 1) +

[
b2111 + b2112ρ(k) + b2113ρ

2(k)
]
u1(k − 1)

+
[
b2121 + b2122ρ(k) + b2123ρ

2(k)
]
u1(k − 2) +

[
b2211 + b2212ρ(k) + b2213ρ

2(k)
]
u2(k − 1).

Then the regressor vector and vector of the scheduling functions are

ϕ(k) =
[
yT1 (k − 1) yT1 (k − 2) yT2 (k − 1) uT1 (k − 1) uT1 (k − 2) uT2 (k − 1)

]T
,

ψT (θ) =
[
1 θ(k) θ2(k)

]
=
[
1 ρ(k) ρ2(k)

]
.

‡See the Appendix B.
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In this case, we have

na1 = 2, na2 = 1, nb1 = 2, nb2 = 1.

The problem then becomes the problem of finding the coefficient matrix which is given as

P =



a1111 a2111

a1112 a2112

a1113 a2113

a1121 a2121

a1122 a2122

a1123 a2123

a1211 a2211

a1212 a2212

a1213 a2213

b1111 b2111

b1112 b2112

b1113 b2113

b1121 b2121

b1122 b2122

b1123 b2123

b1211 b2211

b1212 b2212

b1213 b2213



.

The number of coefficients that have to be determined is 36.

�

Given a data set

ZN = {y(k), u(k), ρ(k), k = 1, 2, . . . , N}

the least-squares (LS) parameter estimate [Ljung, 1999] is given by:

P̂N = arg min
P
VN(P), (3.6)

where

VN(P) =
1

2N

N∑
k=1

‖y(k)−PTφ(k)‖2
2, (3.7)

and the solution of the problem is

P̂N =

[
1

N

N∑
k−1

φ(k)φT (k)

]−1

1

N

N∑
k=1

φ(k)yT (k), (3.8)
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or in short matrix form:

P̂N = (ΦΦT )−1ΦY T , Φ†Y T , (3.9)

where

Y = [y(1) y(2) . . . y(N)] ∈ Rny×N (3.10)

Φ = [φ(1) φ(2) . . . φ(N)] ∈ Rnp(na+nb)×N , (3.11)

and φ(k) is a column vector of the corresponding regressor and Φ† = (ΦΦT )−1Φ. The
proof of (3.8) and (3.9) can be seen in Appendix A.

Remark: The structure of the linear MIMO regressor form in (3.4) has the ad-
vantage that all output channels share the same regressor vector. Another structure
that represents the measured data in regressor matrix form is also possible, see [Ljung,
1999].

3.2 Polynomial Functions and Cubic Spline

Functions

In general, the exact nonlinear scheduling function of an LPV system, denoted by
g(θ(k)), is not known in advance. However, this function can be approximated by
using a linear combination of basis functions: polynomials, cubic spline functions etc.
In LPV identification [Belforte and Gay, 2002; Wei, 2006; Bamieh and Giarré, 2002],
polynomials of the scheduling parameter θ(k) are used. It is well known that any
continuous function on a closed interval can be approximated as closely as desired
by a polynomial function if the order of the polynomial is high enough. However,
polynomial functions with a given order are not easily tunable, very sensitive to data
variation when the order is high, and oscillatory. Moreover, changing one coefficient of
the polynomial will change the shape of the entire function.

As an alternative, one can use cubic spline functions, which have the following
advantages [de Boor, 1978]:

i. They can represent nonlinear functions with significantly less oscillation than
polynomials;

ii. cubic splines react locally to a parameter change;

iii. cubic splines can capture sharp corners better than polynomials.

The shape of cubic spline functions can be tuned by changing the tuning parameters
called knots as function parameters.

A given nonlinear θ(k)-dependent function can be approximated in terms of a cubic
spline function depending on θ(k) and a set of knots {η1, η2, . . . , ηnη}, where ηi ∈ R.
Order the knot positions as

η1 < η2 < . . . < ηnη , (3.12)
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then the cubic spline function associated with θ(k) [Lancaster and Šalkauskas, 1986] is
given by

g(θ(k)) = c0 + c1θ(k) +

nη∑
j=1

cj+1|θ(k)− ηj|3, (3.13)

where ci are coefficients and ηi are tuning knots. In this case, we call ci a linear
parameter and ηi a nonlinear parameter.

Given a data set generated by g(θ(k)) and fixing the values of the knots beforehand,
we can solve for the linear coefficients ci by using the LS method. The following shows
an example of using a cubic spline function to estimate a nonlinear function.

Example 3.2 [Cubic Spline Function] Consider a scheduling parameter g(θ(k)) = 1
1+(θ(k))2

.

This function is estimated by using the following cubic spline function :

gsp(θ(k)) = c0 + c1θ(k) + c2|θ(k) + η1|3 + c3|θ(k) + η2|3 + c4|θ(k) + η3|3

+ c5|θ(k) + η4|3 + c6|θ(k) + η5|3,

where η1 = −4, η2 = −1, η3 = 0, η4 = 1 and η5 = 4. The coefficient parameters ci are
determined by using the linear LS method. The result is shown in Figure 3.1 and compared
with a 7th order polynomial in θ(k).

�

This type of cubic spline function (3.13) has been used in [Zhu, 2002] to identify
a Hammerstein–Wiener model and in [Zhu and Xu, 2008] to interpolate several local
linear models to construct an LPV model. Actually there are several types of spline
functions that can be used for approximation; for example, cardinal natural cubic
splines, B-splines etc., see [de Boor, 1978; Lancaster and Šalkauskas, 1986]. However
to estimate the knot positions of these spline functions is more complicated than the
cubic spline (3.13) used in this thesis.

To use the cubic spline function (3.13) as an approximated scheduling function, one
can define the vector ψ(θ(k)) in (3.5) as

ψ(θ(k)) =
[
1 θ(k) |θ(k)− η1|3 · · · |θ(k)− ηnη |3

]
. (3.14)

However, this regressor vector contains nonlinear parameters η which are not known
in advance. The problem of identification of an LPV system is changed to a nonlinear
optimization problem. Instead of considering all linear and nonlinear parameters as
variables that have to be determined by nonlinear optimization, we use a separable
least-square method to reduce the number of nonlinear variables by separating the
problem into linear and nonlinear part.
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Figure 3.1: The scheduling function is estimated by using the cubic spline func-
tion gsp(θ(k)), and compared it with a 7th order polynomial function
gpoly(θ(k)); S1 = c0 + c1θ(k), S2 = c2|θ(k) + 4|3, S3 = c3|θ(k) + 1|3,
S4 = c4|θ(k)|3, S5 = c5|θ(k)− 1|3, and S6 = c6|θ(k)− 4|3

3.3 Separable Least-Squares Algorithm

An LPV model with a cubic spline functional dependence on scheduling parameters is
represented by linear coefficients P and cubic spline knot positions η. Given a set of
knots, the linear coefficients can be simply calculated by the linear LS method. On the
other hand, given the linear coefficients the knot values can be obtained by a nonlinear
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optimization. Thus the estimation problem can be cast as a Separable Least-Squares
(SLS) problem [Golub and Pereyra, 1973]. The performance index we are interested in
here is the sum of squared prediction errors of a MIMO system similar to (3.7). The
cost function depends on both the linear parameters P and nonlinear parameters η,
and is defined in matrix form as

ṼN(η,P) =
1

2N
||Y T − ΦT (η)P‖2

F (3.15)

where Y is the matrix of measured output data (3.10), Φ(η) is a regressor matrix (3.11),
Φ(η)TP is a matrix of predicted outputs and ‖X‖F denotes the Frobenius norm defined
by ‖X‖F =

√
trace(XTX). The objective is then to find the minimizing value[

η̂, P̂
]

= arg min
η,P

ṼN(η,P). (3.16)

For the above problem, if η is known, the corresponding P that minimizes ṼN can be
computed (3.8) as

P̂ = Φ†(η)Y T . (3.17)

Substituting the solution P̂ back into (3.15) changes the cost function to

ṼN(η) =
1

2N
‖(I − ΦT (η)Φ†(η))Y T‖2

F . (3.18)

Following above algorithm recursively, the overall problem can be solved in two steps:
the first step involves finding Φ†(η)Y T with given initial value of η; the second step is
finding η that minimizes (3.18). The original nonlinear problem can indeed be solved
by the above two-step procedure and we have the following theorem:

Theorem 3.1 (Golub and Pereyra [1973]). Assume that the matrix Φ(η) has constant
rank over an open set Ω ∈ Rnη .

i. If η̂ ∈ Ω is a minimizer of Ṽ (η) and P̂ = Φ(η̂)†Y T , then P̂, η̂ is also a minimizer
of Ṽ (P, η).

ii. If (η̂, P̂) is a minimizer of Ṽ (η,P) for η ∈ Ω, then η̂ is a minimizer of Ṽ (η) in Ω
and Ṽ (η̂) = Ṽ (η̂, P̂). Furthermore, if there is a unique P among the minimizing
pairs of Ṽ (η,P), then P must satisfy P = Φ(η)†Y T .

Proof. See [Golub and Pereyra, 1973].

This means that we can solve the original nonlinear problem with only nη variables
– the number of knot positions – which is much less than the original problem nθ +nη,
where nθ is the number of linear coefficient parameter. The SLS algorithm used in
this Chapter is based on the projection method Golub and Pereyra [1973]; Sjöberg and
Viberg [1997].
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3.3.1 Levenberg-Marquardt Algorithm

In this work, we use the Levenberg-Marquardt algorithm [Ljung, 1999; Nørgaard et al.,
2003] to search for the nonlinear parameters η. Given a fixed value of P̂ the cost
function (3.18) can be rewritten as

ṼN(η, P̂) =
1

2N

N∑
k=1

εTk (η, P̂)εk(η, P̂) =
1

2N
ET (η, P̂)E(η, P̂), (3.19)

where E(η, P̂) ∈ Rny ·N and

E(η, P̂) =
[
εT1 (η, P̂) εT2 (η, P̂) · · · εTN(η, P̂)

]T
,

εi(η, P̂) ∈ Rny , i = 1, . . . , N .
A second order Taylor series approximation of the above cost function (3.19) is

given by

ṼN(ηl+1 + ∆ηl, P̂) = ṼN(ηl, P̂) +∇ṼN(ηl, P̂)T∆ηl +
1

2
∆ηTl ∇2ṼN(ηl, P̂)∆ηl, (3.20)

where ∇ṼN(ηl, P̂) ∈ Rnη denotes the gradient vector of ṼN(ηl, P̂), ∆ηl = ηl+1− ηl and
∇2ṼN(ηl, P̂) ∈ Rnη×nη denotes the Hessian matrix of ṼN(ηl, P̂).

Approximating the Hessian with the Gauss-Newton Hessian, the Levenberg-Marquardt
update step is

ηl+1 = ηl − (JTS JS + µlI)−1JTSE(ηl, P̂), (3.21)

where JS ∈ Rnη×(ny ·N) is the Jacobian of the prediction error vector E(ηl, P̂) with re-
spect to ηl, µl is a time-varying parameter that is used for tuning the search direction.
If µl is large, the search direction is closed to the steepest descent direction. In a differ-
ent manner, if µl is small the search direction turns into the Gauss-Newton direction.
The update step of the algorithm can be started by selecting a positive constant γ > 1
(e.g. γ = 10) and a small positive value µ0 (e.g. µ0 = 0.01), and repeat the following:

• At iteration step l update ηl according to (3.21) and compute ṼN(ηl+1)

• If ṼN(ηl+1) ≥ ṼN(ηl), replace µl by γµl, repeat iteration step l

• If ṼN(ηl+1) < ṼN(ηl), set µl+1 = µ/γ, go to iteration step l + 1.

Since

εi(η, P̂) =
[
yi,1 . . . yi,ny

]T − [ŷi,1(η, P̂) . . . ŷi,ny(η, P̂)
]T
,

where yi,j, i = 1, . . . , N, j = 1, . . . , ny denotes an output channel j at sample time

i, ŷi,j(η, P̂) is a predicted output in channel j at sample time i, and JS ∈ Rny ·N×nη

denotes the Jacobian of the prediction error vector E(η, P̂) and is computed as

JTS =


−∂ŷ1,1(η,P̂)

∂η1
· · · −∂ŷ1,ny (η,P̂)

∂η1
· · · −∂ŷN,1(η,P̂)

∂η1
· · · −∂ŷN,ny (η,P̂)

∂η1
...

. . .
...

. . .
...

. . .
...

−∂ŷ1,1(η,P̂)

∂ηnη
· · · −∂ŷ1,ny (η,P̂)

∂ηnη
· · · −∂ŷN,1(η,P̂)

∂ηnη
· · · −∂ŷN,ny (η,P̂)

∂ηnη

 . (3.22)



24 Chapter 3. Identification of LPV Input-Output Models Using Cubic Splines

Note that JS also depends on the linear parameters P since the optimal value of
P in (3.17) is changed when η is changed in the numerical derivative calculation step.
Hence, the dependence of JS on P must be taken into account. This can be done by
first computing the Jacobian JL of E(η, P̂) with respect only to P, and the Jacobian
JNL of E(η, P̂) with respect only to the nonlinear parameters η, separately. Then JS
can be obtained [Sjöberg and Viberg, 1997; Westwick and Kearney, 2001] by

JS = (I − Ξ)JNL (3.23)

where Ξ ∈ Rny ·N×ny ·N denotes JL(JTL JL)−1JTL , which is an orthogonal projection onto
the columns of the linear Jacobian JL, where JL ∈ Rny ·N×np is the Jacobian of E(η)
with respect to P, and np is the number of all elements of P.

3.3.2 Recursive Levenberg-Marquardt Algorithm

The algorithm discussed in the previous section refers to the fact that each iteration
on the estimated parameters require an evaluation of the entire data set ZN . In some
situations when the data set ZN is too large, the dimension of Ξ may exceed the
capacity of 32-bit computer systems. To avoid this, one can use a recursive algorithm
[Ljung and Söderström, 1983; Ngia and Sjöberg, 2000]. In this case, the cost function
at time l is augmented with a exponential forgetting weight as

Ṽl(ηl, P̂) =
1

2

l∑
τ=1

λl−τεTl (ηl, P̂)εl(ηl, P̂), (3.24)

where 0 < λ ≤ 1 is a forgetting factor, and εl(ηl, P̂) ∈ Rny is the prediction error at
iterative step l. The estimation update is given by

ηl+1 = ηl + [∇2Ṽl+1(ηl, P̂)]−1(∇Ṽl(ηl, P̂))T . (3.25)

A second order approximation of the cost function (3.24) at iteration step l + 1 is

Ṽl+1(ηl+1, P̂) = Ṽl(ηl, P̂) +∇Ṽl(ηl, P̂)∆ηl +
1

2
∆ηTl ∇2Ṽl(ηl, P̂)∆ηl,

where ∇Ṽl(ηl, P̂) ∈ Rnη denotes the gradient vector of Ṽl(ηl, P̂) and ∇2Ṽl(ηl, P̂) ∈
Rnη×nη denotes the Hessian matrix of Ṽl(ηl, P̂).

From (3.24), we have

∇Ṽl(ηl, P̂) =
l∑

τ=1

λl−τ∇(εTl (ηl, P̂)ε(ηl, P̂))

= λ∇Ṽl−1(ηl, P̂) + J̃TS,lεl(ηl, P̂)

(3.26)

∇2Ṽl(ηl, P̂) = λ∇2Ṽl−1(ηl, P̂) + J̃TS,lJ̃S,l + (∇2ε(ηl, P̂))εTl (ηl, P̂) (3.27)
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where

J̃TS,l =


∂El,1(ηl,P̂)

∂η1
. . .

∂El,1(ηl,P̂)

∂ηnη
...

. . .
...

∂El,ny (ηl,P̂)

∂η1
. . .

∂El,ny (ηl,P̂)

∂ηnη

 . (3.28)

Since ηl is the optimal estimate at time l, then we have ∇Ṽl(ηl, P̂) = 0. By ap-
proximating (∇2εTl (ηl, P̂))εl(ηl) = 0, the update of the recursive Levenberg-Marquardt
algorithm is

ηl+1 = ηl + [∇2Ṽl+1(ηl, P̂)]−1J̃TS,lεl(ηl) (3.29a)

∇2Ṽl+1(ηl, P̂) = λ∇2Ṽl(ηl, P̂) + (J̃TS,lJ̃S,l + µI), (3.29b)

where J̃TS,lJ̃S,l is replaced by J̃TS,lJ̃S,l + µI.

Similar to the off-line algorithm, J̃S depends also on P. For the same reason, J̃S,l
can be determined using

J̃S,l = (I − Ξ̃l)J̃NL,l, (3.30)

where J̃NL,l ∈ Rny×nη is the Jacobian of El(ηl, P̂) with respect to ηl, Ξ̃l ∈ Rny×ny

denotes J̃L,l(J̃
T
L,lJ̃L,l)

−1J̃TL,l, which is an orthogonal projection onto the columns of the

linear Jacobian J̃L,l, where J̃L,l ∈ Rny×np is the Jacobian of εl(ηl, P̂) with respect to
P, and np is the number of all elements of P.

Finally the Levenberg-Marquardt estimate can be updated in each sample in the
same manner as in the nonrecursive algorithm. Then the recursive algorithm for a
LPV cubic spline model can be summarized as Algorithm 3.1 below.

Although Algorithm 3.1 contains nonlinear optimization, it is not too sensitive
to the initial values. Extensive trials show that the knot positions focused by the
algorithm with random initial values, usually converge to a narrow value range. This
will be illustrated by experimental results in the next section.

3.4 Closed-Loop LPV Input-Output System Iden-

tification With A Two-Step Method

In this section, we discuss a method that can be used to identify an LPV input-output
model of a nonlinear unstable system which has to be stabilized in closed-loop form.
The LPV model considered here is an output-dependent system. Two main issues
are discussed: bias and consistency of identification. The first issue comes from the
correlation between input signal and disturbance noise via the feedback loop [Van
den Hof and Schrama, 1993; de Callafon, 1998]. The latter issue arises because the
scheduling signal is not noise free [Butcher et al., 2008].
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Algorithm 3.1 SLS algorithm for LPV-SP

Require: λ, γ,R0, µ0, η̂0, ischange = 1
1: for l = 1 to N do
2: Use LS to find P̂l

3: if ischange = 1 then
4: Compute Jacobian J̃S using (3.30)
5: end if
6: Update ∇2Ṽl(ηl, P̂) by(3.29b)
7: Estimate η̂l+1 using (3.29a)
8: Calculate P̂l+1 with η̂l+1

9: Calculate the cost function, Ṽl(ηl+1,Pl+1)
10: if Ṽl(ηl+1,Pl+1) < Ṽl(ηl,Pl) then
11: ischange = 1
12: if The change of Ṽl(ηl+1,Pl+1) is greater than a threshold then
13: µl+1 = µl/γ
14: else
15: Stop the loop and return P̂l and η̂l
16: end if
17: else
18: ischange = 0
19: Restore old values of η̂l+1 = η̂l, P̂l+1 = P̂l and
20: Ṽl(ηl+1, P̂l+1) = Ṽl(ηl, P̂l, )
21: µl+1 = γµl
22: end if
23: end for

The closed-loop system is shown in Figure 3.2; r2(k) is an external excitation signal
designed by the user, u(k) and y(k) are input and output signals measured in an
experiment, NL is a nonlinear plant while K can be either an LTI or an LPV controller
which stabilizes the closed-loop system. If we use a direct method to estimate the
model, directly on the basis of the measured input and output data set, this may
result in a biased model [Van den Hof and Schrama, 1993; de Callafon, 1998]. To avoid
this bias error, we will extend the two-step method [Van den Hof and Schrama, 1993] to
LPV models. From Figure 3.2, the cause for a biased model is the correlation between
the inputs uk and the disturbances vk acting on the output, which also appears in the
input via feedback.

For a linear system, we can use a linear sensitivity function to filter the noise. In
this work, we propose to use a nonlinear filter, in this case a neural network [Nørgaard
et al., 2003], to remove the disturbance term from the input for the first step. To
do this we can use a Neural Network AutoRegressive with eXogenous input (NNARX)
[Nørgaard et al., 2003] structure as a predictor model to predict the noise free input
u(k) by using r2(k) and ũ(k) as inputs to the network as shown in Figure 3.3.

The consistency of LPV input-output model identification was investigated in [Butcher
et al., 2008]. To get a consistent identification, the scheduling parameters have to be
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ũ(k)
NL

y(k)

v(k)

K
−

r2(k) ỹ(k)

r1(k) = 0

Figure 3.2: Closed-loop configuration for identification

NN u(k)
ũ(k − n)
r2(k − 1)

ũ(k − 1)

r2(k − n)

...

...

...

...

Figure 3.3: NNARX model structure for predicting noise free u(k)

noise-free for the case of an output dependent LPV model. In [Butcher et al., 2008] an
instrumental variable (IV) method is proposed to solve this problem. Instead of using
an IV method, we can also use a neural network to remove the disturbance noise from
the output as well since the model structure is not known beforehand. As above, we
can use an NNARX network to identify the whole closed-loop system by using r2(k)
and ỹ(k) as an input signal and y(k) as a predicted output signal as shown in Figure
3.4.

NN y(k)
ỹ(k − n)
r2(k − 1)

ỹ(k − 1)

r2(k − n)

...

...

...

...

Figure 3.4: NNARX model structure for predicting noise free y(k)

Remark 1: We can use more complex neural network structures, for example
NNARMAX, when a more flexible disturbance model is required. Moreover we can
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take the NNARX network as a MIMO model which can be used to predict both noise
free input and noise free scheduling signals at the same time. However, the computation
time will be increased.

Remark 2: Since the objective of using an NNARX network is to generate noise-
free signals, we can use a high-order NNARX model. Similar to an ARX model, a high
order NNARX model can approximate any type of noise model [Nørgaard et al., 2003].
However, the network should not be too complex to avoid over-fitting. This can be
prevented by reducing the number of hidden neurons.

Finally we can use the direct method with the noise free data set to get the input-
output quasi-LPV model. The configuration for the direct method is shown in Fig-
ure 3.5. The synthesis procedure is summarized in Algorithm 3.2.

LPVu(k) y(k)

f(·)

ρ(k)

θ(k)

Figure 3.5: Configuration for the direct identification method.

Algorithm 3.2 Two-step method with NNARX

Step 1. Use a high order NNARX model to regenerate the noise free input u(k) and
the noise free scheduling signals θ(k) of the closed-loop system.

Step 2. Identify an LPV model using the data set of y(k) and noise free signals u(k)
and θ(k).

3.5 Validation in The Prediction Error Setting

To validate the accuracy of the model, we check the difference between the simulation
output ŷ(k) of the model and the measured output y(k) using a different data set. The
measures used in this chapter are the following:

• Mean squared error [Ljung, 1999] The Mean Squared Error (MSE) is the
expected value of the squared estimation error

MSE :=
1

2N

N−1∑
k=0

(y(k)− ŷ(k))2. (3.31)
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• Best fit percentage [Ljung, 1999] The Best Fit (BFT) percentage is defined
as

BFT := 100% ·max

(
1− ‖y(k)− ŷ(k)‖2

‖y(k)− ȳ‖2

, 0

)
, (3.32)

where ȳ is the mean value of y(k).

• Variance accounted for [Verdult and Verhaegen, 2002] The Variance Ac-
counted For (VAF) percentage is the percentage of the output variation that is
explained by the model:

VAF := 100% ·max

(
1− var(y(k)− ŷ(k))

var(y(k))

)
. (3.33)

The MSE is the same as the LS criterion and a high value indicates invalidity of
the model. The BFT percentage is used in the identification toolbox of Matlab [Ljung,
2010] and a low value indicates invalidity of the model. The last measure VAF gives the
variation between the measured and the estimated model output, disregarding possible
bias of the estimates.

3.6 Application to Open Loop Identification of A

Two-Tank System

In this section, we aim to show the performance of the method described before by
applying it to the identification of an open-loop nonlinear system in a quasi-LPV input-
output model structure. The nonlinear system considered here is a two-tank system;
the example is borrowed from the system identification toolbox of Matlab [Ljung, 2010].

3.6.1 System Setup

The two-tank system is shown in Figure 3.6. It is composed of an upper tank and a
lower tank connected with an internal pipe. However for identification purpose, we
assume that the dynamic model equation is not known in the first place and will be
identified in LPV-ARX structure. In this example the data set is the input voltage
u(k) applied to the valve of the upper tank and the output level of the lower tank
x2(k) collected at each sample time k. The sampling time is set to 0.2 second. To
make sure that the excitation input signal is rich enough we use an N-samples-constant
signal [Söderström and Stoica, 1989; Nørgaard et al., 2003] to excite the system for
6000 samples. In simulation, a white noise signal is added to the output to make the
simulation setup more realistic. The first 3000 samples are used for identification of
the system and the next 3000 samples for validation. In this case the output level x2(k)
is used as a feedback scheduling signal.

To reduce the noise correlated to the output signal and the scheduling signal, we
use an NNARX as a nonlinear noise filter.
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x1

y = x2

qin

qout

u

Figure 3.6: Two tanks system

3.6.2 Experimental Results

There are three model types used to identify this two-tanks system. For comparisons,
a linear ARX model is identified. For LPV-ARX models, an LPV-ARX model with
cubic spline basis functions and an LPV-ARX model with polynomial basis functions
are used. scheduling signal of both LPV-ARX models is the previous sample of the
output level of the second tank x2(k − 1).

To make a fair comparison, the order of each model is chosen to get the best
fit between the measured validation data and simulation output of each model. For
the best ARX model na = 3, nb = 3 with one step delay, while both the LPV-ARX
with cubic spline (LPV-SP) and the LPV-ARX with polynomial functional dependence
(LPV-Poly) have the same structure na = 3, nb = 3 with two steps delay. All scheduling
function structures are selected by heuristic methods. The scheduling function in vector
form for the LPV-Poly is given by

ψPoly =
[
1 x2(k − 1) x2(k − 1)

]
and for cubic splines by

ψsp =
[
1 x2(k − 1) |x2(k − 1)− η1|3

]
.

The comparison of the simulation output (open-loop model output) and the measured
output is shown in Figure 3.7. Both LPV-ARX models give much better results than
the linear ARX model, especially when the output is close to the upper and lower
limits of the tank levels. Moreover the LPV-SP performs better than LPV-Poly. This
is because the LPV-SP can be tuned to approximate the nonlinearity of the system
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better than LPV-poly. In this test we also use the validation test given in Section 3.5
and the results are shown in Table 3.1. Again in all tests, the LPV-SP outperforms
the other models.
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Figure 3.7: Comparison between measured data (blue) and simulation results for y of
the linear model (green), LPV model with polynomial dependence (red)
and LPV model with cubic spline dependence (black)

Table 3.1: Model validation

Model MSE % BFT % VAF

Linear 0.00392 51.7590 79.9776

LPV-Poly 0.00023 88.2247 98.7247

LPV-SP 0.00012 91.4254 99.2666

Figure 3.8 shows the convergence of the algorithm using 100 random initial cubic
spline knots between 0.2 and 0.6 to construct LPV-SP models. The accuracy of each
model is measured in term of VAF. It is clear that even if the initial values of knots
are different the VAF test results are close.
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Figure 3.8: Histogram of VAF values (%) on a cross-validation output for the 100
random initial Cubic Spline knots.

3.7 Application to Closed-loop Identification of An

Arm-Driven Inverted Pendulum

The second example gives an application of the proposed method to a real experimental
system, which is more realistic than a simulation example. To illustrate the improve-
ment of the MIMO LPV model with cubic splines (LPV-SP) over the polynomial model
(LPV-Poly) and LTI model, experiments on an arm-driven inverted pendulum (ADIP)
are carried out. This system has been used to test the performance of LPV control by
[Kajiwara et al., 1999] before. In the experiments, a laboratory version of this plant
manufactured by Quanser Inc. [Quanser Consulting Inc., 1993] is used. Its structure
is shown in Figure 3.9. The pendulum is the top link hinged on the rotated arm –
the bottom link – which is driven by a DC motor. The plant input is the DC voltage
applied to the motor that drives the arm; controlled outputs are the angular position
ϕ1 of the arm, and the position of the pendulum ϕ2 which is to be held at zero degree
position. When one operates this plant in a wide range, i.e. ϕ1 is large, the plant
will display a stronger nonlinearity. In this situation, an LTI model is not sufficient to
identify the system.

3.7.1 Experimental Setup

The closed-loop configuration is shown in Figure 3.10, where K is a stabilizing discrete-
time LTI H∞ controller based on a nominal model provided by Quanser Inc. [Quanser
Consulting Inc., 1993], and an inner PI loop is used to control the angular velocity of
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(a) Real System

ϕ1

ϕ2

m1

m2

2l1

2l2

τ1

Pendulum

Arm

(b) Free body diagram

Figure 3.9: Arm-Driven Inverted Pendulum (ADIP)

the arm. The angular velocity ϕ̇1 is measured by means of a differentiator filter FD.
Then the plant to be identified here includes the PI controller and the filter FD, shown
as the dashed box in Figure 3.10.

r1(k) = 0

K

r2(k)

u(k)
PI

uPI(k)
ADIP

ϕ1(k)

− ϕ2(k)

FD
ϕ̇1(k)

−

Plant

Figure 3.10: Block diagram for closed-loop identification

3.7.2 Excitation Signal Design

An important step in MIMO LPV system identification is the excitation signal design.
For this purpose the persistency of excitation condition has to be satisfied in order
to guarantee the consistency of the algorithm [Bamieh and Giarré, 2002; Wei, 2006].
In practice, the following multi-sine signal with adequate harmonics can be used to
guarantee this condition [Ljung, 1999]

r2(k) = β

ns∑
i=1

αi cos(ωikT + φi), (3.34)
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where the power spectrum of this multi-sine signal can be directly specified by the user
through the selection of the scaling factor β, the Fourier coefficients αi, the number
of harmonics ns, the signal length N , and the sampling time T . For selecting these
parameters, more details can be found in [Ljung, 1999; Lee, 2006].

The outputs ϕ1 and ϕ2 have different frequency bands and amplitudes. The exci-
tation signal should cover both bands but with different amplitudes in each frequency
band. In this case, we use

r2(k) = β1

ns∑
i=1

αi cos(ωikT + φi) + β2

N/2∑
j=1

αj cos(ωjkT + φi). (3.35)

Following the guidelines in [Lee, 2006], α is chosen as

αg =

{
1, g = 1, . . . , ns

hf , g = ns + 1, . . . , N/2
(3.36)

where g is either i or j in (3.35), and hf is the high frequency coefficient magnitude.
According to the power spectrum of both outputs of the ADIP in closed-loop shown

in Figure 3.11, the multi-sine input is selected to cover two frequency ranges. The first
part is between 0.063 rad/sec and 3.77 rad/sec, and the second part is between 3.77
rad/sec and 37 rad/sec. Each frequency range contains 40 harmonics to guarantee the
richness of the excitation signal. Moreover the amplitude of the second part is 10 times
smaller than the first part since this part is aimed to excite the angle ϕ2, which is
more sensitive than ϕ1, and that angle should not move far away from the zero degree
vertical position.

3.7.3 Experimental Results

The ADIP is excited by a multi-sine input signal with 2 periods and 24,000 samples,
with a sampling time of 10 ms, as described in the previous section. The first half of the
data set is used for identification and the second half is for validation. For the LPV-SP
model, linear LS is used in the linear step, and the recursive Levenberg-Marquardt
algorithm is used in the nonlinear step of the SLS algorithm. In this thesis we use a
trial-and-error method to select the structure and the order of the model for all cases; a
more systematic method has been developed in [Tóth et al., 2009a]. The chosen linear
model for our sampled data set is na = [ 2 5

5 2 ], nb = 3 and one step delay, while both
LPV-poly and LPV-SP have the same structure na = [ 2 5

5 2 ], nb = 5 and 2 steps delay.
The scheduling signal is a previous sample of the angular position ϕ1, which is

the main source of the nonlinearity of this plant. The scheduling function structure,
obtained heuristically, for the polynomial case is given in vector form by

ψPoly =
[
1 ϕ1(k − 1) ϕ2

1(k − 1) ϕ3
1(k − 1)

]
and for cubic spline by

ψsp =
[
1 ϕ1(k − 1) |ϕ1(k − 1)− η1|3 |ϕ1(k − 1)− η2|3

]
.
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Figure 3.11: Spectrum of both normalized outputs of ADIP: upper for ϕ1,
lower for ϕ2.

For both cases, one step delay of the scheduling variable is necessary to avoid an
algebraic loop. The nonlinear part of the spline function contains only two terms to
reduce the dimension of the initial value space. The search of all model parameters is
initialized randomly, and the best model is taken as solution. The value of λ in the
Levenberg-Marquardt algorithm step is 0.999, and the initial value of η ∈ [0.01 0.9].

Figures 3.12 and 3.13 show the comparison of the validation data and simulated
(open-loop) output of all models. For the output ϕ1, both LPV models outperform
the linear model while the output ϕ2 is difficult to judge from the plot. The LPV-SP
model is slightly better than LPV-Poly over the whole range of ϕ2 – this is because the
cubic spline function has more freedom to fit the nonlinear scheduling function. The
price to pay for this improvement is the computation time in the nonlinear step of the
SLS algorithm – the increase in computation time depends on the number of nonlinear
parameters. The validation results are shown in Table 3.2. Table 3.2 confirms again
that an LPV-SP model gives better results for the output ϕ1 in all tests, while the
output ϕ2 is nearly the same as for the LPV-Poly model.

Figures 3.14 and 3.15 show the difference between the identified models using a
NNARX network as a noise filter to reproduce a noise free scheduling signal and the one
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Figure 3.12: Comparison between measured data (blue) and simulation results for
ϕ1 of the linear model (green), LPV model with polynomial dependence
(red) and LPV model with cubic spline dependence (black)
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Figure 3.13: Comparison between measured data (blue) and simulation results for
ϕ2 of the linear model (green), LPV model with polynomial dependence
(red) and LPV model with cubic spline dependence (black)
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Figure 3.14: Comparison between measured data (blue) and simulation results for ϕ1

of an LPV model with cubic spline dependence with NNARX (black)
to generate a noise free scheduling signal and without NNARX (red) .
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Figure 3.15: Comparison between measured data (blue) and simulation results for ϕ2

of an LPV model with cubic spline dependence with NNARX (black)
to generate a noise free scheduling signal and without NNARX (red).
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Table 3.2: Model validation

Output Model MSE % BFT % VAF

ϕ1

Linear 0.0416 40.5387 65.2372
LPV-Poly 0.0184 60.5190 84.4756
LPV-SP 0.0066 76.3063 94.5185

ϕ2

Linear 6.1780×10−5 25.3413 47.6410
LPV-Poly 4.3792×10−5 37.1582 68.5193
LPV-SP 4.4426×10−5 36.6924 70.3316

using raw data. For output ϕ1 considered as a high Signal to Noise ratio (SRN) signal,
the LPV model constructed by using raw data has less accuracy than the LPV model
constructed by using filtered data (LPV-NNARX) in terms of bias drift. However, for
output ϕ2, since the correlation of the measured noise signal with the former is quite
high, using raw data the LPV model cannot capture the dynamics of the real system.

Finally, to see the convergence of the algorithm for the MIMO system, again we use
100 random initial values of η1 ∈ [−1 , 0] and η2 ∈ [0 , 1] and compare the simulation
output of the model with the measured data in terms of VAF. Figures 3.16 and 3.17
show the histogram of VAF. Since the results of VAF are quite close to each other the
x-axis of each plot shows only a small range of VAF values of the results. From both
plots in 3.16 and 3.17, one can see that the VAF tests converges to a narrow range.

3.8 Conclusions

In this chapter we have shown that LPV models with cubic spline dependence on
scheduling parameters can be identified using a separable least squares method in
closed loop. The identification of quasi-LPV input-output models is carried out using
a two-step approach with an NNARX network as a noise filter. This model class has
advantages over LPV models with polynomial dependence, such as the tunability via
the knot positions. Simulation and experimental results show successful applications of
this approach to the simulation of a two-tank model and to a real ADIP system, where
the proposed method outperforms LTI as well as LPV-Poly models. The convergence
of the algorithm is tested by Monte-Carlo tests with random initial conditions.
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Figure 3.17: Histogram of VAF values (%) on a cross-validation output ϕ2 for the
100 random initial Cubic Spline knots.
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Chapter 4

Unbiased Identification of LPV
Input-Output Models

In Chapter 3, the bias error due to measurement noise in closed-loop identification is
reduced by using NNARX as a noise filter. It is well known that NNARX is suitable
only when the noise is white [Janczak, 2005]. This assumption is, in general, not
realistic. Of practical relevance when the measured data is corrupted with colored noise
are NNARMAX, NNOE and NNBF, however those require much more computation
time due to the recurrent network structure [Nørgaard et al., 2003]. To train such
networks for LPV models may take hours or even days depending on the length of the
data set and the order of the identified models. Instead of using a neural network,
less computing power is required by methods like Instrumental Variable (IV) and its
variation.

The bias error of LPV identification was first considered by [Butcher et al., 2008]
and has received more attention during the last years. In Butcher et al. [2008], the
IV method with LPV-ARX auxiliary model denoted by IV-ARX was introduced to
solve the biased problem when scheduling signals are noise free and output signals
of the system are corrupted with white noise. The main drawback of this method is
that the variance of the estimated parameters is very high when the noise is colored
[Laurain et al., 2010]. Then the method is not a good choice to use for practical
problems since many experiments have to be conducted to get unbiased estimated
parameters. The high variance problem has been solved by Laurain et al. [2010] by
using a Refined Instrumental Variable (RIV) algorithm [Söderström and Stoica, 1983;
Laurain et al., 2010] and has also been extended to LPV-BJ models by assuming that a
noise model structure is known. A simplified version of this algorithm is also introduced
and known as Simplified Refined Instrumental Variable (SRIV) algorithm used in case
the noise model is neglected [Laurain et al., 2010]. However these methods require
iterative algorithms and more computation time. The Linear Recurrent Neural Network
(LRNN) introduced by Abbas et al. [2010a] is also a powerful technique since the
estimated results have low bias and acceptable low variance. However, the computation
time to train the recurrent network is high even for a low-order model. Moreover, when
the order of the estimated model has to be changed, which is normal in identification
procedures, the structure of the network has to be redesigned by the user, which is not

41
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trivial.
Here we improve the IV-ARX method which is used by [Butcher et al., 2008].

The IV-ARX method is started with identifying an auxiliary model using LPV-ARX
structure and estimating the parameters using a LS method. This auxiliary model
is used to generate an estimated output signal which is assumed to be noise free.
However the model estimated by the LPV-ARX model is always biased [Söderström
and Stoica, 1983; Landau and Zito, 2006] due to the incorrect noise model. Instead
of using LPV-ARX, the LPV-OE model with Output Error (OE) method [Landau
et al., 1998; Landau and Zito, 2006] is introduced here. The LPV-OE model is used
as the first step of the IV to obtain a regressor vector which is correlated to the noise
free output signal but not to the noise signals. This method is referred to as IV-OE.
Since the method uses a predicted output signal to form a regressor vector instead of
using a measured output signal, the output signal obtained from this method is always
uncorrelated with measured noise. By using IV-OE, we can preserve the two simple
steps of the IV-ARX method but significantly improve the performance in both bias
and variance terms. To illustrate the improvement of the proposed method, simulation
results of the estimated model when the systems are corrupted by white noise and
colored noise are given.

Finally, we show that the introduced method not only works for LPV systems but
can also be applied to quasi-LPV systems. The identification of quasi-LPV systems
is normally considered as a more difficult problem than that of normal LPV systems.
This is because in this problem noise not only corrupts the output signal but also the
scheduling signal via the measured output. Again, since the predicted output by the
LPV-OE model only depends on measured input signals which are uncorrelated with
noise, we can use the identified model to generate a noise free predicted output signal
for both output regressor vector and a sequence of the scheduling signal. This leads to
an unbiased identification when we use the IV-OE estimation.

For comparison purposes, in this chapter we consider only the identification of LPV
and quasi-LPV models in the SISO case. The extension to the MIMO case can be done
in the same way as in Chapter 3.

This chapter is organized as follow. The preliminaries of the method are presented
in terms of model structure, and algorithm. Then the proposed method is compared
with other methods using Monte-Carlo simulation examples in both LPV and quasi-
LPV model structure. Some results in this chapter have been presented in [Boonto
and Werner, 2008].

4.1 System Description

Consider the SISO LPV system shown in Figure 4.1, with input signal u(k) ∈ R,
scheduling input signal ρ(k) ∈ R, scheduling parameter θ(k) ∈ R and measured output
y(k) ∈ R, which is corrupted by noise while ỹ(k) is a noise free signal. The signal
v(k) ∈ R represents all external factors like disturbances or measurement noise that
corrupt the output signal.

Assume that all LPV systems considered here can be represented by the structure
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u(k) LPV
System

ỹ(k)
y(k)

v(k)
θ(k)

f(·)

ρ(k)

Figure 4.1: LPV model for system identification

u(k) G(q−1, θ(k))
ỹ(k)

y(k)

v(k)

θ(k) H(q−1, θ(k))

e(k)

Figure 4.2: LPV model structure

of a discrete-time LPV model shown in Figure 4.2. For SISO LPV models, the output
signal is given by

y(k) = G(q−1, θ(k))u(k − d) +H(q−1, θ(k))e(k), (4.1)

where θ(k) ∈ R is the measurable scheduling parameter at time k, d is the delay
between input and output signal, u(k) ∈ R is the input signal, y(k) ∈ R is the output
signal, e(k) is a white noise signal and q is the time-shift operator, i.e. q−iu(k) = u(k−
i). G(q−1, θ(k)) and H(q−1, θ(k)) are called the transfer operators [Ljung, 1999] which
are the ratio of two polynomials in the operator q. For LPV systems the coefficients
of the polynomial depend on a scheduling parameter θ(k)† while for LTI systems these
parameters are constant. With this parameter dependence, the multiplication of the
θ-dependent polynomials with the shift operator q is not commutative over the θ-
dependent coefficients, i.e., q−1A(q−1, θ(k))y(k) = A(q−1, θk−1)q−1y(k) which is not
equal to A(q−1, θ(k))q−1y(k) like in LTI systems. Moreover, the inverse of the θ-
dependent polynomials of LPV systems are defined as a left-inverse† and denoted by

†For simplicity, we consider only systems that depend on a single scheduling parameter. The
extension to multiple scheduling parameters is straightforward, see e.g. [Abbas et al., 2010b].

†This will be explained in details in Chapter 5.
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(·)−1, e.g.,

B(q−1, θ(k))

A(q−1, θ(k))
= A−1(q−1, θ(k))B(q−1, θ(k)),

which is in general not equal to B(q−1, θ(k))A−1(q−1, θ(k)).
Then, G(q−1, θ(k)) in (4.1) is defined as:

G(q−1, θ(k)) = A−1(q−1, θ(k))B(q−1, θ(k)), (4.2a)

A(q−1, θ(k)) = 1 +
na∑
i=1

ai(θ(k))q−i, (4.2b)

B(q−1, θ(k)) =

nb∑
i=0

bj(θ(k))q−i, (4.2c)

where the coefficients ai and bj are real meromorphic functions‡ with static dependence
on θ(k) – the functions depend on θ only at time k – and H(q−1, θ(k)) is defined as:

H(q−1, θ(k)) = D−1(q−1, θ(k))C(q−1, θ(k))), (4.3a)

C(q−1, θ(k)) = 1 +
nc∑
i=1

ci(θ(k))q−i, (4.3b)

D(q−1, θ(k)) = 1 +

nd∑
i=1

di(θ(k))q−i, (4.3c)

which represents a filter that is used to generate a model of the disturbance v(k). The
noise models considered here do not always depend on θ(k). Generally only LPV-
ARX and LPV-ARMAX require the noise model in LPV form, i.e., H(q−1, θ(k)) =
A−1(q−1, θ(k)) andH(q−1, θ(k)) = A−1(q−1, θ(k))C(q−1, θ(k)) respectively. Other mod-
els such as, LPV-OE and LPV-BJ, can be considered to have noise models in LTI form.

As in Chapter 3, we assume that the functions ai(θ(k)), bi(θ(k)), ci(θ(k)) and
di(θ(k)) are linear combinations of a set of known fixed basis function; for example a
polynomial basis function, cubic spline function etc. In this chapter, we focus only on
polynomial basis function for simplicity. Hence, the polynomial coefficient functions
are defined as

ai(θ(k)) = ai0 + ai1θ(k) + · · ·+ ainp(θ(k))np−1,

bi(θ(k)) = bi0 + bi1θ(k) + · · ·+ binp(θ(k))np−1,

ci(θ(k)) = ci0 + ci1θ(k) + · · ·+ cinp(θ(k))np−1,

di(θ(k)) = di0 + di1θ(k) + · · ·+ dinp(θ(k))np−1,

(4.4)

where np is the number of monomial terms of the basis function.
The true model structure can be written in linear regression form as

y(k) = ϕT (k)p0 + v(k), (4.5)

‡f : Rn 7→ R is a real meromorphic function if f = g/h with g, h analytic and h 6= 0.
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where the θ-dependent regressor vector is given by

φ(k) = ϕ(k)⊗ ψ(θ(k)) (4.6)

where ⊗ is the Kronecker product† and

ϕ(k) = [y(k − 1) y(k − 2) . . . y(k − na) u(k − d) u(k − d− 1) . . . u(k − d− nb)] ,
ψ(θ(k)) =

[
1 θ(k) θ2(k) . . . θnp−1(k)

]
and the true parameter vector is

pT0 =
[
a0,1,0 a0,1,1 . . . a0,1,nρ a0,na,1 . . . a0,na,nρ b0,0,0 b0,0,1 . . . b0,0,nρ b0,nb,1 . . . b0,nb,nρ

]
.

4.2 Model Structure

The LPV model structures which are considered here are LPV-ARX and LPV-OE.
LPV-ARX model parameters are estimated by using the Prediction Error Method
(PEM) as in [Butcher et al., 2008; Bamieh and Giarré, 2002] and LPV-OE model
parameters are estimated by using the OE method see [Landau et al., 1998; Landau
and Zito, 2006; Boonto and Werner, 2008]. Both methods have been successfully ap-
plied to LTI systems; however the extension of these methods to the LPV case is more
involved.

4.2.1 LPV-ARX Representation

The LPV-ARX model structure is written as

A(q−1, θ(k))y(k) = B(q−1, θ(k))u(k − d) + e(k), (4.7)

with noise model

H(q−1, θ(k)) = A−1(q−1, θ(k)). (4.8)

Define A∗(q−1, θ(k)) = (1−A(q−1, θ(k))), then it is possible to show that the one-step
ahead predictor [Tóth, 2008] of y(k) is

ŷ(k) = −A∗(q−1, θ(k))y(k) +B(q−1, θ(k))u(k − d), (4.9)

or

ŷ(k) = φT p̂, (4.10)

where φ̃ is a θ-dependent regressor vector containing past measured output and past
measured input data as

φ = ϕ(k)⊗ ψ(θ(k)),

where

ϕ(k) = [y(k − 1) y(k − 2) . . . y(k − na) u(k − d) u(k − d− 1) . . . u(k − d− nb)] ,
ψ(θ(k)) =

[
1 θ(k) θ2(k) . . . θnp−1(k)

]
and p̂ is the estimated parameters vector.

†See Appendix B.
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4.2.2 LPV-OE Representation

In LPV-OE model, the model structure is written as

y(k) = A−1(q−1, θ(k))B(q−1, θ(k))u(k) + e(k), (4.11)

with the noise model

H(q−1, θ(k)) = 1, (4.12)

and the one-step ahead predictor of y(k) is

ŷ(k) = −A∗(q−1, θ(k))∗ŷ(k) +B(q−1, θ(k))u(k − d), (4.13)

or

ŷ(k) = φ̃T p̂, (4.14)

where φ̃ is a θ-dependent regressor vector containing past predicted output and past
measured input data as

φ̃ = ϕ̃(k)⊗ ψ(θ(k)),

where

ϕ̃(k) = [ŷ(k − 1) ŷ(k − 2) . . . ŷ(k − na) u(k − d) u(k − d− 1) . . . u(k − d− nb)] ,
ψ(θ(k)) =

[
1 θ(k) θ2(k) . . . θnp−1(k)

]
and p̂ is the estimated parameter vector. The main difference between LPV-ARX
and LPV-OE models is that the latter regressor vector contains the past predictor
output ŷ(k) instead of the past measured output y(k). Since the regressor vector of the
LPV-OE model also depends on the previous estimated parameters and the estimated
parameter vector p̂, an iterative search for the parameter estimate p̂ is required. This
algorithm will be explained in Section 4.4.1.

4.3 Bias Error of Least Squares Method

Assume the data set ZN = {y(k), u(k), θ(k), k = 1, 2, . . . , N} generated by the system
and a model structureM(p) are given. For the SISO case, the problem is the estimation
of parameter p̂ based on the minimization of the mean square error

VN(ZN , p) =
1

2N

N∑
k=1

ε2(k) =
1

2N

N∑
k=1

(y(k)− ŷ(k))2, (4.15)

such that the estimated parameter is

p̂N = arg min
p
VN(ZN , p). (4.16)
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This problem can be solved by using the LS method for batch data, given by

p̂LS
N =

[
1

N

N∑
k=1

φ(k)φT (k)

]−1

1

N

N∑
k=1

φ(k)y(k). (4.17)

Substituting y(k) in the above equation from (4.5), we have

p̂LS
N = p0 +

[
1

N

N∑
k=1

φ(k)φT (k)

]−1

1

N

N∑
k=1

φ(k)v(k). (4.18)

For the estimate p̂LS
N to be consistent, it is well known that it is necessary that:

i. lim
N→∞

[
1

N

N∑
k=1

φ(k)φT (k)

]−1

is nonsingular,

ii. lim
N→∞

1

N

N∑
k=1

φ(k)v(k) = 0.

The second term of (4.18) will be zero only when v(k) is a zero mean white noise
sequence and the elements in φ(k) are not correlated with v(k). When this term is
not identical zero, it is called bias error [Ljung, 1999]. It is clear that the estimated
parameters of LPV-ARX models obtained by the LS method are always giving biased
results because the noise model is assumed to be A−1(q−1, θ(k)).

In the literature, the bias error is considered in terms of its 2-norm defined by

Bias = ‖p0 − E{p̂}‖2, (4.19)

where E is the expectation operator, approximated via Monte-Carlo simulations. This
term indicates the difference of the mean of the estimated parameters and the true
parameters. Its variance is defined by

Variance = ‖E{(p̂− E{p̂})2‖2. (4.20)

A good estimation algorithm must have both a low bias error and a low variance.

4.4 Unbiased Identification Methods

In this Chapter we consider two methods: an output error method and instrumental
variable method [Landau and Zito, 2006; Ljung, 1999].

4.4.1 Output Error Method

The output error method discussed here is based on a Recursive PseudoLinear Regres-
sions (RPLR) method for OE models proposed by Landau [1976], see also [Landau
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et al., 1998; Landau and Zito, 2006]. The basic idea of this method is to use a predic-
tion ŷ(k) instead of a measured y(k) in the regressor vector. If past predicted output
ŷ(k) is employed in the regressor and estimated equation, the current predicted output
will only depend on u(k), which is independent of the disturbance signal v(k). With a
suitable Parameter Adaptation Algorithm (PAA) an unbiased estimated plant model
will be obtained. To extend this idea to LPV systems, one can adapt the regressor
vector as a function of the scheduling parameters, see [Boonto and Werner, 2008]. The
difference between this method and a general Recursive Least Squares (RLS) algorithm
can be seen in Figure 4.3.

u(k) LPV
System

v(k)

ε(k)

ỹ(k)

Ĝ(q−1, θ(k))
ŷ(k)

PAA

−

θ(k)

q−1

θ(k)

y(k)

(a) Recursive least squares method (RLS)

u(k) LPV
System

v(k)

ε(k)

ỹ(k)

Ĝ(q−1, θ(k))
ŷ(k)

PAA

−

θ(k)

q−1

θ(k)

y(k)

(b) Output error method (OE)

Figure 4.3: Comparison between the recursive least squares and the output error
method.
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4.4.2 Output Error Method for LPV Input-Output Model
Identification

Consider the true model structure in (4.5) and define the adjustable predictor output
as:

ŷo(k) = φ̃T (k − 1)p̂(k − 1) a priori , (4.21)

ŷ(k) = φ̃T (k − 1)p̂(k) a posteriori , (4.22)

where

φ̃(k) = ϕ̃(k)⊗ ψ(θ(k)),

ϕ̃T (k) = [ŷ(k − 1) ŷ(k − 2) . . . ŷ(k − na) u(k − d) u(k − d− 1) . . . u(k − d− nb)] ,
ψT (θ(k)) =

[
1 θ(k) θ2(k) . . . θnp−1(k)

]
,

where ŷo(k) and ŷ(k) represent the a priori and the a posteriori output of the predictor,
respectively, u(k) is the input signal and p̂(k) is the estimated parameter at sample
time k.

The prediction error is given by

εo(k) = y(k)− ŷo(k) a priori , (4.23)

ε(k) = y(k)− ŷ(k) a posteriori . (4.24)

In order to estimate the parameters of the system, the PAA for LPV input-output
models is given as follows [Landau et al., 1998; Landau and Zito, 2006]:

p̂(k) = p̂(k − 1) + ε(k)φ̃T (k)F (k), (4.25a)

F−1(k − 1) = λ1F
−1(k) + λ2φ̃(k)φ̃T (k), (4.25b)

0 < λ1 ≤ 1, 0 ≤ λ2 < 2,

F (0) > 0, F−1(k) > αF−1(0), 0 < α <∞,

F (k + 1) =
1

λ1

[
F (k)− F (k)φ̃(k)φ̃T (k)F (k)

λ1
λ2

+ φ̃T (k)F (k)φ̃(k)

]
, (4.25c)

ε(k) =
εo(k)

1 + φ̃T (k)F (k)φ̃(k)
, (4.25d)

where F (0) is the initial value of the adaptation matrix gain, normally given by a
nonsingular constant matrix, and λ1 and λ2 are constant factors of the adaptation gain
F (k). These three parameters are considered tuning parameters of PAA.

The usage of ŷ(k) instead of y(k) has a clear benefit in the presence of disturbances.
With an asymptotically decreasing adaptation gain, ŷ(k) will only depends on u(k)
and this will lead to limN→∞

1
N

∑N
k=0 φ̃(k)v(k) = 0 asymptotically. As a result a plant

model with unbiased parameter estimation will be achieved.
A sufficient (but not necessary) condition for the convergence of the algorithm for

LTI systems [Landau et al., 1998] is that

1

A(z−1)
− λ2

2
(4.26)
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is a strictly positive real transfer function. The strictly positive real concept can be ex-
tended to LPV system by assuming that any LPV system G(q−1, θ(k)) has the following
properties:

i. G(q−1, θ(k)) is globally asymptotically stable for any trajectory of scheduling
parameter θ ∈ Pθ

ii. the real part of G(q−1, θ) is positive at all frequencies for all values θ ∈ Pθ.
Then the sufficient convergence condition of the PAA can be extended to LPV systems
by replacing A(z−1) with A(z−1, θ), where A(z−1, θ) is a frequency response function
of A(q−1, θ) at each freezing parameter θ. To relax this condition, the extended output
error method can be used instead see [Landau et al., 1998]. However, since we use this
algorithm in an off-line manner, instead of checking the infinite dimensional sufficient
condition, one can simply check the convergence of the algorithm by plotting the esti-
mated parameters. If the parameters do not converge, three tuning parameters F (0),
λ1 and λ2 can be adapted. A selection guideline for these parameter can be seen in
[Landau and Zito, 2006].

4.4.3 Instrumental Variable Method

The basic idea behind the instrumental variable method and its variations is to generate
a new regressor vector which is highly correlated with uncorrupted measured data but
uncorrelated with the noise disturbance [Söderström and Stoica, 1983; Ljung, 1999].
The IV estimator equation for LPV systems is given by

p̂IV
N =

[
1

N

N∑
k=1

ζ(k)φT (k)

]−1

1

N

N∑
k=1

ζ(k)y(k). (4.27)

where ζ(k) is the instrumental variable regressor vector which is generated from an
auxiliary LPV model. Actually there are several ways to select the instrument variable,
see [Söderström and Stoica, 1983], but in this thesis, we concentrate on a IV with
auxiliary model [Söderström and Stoica, 1983; Landau and Zito, 2006; Butcher et al.,
2008].

Instrumental Variable With An Auxiliary Model Method

One instrumental variable technique is based on an auxiliary model to generate the
IV regressor. This can be done by choosing an instrumental variable generator equal
to the true system, which is clearly not known. However, we can let the instrumental
variable depend on the parameters in an explicit way.

In [Butcher et al., 2008], the IV regressor vector ζ(k) which is generated by the
LPV-ARX model was used and denoted as IV-ARX. The algorithm gives reasonable
results when the measurement output is corrupted with white noise. For colored noise,
for example with LPV-BJ as data generating system, the signal generated by an LPV-
ARX estimated model is still highly correlated with noise due to the limitation of the
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noise model structure of LPV-ARX models. Moreover it has been shown in [Laurain
et al., 2010] that for LPV systems, it is not possible to use a LS algorithm to filter the
measured signals when it is corrupted by colored noise. This is because the noncom-
mutativity of shift operator q−1 in the polynomials of LPV models; there is no way to
write the predicted output of LPV-BJ in a least square problem format [Laurain et al.,
2010].

To retain the attractive simplicity of the above IV-ARX methods, we introduce the
IV method with an auxiliary model estimated with the OE method, denoted as IV-OE.
The motivation to use the OE method is simple. For a white noise corrupted system, we
know that the OE method is an unbiased model estimation algorithm. The OE method
alone is not satisfactory when the system is dealing with colored noise. However the
method is designed such that whether or not it converges to the true parameters value,
it does not depend on the colored noise model [Moore, 1982]. By this observation,
the auxiliary model estimated by the OE method should give a predicted output ŷ(k)
which is free of colored noise and better than using a LS technique. The algorithm of
IV-OE is summarized as follows:

Algorithm 4.1 IV-OE Algorithm

Step 1 Estimate an OE model by the OE method using the PAA step in (4.25a)-
(4.25d).

Step 2 Generate an estimate of ŷ(k) based on the result of the previous step. Build
an instrument regressor vector using ŷ(k) and u(k) and then estimate p̂ using
the IV method.

4.5 Simulation Examples of LPV Systems

In this section we show simulation results with the proposed method. The simulations
are carried out by generating data sets from the true LPV model and then comparing
the true parameters with the estimated parameters. The comparisons of each method
are given in term of the bias 2-norm (4.19) and the variance (4.20) of the estimated
parameters. We separate the test into two categories: LPV model corrupted by white
noise and LPV model corrupted by colored noise. We also give a comparison with
the method of Butcher et al. [2008] and with the methods of Abbas et al. [2010a] and
Laurain et al. [2010].

Model Structures

For comparison purposes, the LS method, the OE method and the IV-ARX method
used in Butcher et al. [2008], are compared to the proposed IV-OE method. The
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IV-ARX, IV-OE and LS have the following LPV-ARX model structure:

MLPV-ARX
p


A(q−1, θ(k)) = 1 + a1(θ(k))q−1 + a2(θ(k))q−2

B(q−1, θ(k)) = b0(θ(k))q−1 + b1(θ(k))q−2

H(q−1, θ(k)) = A−1(q−1, θ(k))

, (4.28)

where

a1(θ(k)) = a1,0 + a1,1θ(k) + a1,2θ
2(k), (4.29a)

a2(θ(k)) = a2,0 + a2,1θ(k) + a2,2θ
2(k), (4.29b)

b0(θ(k)) = b0,0 + b0,1θ(k) + b0,2θ
2(k), (4.29c)

b1(θ(k)) = b1,0 + b1,1θ(k) + b1,2θ
2(k). (4.29d)

This is in contrast with the OE method, as in the latter the regressor vector is con-
structed by an estimated noise free output (predicted output) data set. Then, the
model of the OE method has the following LPV-OE model structure:

MLPV-OE
p


A(q−1, θ(k)) = 1 + a1(θ(k))q−1 + a2(θ(k))q−2

B(q−1, θ(k)) = b0(θ(k))q−1 + b1(θ(k))q−2

H(q−1, θ(k)) = 1

(4.30)

These model structures will be used for all tests.

Remark: In the case of IV-OE, the auxiliary model uses the LPV-OE model
structure while the IV step uses the LPV-ARX structure.

4.5.1 White Noise Case

Data Generating System

In the first example, we consider a white noise disturbance H(q−1, θ(k)) = 1. This
example is borrowed from [Butcher et al., 2008]. The true system is given by

S0


A(q−1, θ(k)) = 1 + a1(θ(k))q−1 + a2(θ(k))q−2

B(q−1, θ(k)) = b0(θ(k))q−1 + b1(θ(k))q−2

H(q−1) = 1.

(4.31)

The coefficients dependence on the scheduling parameter θ is chosen as follows

a1(θ(k)) = 1− 0.5θ(k) + 0.2θ2(k), (4.32a)

a2(θ(k)) = 0.5− 0.7θ(k)− 0.1θ2(k), (4.32b)

b0(θ(k)) = 0.5− 0.4θ(k) + 0.01θ2(k), (4.32c)

b1(θ(k)) = 0.2− 0.3θ(k)− 0.02θ2(k). (4.32d)

The scheduling parameter θ(k) is a periodic function of time as θ(k) = 0.5 sin(0.35πk)+
0.5. The input u(k) is taken as white noise with uniform distribution in the interval
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[-1,1], and with length N = 5000 to generate the data set ZN of the system. The noise
on the output is taken such that v(k) is zero-mean, normally distributed white noise
with different power. The experiments are done by using Monte-Carlo simulation of
100 runs for three different Signal to Noise Ratio (SNR), i.e. 5dB, 10dB and 15dB,
defined as

SNR = 10 log

(
Py
Pe

)
, (4.33)

where Pe is the average power of the zero mean additive on the system output and Py
represents the average power of the noise-free output signal.

In Table 4.1, the comparison of all methods in terms of the bias error and the
variance is displayed. The IV-OE presents the best performance when the SNR are
15dB and 10dB while at 5dB the bias error is equivalent to IV-ARX but the variance
is a little bit lower.

Table 4.1: Estimation bias 2-norm and its variance at different SNR : LPV with white
measurement noise

Method 15dB 10dB 5dB

Bias 1.2212 1.2495 1.2229
LS

Variance 0.0004 0.0007 0.0009

Bias 0.0118 0.0456 0.2200
OE

Variance 0.0007 0.0023 0.0067

Bias 0.0233 0.0294 0.0318
IV-ARX

Variance 0.0008 0.0034 0.0104

Bias 0.0129 0.0180 0.0351
IV-OE

Variance 0.0007 0.0017 0.0062

Table 4.2 and 4.3 show the comparison result of each method in terms of mean
and standard variation of the estimated parameters at 15dB SNR. It can be concluded
that the LS method gives absolute mean estimated parameters far away from the true
values, especially those of the coefficients in A(q−1, θ(k)). This is not surprising since
the coefficients in A(q−1, θ(k)) are estimated by using the contaminated output data.
In contrast with OE, IV-ARX and IV-OE methods, they estimate parameters very
close to their true values.

In conclusion, if the output signal is corrupted by white noise and the scheduling
signal is free of noise, the unbiased error method for the LPV system identification can
be selected as follows:

i. if the SNR is not too low, e.g., SNR > 10dB, the OE method should be selected
since the estimation contains only one step.

ii. if the SNR is lower than 10dB either IV-ARX or IV-OE have to be used to get
an unbiased result.
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Table 4.2: Mean and standard deviation (Std) of the estimated A(q−1, θ(k)) polyno-
mial parameters at SNR 15 dB : LPV with white measurement noise

a1,0 a1,1 a1,2 a2,1 a2,2 a2,3

Method True Value 1 -0.5 0.2 0.5 -0.7 -0.1

LS
Mean 0.7330 -1.1504 0.9307 0.3758 -1.1785 0.3020
Std 0.0199 0.1064 0.1014 0.0119 0.0769 0.0774

Mean 0.9957 -0.5047 0.2078 0.4976 -0.6997 -0.0991
OE

Std 0.0241 0.1387 0.1547 0.0127 0.1075 0.1400

Mean 0.9985 -0.5101 0.2129 0.4995 -0.7108 -0.0879
IV-ARX

Std 0.0224 0.1462 0.1422 0.0094 0.1013 0.1158

Mean 1.0010 -0.5042 0.1968 0.4998 -0.6955 -0.1096
IV-OE

Std 0.0165 0.1204 0.1288 0.0077 0.0878 0.1118

Table 4.3: Mean and standard deviation (Std) of the estimated B(q−1, θ(k)) polyno-
mial parameters at SNR 15 dB : LPV with white measurement noise

b1,0 b1,1 b1,2 b2,1 b2,2 b2,3

Method True Value 0.5 -0.4 0.01 0.2 -0.3 -0.02

LS
Mean 0.4993 -0.3960 0.0059 0.0577 -0.3546 0.1645
Std 0.0199 0.1064 0.1014 0.0119 0.0769 0.0774

Mean 0.4998 -0.4014 0.0115 0.1982 -0.3030 -0.0161
OE

Std 0.0041 0.0239 0.0235 0.0133 0.0526 0.0490

Mean 0.4997 -0.3988 0.0084 0.1986 -0.2984 -0.0202
IV-ARX

Std 0.0042 0.0213 0.0206 0.0131 0.0545 0.0487

Mean 0.4992 -0.3960 0.0069 0.2002 -0.3021 -0.0187
IV-OE

Std 0.0041 0.0205 0.0197 0.0095 0.0463 0.0425

4.5.2 Colored Noise Case

For the colored noise case, all model parameters are as same as in the white noise case,
but the noise model is changed to

H(q−1) =
1

1− q−1 + 0.2q−1
.

Again a Monte-Carlo simulation of 100 runs is carried out at SNR of 15dB, 10dB and
5dB. This example has been used in [Abbas et al., 2010a] and [Laurain et al., 2010].
The values of the bias error and variance from those references are repeated here for
the purpose of comparison.

Table 4.4 shows the 2-norms of bias error and variance of the estimated parameters
using all methods as in the white noise case and also gives a comparison with the SRIV,
RIV [Laurain et al., 2010] and LRNN methods [Abbas et al., 2010a]. As shown in the
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table, all IV methods except IV-ARX give unbiased results along with LRNN that also
gives an unbiased result. The improvement of IV-OE over the IV-ARX is considerable
in this colored noise case. In IV-ARX, the first step using LS is not satisfactory enough
to exclude the colored noise from the measured data; the generated output data is still
highly correlated with noise and read bias results. In this aspect, the IV-OE method
uses the same idea and can do a better job than IV-ARX since the IV-OE method
uses ŷ(k) instead of y(k) which is less correlated with the colored noise. Compared to
the recursive methods, i.e. SRIV and RIV – they use LPV-OE and LPV-BJ structure
respectively – IV-OE gives also comparable results in terms of bias errors and better
results in terms of variance. Compared to the LRNN method when SNR is 15dB and
10dB the bias errors are similar but IV-OE has much less variance. For 5 dB SNR, IV-
OE gives a ten times higher bias error but the variance is ten time lower than LRNN.
From a practical point of view, if the bias error is not too high a lower variance would
be preferred because in real life the number of experiments should be as low as possible
to reduce the computation time. Moreover, in each identification process in this simple
example, LRNN requires almost one day to get this result–Monte-Carlo simulation or
100 runs–while IV-OE uses only 5 minutes for the same case on the same computer.

Table 4.4: Estimation bias 2-norm and its variance at different SNR : LPV with
colored measurement noise

Method 15dB 10dB 5dB

Bias 2.3108 1.9532 2.0846
LS

Variance 0.0008 0.0005 0.0005

Bias 0.1619 0.7421 1.4727
OE

Variance 0.0018 0.0057 0.0198

Bias 0.5506 1.7576 2.2505
IV-ARX

Variance 0.0648 2.8951 20.5136

Bias 0.0219 0.0446 0.2361
IV-OE

Variance 0.0020 0.0086 0.0606
Bias 0.0068 0.0184 0.0408

RIVa

Variance 0.0063 0.0219 0.0696

Bias 0.0072 0.0426 0.2988
SRIVa

Variance 0.0149 0.0537 0.4425
Bias 0.0184 0.0347 0.0866

LRNN
Variance 0.0853 0.1997 0.5861

aThe data is taken from [Laurain et al., 2010].

Table 4.5 and 4.6 show the mean value and the standard variation of the estimated
parameters at 15dB SNR. The results are consistent with the white noise case.

In conclusion, when we deal with the colored noise problem only IV-OE, SRIV,
RIV and LRNN methods are recommended to obtain unbiased results. If we consider
only the variance, one should select either IV-OE or RIV. However the latter method
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requires at least 30 iterations [Laurain et al., 2010] as shown in Table 4.4, and the noise
model is assumed to be known. The properties of each algorithm are summarized in
Table 4.7.

Table 4.5: Mean and standard deviation (Std) of the estimated A(q−1, θ(k)) polyno-
mial parameters at SNR 15 dB : LPV with colored measurement noise

a1,0 a1,1 a1,2 a2,1 a2,2 a2,3

Method True Value 1 -0.5 0.2 0.5 -0.7 -0.1

LS
Mean 0.1733 -1.6268 1.3448 0.0629 -1.1608 0.4577
Std 0.0432 0.1592 0.1326 0.0278 0.1109 0.0947

Mean 1.0032 -0.6295 -0.1796 0.5002 -0.7438 -0.1178
OE

Std 0.0302 0.2384 0.2369 0.0095 0.1330 0.1757

Mean 1.0062 -0.1151 -0.4878 0.5017 -0.5189 -0.1923
IV-ARX

Std 0.1178 1.4850 1.1202 0.0489 0.6916 0.4674

Mean 0.9978 -0.5177 -0.1963 0.4991 -0.7084 -0.1045
IV-OE

Std 0.0287 0.2500 0.0090 0.1525 0.1835 0.0104

Table 4.6: Mean and standard deviation (Std) of the estimated B(q−1, θ(k)) polyno-
mial parameters at SNR 15 dB : LPV with colored measurement noise

b1,0 b1,1 b1,2 b2,1 b2,2 b2,3

Method True Value 0.5 -0.4 0.01 0.2 -0.3 -0.02

LS
Mean 0.5001 -0.3992 0.0092 -0.2320 -0.1904 0.2757
Std 0.0066 0.0250 0.0218 0.0211 0.0686 0.0522

Mean 0.4993 -0.3926 0.0025 0.2013 -0.3569 -0.0232
OE

Std 0.0059 0.0361 0.0357 0.0215 0.1044 0.0904

Mean 0.5012 -0.4042 0.0135 0.2077 -0.1756 -0.1436
IV-ARX

Std 0.0101 0.0467 0.0421 0.0667 0.5387 0.4956

Mean 0.5002 -0.4011 0.0113 0.1988 -0.3054 -0.0150
IV-OE

Std 0.0104 0.0480 0.0427 0.0235 0.1013 0.0859

System and Model Structure are mismatched

It is worth to illustrate the performance of the proposed method when selecting a wrong
model structure. In this experiment all settings of the true system are the same as
the previous experiment but the selected identification model is incorrect, i.e. na = 3
instead of 2.

The result is shown in Figure 4.4 where the comparison of a cross validation between
the simulation output of the identified model and the original noise-free and the noisy
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Table 4.7: The properties of each algorithm when use to identify LPV model with
colored measurement noise.

Method Bias Variance Computation Time

LS high (-) very low (+) very fast (+)

OE low (+) low(+) very fast (+)

IV-ARX high (-) very high (-) very fast (+)

IV-OE very low (+) very low (+) very fast (+)

RIV lowest (++) very low(+) slow (-)a

SRIV very low (+) low (+) slow (-)a

LRNN very low (+) low (+) very slow (- -)

aDepends on the number of iterations.
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Figure 4.4: Cross validation test of IV-OE at SNR = 10 dB when the model structure
is not correct.

output at SNR = 10 dB are depicted. The plot of the simulation output is almost
identical to the noise free output. This means that the introduced method works well
although the the selected model structure is not correct.
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4.6 Identification of Quasi-LPV Input-Output

Models

In practice, the nonlinear systems are approximated by a quasi-LPV structure like
the one given in Chapter 3. The identification of the quasi-LPV model in which an
output signal is considered as a scheduling signal, is more difficult than that of the
normal LPV model. This is because the noise signal is correlated not only with the
output signal but also with the scheduling signal. As discussed in [Butcher et al.,
2008], consistent estimation occurs only when the scheduling signal is noise free. Using
the IV-OE method described in the previous section is clearly more useful in this case
because the estimation procedure of the auxiliary model relies on ŷ(k) instead of y(k),
which is uncorrelated with noise. The simulation output from the model estimated
by an OE step, can be used for both a noise free scheduling signal and a noise free
output. In the following example, we show that if the noise signal is white and SNR is
reasonably high, the IV-OE can be used for quasi-LPV system identification.

u(k)

Nonlinear System

G(q−1, θ(k))

H(q−1) = 1

e(k)

y(k)

ρ(k)

f(·)
θ(k)

ỹ(k)

Figure 4.5: A quasi-LPV data generating system: the dashed box is a nonlinear
system represented as a quasi-LPV model.

The data generating system is shown in Figure 4.5, it is assumed that a nonlinear
system is represented as a quasi-LPV model shown in the shaded box. The aim is to
estimate the quasi-LPV model in the shaded box by using the input data u(k) and the
contaminated output data y(k). The noise signal is white noise and H(q−1) = 1. The
model structure used in this section is the same as in the previous cases. The true
model is given by

S0


A(q−1, θ(k)) = 1 + a1(θ(k))q−1 + a2(θ(k))q−2

B(q−1, θ(k)) = b0(θ(k))q−1 + b1(θ(k))q−2

H(q−1) = 1,

(4.34)
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The coefficient dependence on the scheduling parameter is chosen as follow:

a1(θ(k)) = 1− 0.5θ(k) + 0.2θ2(k), (4.35a)

a2(θ(k)) = 1− 0.7θ(k)− 0.1θ2(k), (4.35b)

b0(θ(k)) = 0.5− 0.4θ(k) + 0.01θ2(k), (4.35c)

b1(θ(k)) = 0.2− 0.3θ(k)− 0.02θ2(k), (4.35d)

where ρ(k) = y(k − 1), and θ(k) = 0.5 cos(ρ(k)).

The input signal u(k) in Figure 4.5 is taken as a white noise like in the previous
cases. Then, Monte-Carlo simulation of 100 runs is carried out for three different values
of SNR: 30dB, 20dB and 10 dB to compare the proposed IV-OE method with LS, OE
and IV-ARX methods.

The comparison in terms of bias error and variance is shown in Table 4.8. Both
instrumental variable methods provide unbiased results but it is clear that IV-OE gives
the better results in both statistical indicators. In Table 4.9 and 4.10 the mean and
standard deviation of the estimated parameters at 20 dB are displayed in details. Again
it is clear that the IV-OE method outperforms the other methods.

Table 4.8: Estimation bias 2-norm and its variance at different SNR: quasi-LPV with
white measurement noise

Method 30dB 20dB 15dB

Bias 0.1645 1.1554 2.3984
LS

Variance 0.0029 0.0271 0.0295

Bias 0.1061 1.0311 1.0819
OE

Variance 0.0125 0.1516 0.1576

Bias 0.0102 0.0459 0.0656
IV-ARX

Variance 0.0031 0.1211 0.7175

Bias 0.0097 0.0294 0.0456
IV-OE

Variance 0.0034 0.0391 0.1934

System and Model Structure are mismatched

In this section we show the performance of the proposed algorithm when the model
structure is not correct. The true system is the same as the previous experiment but
the selected model is different, e.g. na = 3 instead of 2.

The result is shown in Figure 4.6, in which the comparisons of a cross validation
between the simulation output of the identified model and the original noise-free and
the noisy output at SNR = 15 dB are displayed. Again the plot of the simulation
output is nearly identical to the noise-free output. It is confirming that the IV-OE
method works well even when the true model structure is not in the selected model
set.
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Table 4.9: Mean and standard deviation (Std) of the estimated A(q−1, θ(k)) poly-
nomial parameters at SNR 20 dB : quasi-LPV with white measurement
noise

a1,0 a1,1 a1,2 a2,1 a2,2 a2,3

Method True Value 1 -0.5 0.2 1.0 -0.7 -0.1

LS
Mean 0.7321 -0.2524 0.1708 0.3047 0.1119 -0.3188
Std 0.0471 0.0693 0.0277 0.1079 0.1339 0.0415

Mean 0.7860 -0.2128 0.0972 0.4707 -0.0391 -0.3108
OE

Std 0.1654 0.2698 0.1085 0.2401 0.3248 0.1118

Mean 1.0121 -0.5288 0.2135 1.0154 -0.7223 -0.0932
IV-ARX

Std 0.0887 0.2494 0.1281 0.2811 0.2564 0.0586

Mean 1.0011 -0.5138 0.2087 1.0119 -0.7183 -0.0944
IV-OE

Std 0.0752 0.1122 0.0423 0.1327 0.1776 0.0586

Table 4.10: Mean and standard deviation (Std) of the estimated B(q−1, θ(k)) poly-
nomial parameters at SNR 20 dB : quasi-LPV with white measurement
noise

b1,0 b1,1 b1,2 b2,1 b2,2 b2,3

Method True Value 0.5 -0.4 0.01 0.2 -0.3 -0.02

LS
Mean 0.4335 -0.3441 0.0025 0.1530 -0.2761 -0.0143
Std 0.0341 0.0502 0.0181 0.0346 0.0496 0.0176

Mean 0.3371 -0.1547 -0.0785 0.0559 -0.0937 -0.0911
OE

Std 0.1158 0.1739 0.0628 0.1284 0.1882 0.0667

Mean 0.4956 -0.3940 0.0073 0.1943 -0.2921 -0.0231
IV-ARX

Std 0.0623 0.0930 0.0335 0.0694 0.1169 0.0462

Mean 0.4951 -0.3946 0.0080 0.2031 -0.3048 -0.0187
IV-OE

Std 0.0416 0.0622 0.0225 0.0488 0.0707 0.0250
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Figure 4.6: Cross validation test of IV-OE for a quasi-LPV at SNR = 15 dB when
the model structure is not correct.

4.7 Conclusion

This chapter has shown the improvement of the model dependent instrumental variable
method by using an LPV-OE model instead of LPV-ARX in the first steps of the IV
algorithm. The new IV-OE algorithm shows significant improvement over the original
method in terms of bias error and variance, by maintaining the simple two steps of
the original algorithm. Moreover the method can be used in both LPV and quasi-
LPV cases. The performance of the method in the colored noise case is also compared
with more complicated methods like SRIV, RIV and LRNN. Simulation examples have
shown that the proposed method is comparable to the best existing methods while using
much less computation power, since it requires only one iteration of the IV procedure.
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Chapter 5

State-Space Realization of LPV
Input-Output Models

If we classify system identification methods based on system structures, we can separate
them into two subgroups. One is an input-output representation based technique, e.g.
[Bamieh and Giarré, 2002; Wei, 2006], which is based on the Prediction-Error Method
(PEM). Another one is a state-space representation technique, e.g. [van Wingerden
and Verhaegen, 2009], which is based on the subspace method. Both subgroups have
their own advantages and disadvantages. The input-output based method does not
suffer from the curse of dimensionality like the subspace based method [Verdult and
Verhaegen, 2001], however the state-space realization of the LPV input-output model
is still developing. The realization is very important when the models are used for
controller design purposes, because all high-performance controller design techniques
are based on state-space models. In the LTV literature, state-space realizations of
LTV models with time-varying coefficients have been considered for a long time, e.g.
[Kamen et al., 1985; Khargonekar and Poolla, 1986; Poolla and Khargonekar, 1987;
Verriest, 1993; Guidorzi and Diversi, 2003] and more recently [Zerz, 2007]. In contrast
with LPV systems, the problems of time dependence of the scheduling signals are
always neglected and the transformation of input-output models into state-space form
is done using an LTI realization method, see for example [Giarré et al., 2006; Qin and
Wang, 2007a,b]. The first investigation of this problem has been done in Tóth et al.
[2007]. The transformation of LPV input-output models to state-space LPV models
without considering the time dependence of the scheduling signals typically lead to
inequivalent state-space models. These inequivalent models weaken the performance
of the closed-loop system.

To illustrate the above problem, a simple example introduced by Tóth et al. [2009b]
shows the inequivalence between a state-space realization and the original LPV input-
output model.

63
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Example 5.1 [Realization of LPV model using LTI framework ] A LPV input-output
system is given by

y(k) = a1(θ(k))y(k − 1) + a2(θ(k))y(k − 2) + b1(θ(k))u(k − 1) + b2(θ(k))u(k − 2). (5.1)

Constructing a realization without considering the time-dependence of the scheduling signal
θ(k), we get the following second-order state-space representation:[

x1(k + 1)
x2(k + 1)

]
=

[
0 a2(θ(k))
1 a1(θ(k))

] [
x1(k)
x2(k)

]
+

[
b2(θ(k))
b1(θ(k))

]
u(k),

y(k) = x2(k).

(5.2)

However, with simple manipulations the above system (5.2) can be transformed into an
equivalent input-output representation

y(k) = a1(θ(k − 1))y(k − 1) + a2(θ(k − 2))y(k − 2) (5.3)

+ b1(θ(k − 1))u(k − 1) + b2(θ(k − 2))u(k − 2). (5.4)

It is clear that the LPV input-output model (5.3) is not equivalent to the original one (5.1).
�

In Tóth [2010], this problem is addressed by using a behavioral approach. The
study concentrates on an analysis framework of LPV systems. However synthesis
tools are still missing. In contrast to this work, we will use an approach based on
algebraic concepts, in particular a ring of skew polynomials as skew polynomial matrices
[Wolovich, 1974; Callier and Desoer, 1982; Antsaklis and Michel, 2006] and extend
to LTV systems see [Verriest, 1993; Ylinen and Zenger, 1992], to build a practical
framework for LPV system identification and realization.

Inspired by the algebraic framework for LTV system realization of Verriest [1993];
Zerz [2006]; Ylinen and Zenger [1992], we extend it to LPV systems. Firstly we propose
a method using a skew polynomial concept to construct a realization framework for
LPV input-output systems. This can be done by separating the LPV input-output
representation with polynomials in a Left Polynomial Representation (LPR) and a
Right Polynomial Representation (RPR) form. With this separation, we can modify
the realization framework of LTI systems to transform LPV input-output models into
state-space models without violating the noncommutative rule. A state-space system
in reachable form can be directly obtained from an RPR, while the observable form can
be derived from an LPR. This modification is not limited to SISO systems but can also
be used for MIMO systems. Finally we show that when an LPV input-output model
is identified in LPR, a state-space model in observable form can be directly obtained
which is minimal.

The chapter is organized as follows. A review of some required algebraic concepts
is given in Section 5.1. All necessary definitions related to the skew polynomial theory
are also given. Section 5.2 gives a brief review of LPV state-space representations
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and their properties. In Section 5.3 we draw the modification of the LTI realization
framework to use SISO LPV systems and also show examples. The extension to MIMO
systems is given in Section 5.4. Section 5.5 presents the application of the idea to LPV
input-output system identification, including an example. Finally conclusion are drawn
in the last section.

5.1 Algebraic Preliminaries

Some material which is required for the proposed method, is introduced in this section.
To make it simpler, here we restrict the discussion to SISO systems, while the material
necessary for MIMO systems will be explained when it is needed. The material intro-
duced in this section is mostly adapted from [Verriest, 1993; Ylinen and Zenger, 1992]
and references therein, and has been converted from continuous-time to discrete-time
systems.

5.1.1 Skew Polynomials

Throughout this chapter, let K denote a field† generated by real-rational functions of a
real scheduling parameter θ. These rational functions are allowed to depend on a set of
time-shifted instances of θ(k) denoted by Θ, i.e. Θ = · · · , θ(k− 1), θ(k), θ(k+ 1), · · · .
K[q] denotes the noncommutative ring of polynomials in q with coefficients a(θ(k)) ∈ K
where q is the time shift operator. Polynomials which are members of this ring are
called skew polynomials. A general operator in the ring K[q] is denoted by a(q, θ(k)).
Now an element of K[q] not equal zero, can be represented either in a left or a right
form as follows:

i. Right Polynomial Representation (RPR)

a(q, θ(k)) =
n∑
i=0

a(θ(k))qn−i, (5.5)

ii. Left Polynomial Representation(LPR)‡

ã(q, θ(k)) =
n̄∑
i=0

qn̄−ia(θ(k)). (5.6)

The a(q, θ(k)) and ã(q, θ(k)) are related by the commutation rule,

qa(θ(k)) = a(θ(k + 1))q, (5.7)

for example

a(θ(k)) + a(θ(k))q2 = a(θ(k)) + q2a(θ(k − 2)).

†For rings and fields see Appendix C.
‡In [Abbas et al., 2010b] this representation has been called shifted form
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A degree function for the skew polynomials is defined by the highest value of the
power of non-zero monomial terms. The degree of the zero polynomial is −∞. With
this degree function, it can be shown that the ring K[q] is a noncommutative Euclidean
domain and it satisfies the so-called Ore condition.

Lemma 5.1 (Ore condition [Ore, 1931; Cohn, 1961]). For all non-zero a(q, θ(k)),
b(q, θ(k)) ∈ K[q] , there exist non-zero a1(q, θ(k)),b1(q, θ(k)) ∈ K[q] such that

a1(q, θ(k))b(q, θ(k)) = b1(q, θ(k))a(q, θ(k)).

The left Ore condition means that any two elements of K[q] have a Common Left
Multiple (CLM), see Section 5.1.2. Then K[q] can be embedded in a noncommutative
fraction field [Ore, 1931; Cohn, 1961].

Let a1, a2, b1, b2, c1, c2, d1, d2 be in K[q], then K[q] can be embedded in a noncom-
mutative fraction field by defining each fraction [Ylinen and Zenger, 1992; Halás and
Kotta, 2007] as

a1

b1

= b−1
1 a1, (5.8)

where b1 6= 0. Addition and multiplication are defined as

a1

b1

+
a2

b2

=
c2a1 + c1a2

c2b1

(5.9)

where c2b1 = c1b2 by the Ore condition and

a1

b1

a2

b2

=
d1a2

d2a1

(5.10)

where d2a1 = d1b2 by the Ore condition. The resulting fraction field of skew polynomi-
als is denoted by K(q) [Halás, 2009]; K[q] ⊂ K(q) and 1

a1
/∈ K[q] but 1

a1
∈ K(q). These

addition and multiplication rules are necessary for the row and column operations of
the skew polynomial matrices in a subsequent section.

5.1.2 Noncommutative Algebra

To construct the polynomials c1, c2, d1, d2 mentioned in the previous section, a division
algorithm for skew rings is required. All material here is adopted from [Verriest, 1993].
Parameters (q, θ) are omitted for simplicity.

Definition 5.1. Let a, b ∈ K[q], then

i. c ∈ K[q] is a left common divisor (LCD) of a and b if there exist a1 and b1 ∈ K[q]
such that a = ca1 and b = cb1.

ii. a and b are left coprime (LC) if there is no LCD of a and b, except for the units
in K.
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iii. d ∈ K[q] is a left common multiple (LCM) of a and b if ∃a1, b1 ∈ K[q] such that
d = a1a = b1b.

Similarly we can define a right common divisor (RCM), a right common multiple (LCM)
and a right coprime (RC).

Theorem 5.1 (Left Division Algorithm). ∀a, b ∈ K[q] such that deg(a) ≥ deg(b) ≥ 1,
there exist g ∈ K; c, d ∈ K[q], such that:

ag = bc+ d

deg(d) < deg(b)

g, c right coprime .

Definition 5.2 (Greatest common left divisor). The Greatest Common Left Divisor
(GCLD) of two skew polynomials a and b ∈ K[q] is the skew polynomial l ∈ K[q] such
that ∃a1, b1 ∈ K[q] with a = la1 and b = lb1; and if m ∈ K[q] is any other element of
K[q] such that a = ma1 and b = mb1 then there exists l1 ∈ K[q] such that l = ml1.

5.2 LPV State-Space Representation

The LPV state-space representation discussed in this chapter is standard and defined
as

x(k + 1) = A(θ(k))x(k) + B(θ(k))u(k)

y(k) = C(θ(k))x(k) + D(θ(k))u(k)
(5.11)

where A(θ(k)), B(θ(k)), C(θ(k)) and D(θ(k)) are matrices with elements in K.
For LTI systems, three important properties of state-space representations are

reachability, observability and minimality, see [Kailath, 1980; Antsaklis and Michel,
2006]. For LPV systems, however, these properties are more complicated than for
LTI systems, because they have to hold for all values of the scheduling variables θ in
the considered range. The problem becomes an infinite dimensional problem because
one has to check for all possible values of θ. These properties for LPV systems can
be defined by extending the properties of LTI systems [Wolovich, 1974] by taking the
scheduling signals into account [Tóth, 2010].

Definition 5.3 (Complete LPV state-reachability). An LPV state-space system is
said to be complete state reachable, if for any given two state x1, x2 and any value of
scheduling signals θ ∈ Rnθ , there exist an input signal u such that x(k1) = x1 and
x(k2) = x2 for some k1, k2 ∈ T.

Definition 5.4 (Complete LPV state-observability). The LPV state-space system is
said to be complete state observable if and only if the entire state x(k) can be deter-
mined over any finite time interval [k0, k1] from complete knowledge of the system input
and output over the time interval [k0, k1] with k1 > k0 ≥ 0 for any value of scheduling
parameters θ ∈ Rnθ .

Definition 5.5 (Minimality). An LPV state-space system defined through the matrices
{A(θ(k)),B(θ(k)),C(θ(k)),D(θ(k))} with order n is said to be complete minimal if there
exists no equivalent LPV state-space system with order n̂ < n.
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5.3 Realization of SISO LPV Input-Output Models

A state-space representation is one of the most commonly used methods to describe a
dynamic system. Moreover most advanced controller design methods are based on the
state-space models. Due to this reason the construction of a state-space LPV represen-
tation that is equivalent to a given LPV input-output representation is an important
problem. This problem is know as the realization problem. In this part, we will con-
sider only the SISO case. The extension to MIMO systems is not straightforward and
will be discussed in a later section.

An LPV input-output systems in the operator form

a(q, θ(k))y(k) = b(q, θ(k))u(k), (5.12)

can be viewed as an operational transfer function

y(k) = h(q, θ(k))u(k), (5.13)

where h(q, θ(k)) = a−1(q, θ(k))b(q, θ(k)) and h(q, θ(k)), a(q, θ(k)), and b(q, θ(k)) are in
K(q).

The realization frameworks used for LTI [Antsaklis and Michel, 2006] and LTV
[Verriest, 1993] systems can be adapted to be used for LPV systems. According to
[Verriest, 1993], the noncommutativity of q operators must be separated between a
Right Fraction Description (RFD) and a Left Fraction Description (LFD) of the oper-
ational transfer function. For an LPV system,

RFD:

a(q, θ(k))x(k) = u(k)

y(k) = b(q, θ(k))x(k)

= b(q, θ(k))a−1(q, θ(k))u(k)

(5.14)

LFD:

ã(q, θ(k))x(k) = b̃(q, θ(k))u(k)

y(k) = x(k)

= ã−1(q, θ(k))b̃(q, θ(k))u(k)

(5.15)

The LFD is directly obtained from the input-output representation (5.12) while the
RFD is obtained via the GCLD. This is because in the LPV case, even for SISO systems,
the operational transfer functions b(q, θ(k))a−1(q, θ(k)) and a−1(q, θ(k))b(q, θ(k)) do not
render the same system due to the noncommutativity.

5.3.1 Observable Form

A SISO discrete-time LPV input-output system given in LFD form by

h̃(q, θ(k)) = ã−1(q, θ(k))b̃(q, θ(k)), (5.16)
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where

ã(q, θ(k)) = qn + qn−1ãn−1(θ(k)) + · · ·+ qã1(θ(k)) + ã0(θ(k))

b̃(q, θ(k)) = qnb̃n(θ(k)) + · · ·+ qb̃1(θ(k)) + b̃0(θ(k))

is in LPR structure.
A state-space realization in observable form is then given by

x(k + 1) = Ão(θ(k))x(k) + b̃o(θ(k))u(k)

=


0 · · · 0 −ã0(θ(k))
1 · · · 0 −ã1(θ(k))
...

. . .
...

...
0 · · · 1 −ãn−1(θ(k))

x(k) +


b̃0(θ(k))− b̃n(θ(k))ã0(θ(k))

b̃1(θ(k))− b̃n(θ(k))ã1(θ(k))
...

b̃n−1(θ(k))− b̃n(θ(k))ãn−1(θ(k))

u(k)

y(k) = c̃o(θ(k))x(k) + d̃o(θ(k))u(k)

=
[
0 0 · · · 0 1

]
x(k) + b̃n(θ(k))u(k).

(5.17)

Without loss of generality we can assume that the system is strictly proper or b̃n(θ(k)) in
b̃(q, θ(k)) and d̃o(θ(k)) are zero. Then, one can show that the state-space representation
in (5.17) is equivalent to the input-output system (5.16). Let s̃(q) =

[
1 q · · · , qn−1

]
.

We have

s̃(q)x(k + 1) = s̃(q)Ão(θ(k))x(k) + s̃(q)b̃o(θ(k))u(k)

qx1(k) + q2x2(k) + · · ·+ qnxn(k) =
[
qx1(k) + q2x2(k) + · · ·+ qn−1xn−1(k)

− ã0(θ(k))xn(k)− qã1(θ(k))xn(k)− · · ·
−qn−1ãn−1(θ(k))xn(k)

]
+ b̃(q, θ(k))u(k),

then

qnxn(k) + qn−1ãn−1(θ(k))xn(k) + · · ·+ qã1(θ(k))xn(k) + ã0(θ(k))xn(k)

= b̃(q, θ(k))u(k),
(5.18)

where it is clear that s̃(q)b̃o(θ(k)) = b̃(q, θ(k))u(k).
The last equation (5.18) is exactly ã(q, θ(k))xn(k) = b̃(q, θ(k))u(k) when b̃n(θ(k))

= 0. By defining y(k) = xn(k), we will have the equivalent input-output representation.
Conversion from the input-output representation to the state-space representation in
observable form, can be done simply by defining

y(k) = xn(k)

x1(k + 1) = −ã0(θ(k))xn(k) + b̃0(θ(k))u(k)

x2(k + 1) = x1(k)− ã1(θ(k))xn(k) + b̃1(θ(k))u(k)

...

xn(k + 1) = xn−1(k)− ãn−1(θ(k))xn(k) + b̃n−1(θ(k))u(k).
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Hence the state-space representation in observable form is constructed by (5.17). Since
the state-variables can be constructed by using only the sampled data of input and out-
put signals with any values of θ(k), the representation is observable. We can summarize
this as the following lemma.

Lemma 5.2. The LPV state-space model (5.17) is a realization of h̃(q, θ(k)) (5.16)
and observable.

Since the order of the state-space system in an observable form is equal to the
order of ã(q, θ(k)), the minimal order of the state-space representation is reached when
ã(q, θ(k)) and b̃(q, θ(k)) are left coprime, i.e. when there is no left common factor
between ã(q, θ(k)) and b̃(q, θ(k)).

Lemma 5.3. The realization of h̃(q, θ(k)) = ã−1(q, θ(k))b̃(q, θ(k)) in the observable
form is minimal if and only if ã(q, θ(k)) and b̃(q, θ(k)) are left coprime.

The following example shows the realization in observable form of a discrete-time
LPV SISO system. This example is adapted from an LTV example in [Ylinen and
Zenger, 1992].

Example 5.2 [Observable form] Consider the input-output system described by

(q2 + e−kq + k2)y(k) = (kq + 1)u(k),

where k is the discrete-time variable. In this case the functional dependence is θ1(k) = e−k

and θ2(k) = k. By converting the polynomials into LPR form, we have[
q2 + qe−(k−1) + (k − 1)2

]
y(k) =

[
q(k − 1) + 1

]
u(k)

and

q
[
qy(k) + e−(k−1)y(k)− (k − 1)u(k)

]
+
[
(k − 1)2y(k)− u(k)

]
= 0.

Let
x2(k) = y(k), x1(k + 1) = −(k − 1)2x2(k) + u(k),

and
x2(k + 1) = x1(k)− e−(k−1)x2(k) + (k − 1)u(k).

We obtain a state-space representation as

q

[
x1(k)
x2(k)

]
=

[
0 −(k − 1)2

1 −e−(k−1)

]
x(k) +

[
1

k − 1

]
u(k)

y(k) =
[
0 1

] [x1(k)
x2(k)

]
,

which is in observable form.
�

From the above example, it is not difficult to see that an LPV input-output model
with all polynomials in LPR form can be transformed to an LPV state-space model in
observable form with static dependence, by using the introduced method.
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5.3.2 Reachable Form

The realization of an input-output representation to a state-space representation in
reachable form is more difficult than the observable form. In contrast to the observable
form, we start with an input-output model with polynomials in RPR, as

h(q, θ(k)) = a−1(q, θ(k))b(q, θ(k)) (5.19)

where

a(q, θ(k)) = qn + an−1(θ(k))qn−1 + · · ·+ a1(θ(k))q + a0(θ(k)),

b(q, θ(k)) = bn(θ(k))qn + · · ·+ b1(θ(k))q + b0(θ(k)).

A state-space realization in a reachable form is given by the equation

x(k + 1) = Ac(θ(k))x(k) + bc(θ(k))u(k)

=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−e0(θ(k)) −e1(θ(k)) · · · −en−1(θ(k))

x(k) +


0
0
...
1

u(k)

y(k) = cc(θ(k))x(k) + dc(θ(k))u(k)

=
[
m0(θ(k)) m1(θ(k)) · · · mn−1(θ(k))

]
x(k) + dc(θ(k))u(k).

(5.20)

In this structure the elements of Ac(θ(k)) and cc(θ(k)) cannot be directly taken from
the coefficient parameters of a(q, θ(k)) and b(q, θ(k)). In the reachable form, we must
first represent a transfer operator function in RFD form. Due to the noncommutativity,
one could not simply swap the polynomials a−1(q, θ(k)) and b(q, θ(k)). One has to do
it via the GCLD of the polynomials.

Again we assume that the system is strictly proper or bn(θ(k)) in b(q, θ(k)) and
dc(θ(k)) are zero. In reachable form (5.20), we know that

x(k) =
[
x1(k), . . . xn(k)

]T
=
[
1 q . . . qn−1

]T
x1(k)

= s(q)x1(k),

where s(q) denotes a vector
[
1 q . . . qn−1

]T
. Moreover from the last row of Ac(θ(k))

and bc(θ(k)) in (5.20) we also know that

xn(k + 1) = −e0(θ(k))x1(k)− e1(θ(k))x2(k)− · · · − en−1(θ(k))xn(k) + u(k)

qnx1(k) = −e0(θ(k))x1(k)− e1(θ(k))qx1(k)− · · · − en−1(θ(k))qn−1x1(k) + u(k),

where x2(k) = qx1(k), . . ., xn(k) = qn−1x1(k). Then

e(q, θ(k))x1(k) = u(k)

x1(k) = e−1(q, θ(k))u(k),
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where e(q, θ(k)) = qn + en−1(θ(k))qn−1 + · · ·+ e1(θ(k))q+ e0(θ(k)). Altogether, we have

x(k) = s(q)e−1(q, θ(k))u(k) = (qI − Ac(θ(k)))−1bc(θ(k))u(k),

from (5.20) or

s(q)e−1(q, θ(k)) = (qI − Ac(θ(k)))−1bc(θ(k)).

Hence

cc(θ(k))(qI − Ac(θ(k)))−1bc(θ(k)) = cc(θ(k))s(q)e−1(q, θ(k)) = m(q, θ(k))e−1(q, θ(k)),
(5.21)

where m(q, θ(k)) = mn−1(θ(k))qn−1 + · · ·+ m1(θ(k))q + m0(θ(k)).
To get the equivalent state-space representation and input-output representation,

it is clear that the condition has to be satisfied:

m(q, θ(k))e−1(q, θ(k)) = a−1(q, θ(k))b(q, θ(k)). (5.22)

This can be done by constructing a GCLD in the form

[
a(q, θ(k)) −b(q, θ(k))

] [p1(q, θ(k)) p2(q, θ(k))
p3(q, θ(k)) p4(q, θ(k))

]
=
[
l(q, θ(k)) 0

]
,

where l(q, θ(k)) is the GCLD. Then

a(q, θ(k))p2(q, θ(k)) = b(q, θ(k))p4(q, θ(k)).

Since p4(q, θ(k)) is invertible, we have thatm(q, θ(k)) = p2(q, θ(k)) and e(q, θ(k))=p4(q, θ(k))
satisfied the condition (5.22).

Because, e(q, θ(k)) is monic, we can move x(k+1) to everywhere in the space using
x(k) and u(k) with any values of θ(k). Then the system representation in (5.20) is
reachable and the result is summarized in the following lemma.

Lemma 5.4. The LPV state-space model (5.20) is a realization of h(q, θ(k)) (5.19)
and reachable.

Moreover, since the order n of the reachable form is equal to the maximum order
of e(q, θ(k)), the minimal order of the state-space representation is attained when
e(q, θ(k)) and m(q, θ(k)) are right coprime, i.e. there exists no right common factor
between e(q, θ(k)) and m(q, θ(k)).

Lemma 5.5. The realization of

h(q, θ(k)) = a−1(q, θ(k))b(q, θ(k)) = m(q, θ(k))e−1(q, θ(k))

in reachable form is minimal if and only if e(q, θ(k)) and m(q, θ(k)) are right coprime.
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Example 5.3 [Reachable form] Consider the same input-output system as in Example 5.2:

(q2 + e−kq + k2)y(k) = (kq + 1)u(k).

Using (5.22), we must find p2(q, θ(k)) and p4(q, θ(k)) such that

a(q, θ(k))p2(q, θ(k)) = b(q, θ(k))p4(q, θ(k)).

In this example we have

e(q, θ(k)) = e2(θ(k))q2 + e1(θ(k))q + e0(θ(k))

m(q, θ(k)) = m1(θ(k))q + m0(θ(k))

with

e0(θ(k)) =
(k3 − k2)

[
−k4 + 7k3 − 17k2 + (17k + e−(k−2))k − 7− 3e−(k−2)

]
(k − 3)

[
−k4 + 3k3 + 2k2 + e−(k−1)k − 2e−(k−1) − 1

]
e1(θ(k)) =

(k − 1)
[
−e−(k−1)k4 + (4 + 3e−(k−1))k2 + (1 + 2e−(k−1) + e−ke−(k−1))k − e−k − 2e−ke−(k−1)

]
(k − 2)

[
−k4 − k3 + k2 + (1 + e−k)k − 1− e−k

]
e2(θ(k)) = 1

m0(θ(k)) =
k2

[
−k4 + 7k3 − 17k2 + (17k + e−(k−2))k − 7− 3e−(k−2)

]
−k5 + 6k4 − 11k3 + (6 + e−(k−1))k2 + (−1− 5e−(k−1))k + 3

m1(θ(k)) = 1

The state-space representation is then[
x1(k + 1)
x2(k + 1)

]
=

[
0 1

−e0(θ(k)) −e1(θ(k))

] [
x1(k)
x2(k)

]
+

[
0
1

]
u(k)

y(k) =
[
m0(θ(k)) m1(θ(k))

] [x1(k)
x2(k)

]

�

It has to be mentioned that in the above example, the system matrices A(θ(k))
and c(θ(k)) contain dynamic dependence on scheduling parameters even if the orig-
inal LPV input-output system has static dependence. This happens because of the
noncommutative property of the operator q in the transformation process.

5.4 Extension to MIMO Systems

To extend the ideas in the previous section to MIMO systems, all concepts concerning
the skew ring have to be extended to matrices.



74 Chapter 5. State-Space Realization of LPV Input-Output Models

5.4.1 Skew Polynomial Matrices

A skew polynomial matrix is a matrix with skew polynomial elements in K(q). The
definitions below are adopted from [Ylinen and Zenger, 1992].

Definition 5.6 (Unimodular matrix ). A skew polynomial matrix P (q, θ(k)) is uni-
modular if P−1(q, θ(k)) exists and is a skew polynomial matrix.

Definition 5.7 (row (column) equivalent). Two skew polynomial matrices A(q, θ(k)),
B(q, θ(k)) are row(column) equivalent if there is a unimodular matrix P (q, θ(k)) such
that A(q, θ(k)) = P (q, θ(k))B(q, θ(k)) A(q, θ(k)) = B(q, θ(k))P (q, θ(k)).

Definition 5.8 (greatest common left (right) divisor). A skew polynomial matrix
L(q, θ(k)) is a greatest common left divisor (GCLD) of A(q, θ(k)), B(q, θ(k)) if

A(q, θ(k)) = L(q, θ(k))A1(q, θ(k)), B(q, θ(k)) = L(q, θ(k))B1(q, θ(k))

and if

A(q, θ(k)) = M(q, θ(k))A2(q, θ(k)), B(q, θ(k)) = M(q, θ(k))B2(q, θ(k)).

Then L(q, θ(k)) = M(q, θ(k))L1(q, θ(k)). A greatest common right divisor (GCRD) is
defined correspondingly.

Definition 5.9. Two skew polynomial matrices A(q, θ(k)), B(q, θ(k)) are left (right)
coprime if I is a GCLD (GCRD) of A(q, θ(k)) and B(q, θ(k)), where I denotes the
identity matrix with an appropriate dimension.

Elementary Operations

Skew polynomial matrices can be brought to row and column equivalent forms using
the elementary operations :

i. T
r(c)
ij (a(q, θ(k))), addition of the jth row (column) multiplied from the left (right)

by a(q, θ(k)) to the ith row (column).

ii. U
r(c)
ij , interchange of the ith and jth rows (columns)

iii. Vi(c(q, θ(k)))r(c) , multiplication of the ith row (column) from the left (right) by
c(q, θ(k)).

Vi(c(q, θ(k))) is unimodular if c(q, θ(k)) is an invertible skew polynomial, i.e. if c(q, θ(k)) =
c0 a nonzero constant value. Then V −1

i (c(q, θ(k))) = Vi(c
−1(q, θ(k))).

5.4.2 MIMO Observable Form

In Examples 5.3 and 5.2 , it is clear that transforming a system into the state-space
observable form is much easier than into the state-space reachable form. From practi-
cal point of view the observable form is more preferred because it does not contain any
dynamic dependence on the scheduling parameters. Moreover, the transfer operator ob-
tained from the LPV state-space model in observable form is in Left Matrix Fractional
Description (LMFD)† as in the LPV input-output model, i.e. Ã−1(q, θ(k))B̃(q, θ(k)).

†Matrix form of LFD form.
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For this reason, in MIMO cases, we consider only the observable form.
A MIMO LPV input-output system given by

H(q, θ(k)) = Ã−1(q, θ(k))B̃(q, θ(k)) (5.23)

and

Ã(q, θ(k)) =

 Ã11(q, θ(k)) Ã12(q, θ(k)) · · · Ã1ny(q, θ(k))
...

...
. . .

...

Ãny1(q, θ(k)) Ãny2(q, θ(k)) · · · Ãnyny(q, θ(k))


B̃(q, θ(k)) =

 B̃11(q, θ(k)) · · · B̃1nu(q, θ(k))
...

. . .
...

B̃ny1(q, θ(k)) · · · B̃nynu(q, θ(k))

 ,
where

Ãij(q, θ(k)) =

{
qnai + qnai−1ãij,nai−1(θ(k)) + · · ·+ qãij,1(θ(k)) + ãij,0(θ(k)) , i = j

qnaj−1ãij,naj−1(θ(k)) + · · ·+ qãij,1(θ(k)) + ãij,0(θ(k)) , i 6= j

B̃ij(q, θ(k)) = qnbj b̃ij,nbj(θ(k)) + qnbj−1b̃ij,nbj−1
(θ(k)) + · · ·+ qb̃ij,1(θ(k)) + b̃ij,0(θ(k))

Using a realization framework for LTI systems [Antsaklis and Michel, 2006], the Ao(θ(k)),
Bo(θ(k)), and Co(θ(k)) matrices of the MIMO state-space model in observable form are
given by

x(k + 1) = Ão(θ(k))x(k) + B̃o(θ(k))u(k),

y(k) = C̃o(θ(k))x(k),
(5.24)

and

Ão(θ(k)) = Āo + Ap(θ(k))C̄o, C̃o(θ(k)) = C̃p(θ(k))C̄o, (5.25)

where Āo = block diag[A1, A2, . . . , Any ] with

Ai =


0 · · · 0 0

0

Inai−1
...

0

 ∈ Rnai×nai ,

C̄0 = block diag([0, . . . , 0, 1] ∈ R1×nai, i = 1, . . . , ny),

where B̃o(θ(k)) is the matrix of the coefficients of the lower row degree terms of
B̃(q, θ(k)) corresponding to the highest row degree coefficient matrix of Ã(q, θ(k)).
The matrices Ãp(θ(k)), C̃p(θ(k)) are defined by

C̃p(θ(k)) = A−1
h (θ(k)), Ãp(θ(k)) = −Al(θ(k))A−1

h (θ(k)) (5.26)

where Ah(θ(k)) is the highest row degree coefficient matrix of Ã(q, θ(k)) and Al(θ(k))
is the matrix of coefficients of the lower row degree terms of Ã(q, θ(k)).
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Example 5.4 [Row degree coefficient matrix ] If

Ã(q, θ(k)) =

[
q2(3θ(k)) + θ(k) q(2θ(k))

q(2θ(k)) q

]
, B̃(q, θ(k)) =

[
q(2θ(k)) θ(k)

3θ(k) 1

]
then we have

Ah(θ(k)) =

[
3θ(k) 0
2θ(k) 1

]
, AT

l (θ(k)) =

[
θ(k) 0 0

0 2θ(k) 0

]
,

and

B̃To (θ(k)) =

[
0 2θ(k) 3θ(k)

θ(k) 0 1

]
.

�

To see that the matrices defined above are the observable realization matrices of
the system (5.23), one can start by defining

S̆(q) = block diag{[1, q, . . . , qnai−1], i = 1, . . . , ny}, (5.27)

and let qn̄ai be the row ith highest degree of Ã(q, θ(k)). Next define

Λ̃(q) = diag{qn̄a1 , qn̄a2 , . . . , qn̄any}. (5.28)

With S̆(q) and Λ̃(q), we then have

Ã(q, θ(k)) = Λ̃(q)Ah(θ(k)) + S̆(q)Al(θ(k)) (5.29)

and

B̃(q, θ(k)) = S̆(q)B̃o(θ(k)). (5.30)

By multiplying S̆(q) from the right with
[
qI − Ão(θ(k))

]
, we obtain

S̆(q)
[
qI − Ão(θ(k))

]
= S̆(q)

[
qI − Āo

]
− S̆(q)Ap(θ(k))C̄o

=
[
Λ̃(q)− S̆(q)Ap(θ(k))

]
C̄o

=
[
Λ̃(q) + S̆(q)Al(θ(k))A−1

h (θ(k))
]
C̄o

=
[
Λ̃(q)Ah(θ(k)) + S̆(q)Al(θ(k))

]
A−1
h (θ(k))C̄o

= Ã(q, θ(k))A−1
h (θ(k))C̄o = Ã(q, θ(k))C̃o(θ(k)).
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The last line comes from the fact that C̃o(θ(k)) = A−1
h (θ(k))C̄o.

Rewriting the above equation, we have

Ã−1(q, θ(k))S̆(q) = C̃o(θ(k))
[
qI − Ão(θ(k))

]−1
. (5.31)

Multiply B̃(θ(k)) from the right of both sides to obtain

Ã−1(q, θ(k))B̃o(q, θ(k)) = C̃o(θ(k))
[
qI − Ão(θ(k))

]−1
B̃(θ(k)). (5.32)

The equation (5.32) shows the equivalence of a MIMO LPV input-output representation
and the state-space realization in observable form. One can summarize the above result
in the following lemma.

Lemma 5.6. The system {Ão(θ(k)), B̃o(θ(k)), C̃o(θ(k)), D̃o(θ(k))} defined above is an
na (=

∑ny
i=1 nai)-th-order observable realization of H(q, θ(k)) with (Ao(θ(k)), Co(θ(k)))

in observable form.

The following example is adapted from an LTI example in [Kailath, 1980, pp. 416].

Example 5.5 [MIMO Observable form] Suppose we have an LPV input-output model in
LPR form described in term of a transfer operator

H̃(q, θ(k)) = Ã−1(q, θ(k))B̃(q, θ(k)),

where

Ã(q, θ(k)) =

[
q3 + q2(4θ(k)) + q(5θ(k)) + (2θ(k)) q + (2θ(k))

0 q2 + q(4θ(k)) + (4θ(k))

]
B̃(q, θ(k)) =

[
0 −q2

−q −q

]
.

We can see that na1 = 3 and na2 = 2. Then the order of the state-space model is 5. The
highest-row-degree coefficient matrix is

Ah(θ(k)) =

[
1 0
0 1

]
and A−1

h (θ(k)) =

[
1 0
0 1

]
while

Λ̃(q) =

[
q3 0
0 q2

]
, S̆(q) =

[
1 q q2 0 0

0 0 0 1 q

]
,

AT
l (θ(k)) =

[
2θ(k) 5θ(k) 4θ(k) 0 0

2θ(k) 1 0 4θ(k) 4θ(k)

]
,

B̃To (θ(k)) =

[
0 0 0 0 −1

0 0 −1 0 −1

]
.
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Hence

ÃT
p (θ(k)) = [−Al(θ(k))A−1

h (θ(k))]T =

[
−2θ(k) −5θ(k) −4θ(k) 0 0

− 2θ(k) −1 0 −4θ(k) −4θ(k)

]
.

Using the above construction, we obtain

Ão(θ(k)) =


0 0 −2θ(k) 0 −2θ(k)
1 0 −5θ(k) 0 −1
0 1 −2θ(k) 0 0

0 0 0 0 −4θ(k)
0 0 0 1 −4θ(k)

 , B̃o(θ(k)) =


0 0
0 0
0 −1

0 0
−1 −1


C̃o(θ(k)) =

[
0 0 1 0 0

0 0 0 0 1

]
.

�

As in the SISO case, the minimal order of the state-space realization occurs when
Ã(q, θ(k)) and B̃(q, θ(k)) are left coprime.

5.4.3 Minimal Realization

Similar to an LTI case discussed in [Antsaklis and Michel, 2006], if Ã(q, θ(k)) and
B̃(q, θ(k)) are not left coprime, the minimal realization cannot be guaranteed. In order
to obtain a minimal realization the GCLD has to be extracted from Ã(q, θ(k)) and
B̃(q, θ(k)). If Ã(q, θ(k)) and B̃(q, θ(k)) are not left coprime, they can be considered as

Ã(q, θ(k)) = L(q, θ(k))Ã∗(q, θ(k))

and

B̃(q, θ(k)) = L(q, θ(k))B̃∗(q, θ(k)),

where L(q, θ(k)) is a GCLD of Ã(q, θ(k)) and B̃(q, θ(k)).
Then we have

H(q, θ(k)) = (L(q, θ(k))Ã∗(q, θ(k)))−1(L(q, θ(k))B̃∗(q, θ(k)))

= Ã∗
−1

(q, θ(k))B̃∗(q, θ(k))

and the degree n =
∑ny

i nai of Ã∗(q, θ(k)) is definitely less than or equal to that of
Ã(q, θ(k)) and the realization is minimal.

The GCLD of two skew polynomial matrices Ã(q, θ(k)) and B̃(q, θ(k)) can be ob-
tained using row and column operations to transform the matrix

[
Ã(q, θ(k)) B̃(q, θ(k))

]
into Hermite form or Jacobson form – the time-varying version of the Smith form
[Zerz, 2007] – and using the following lemma which is extended from the LTI version
in [Antsaklis and Michel, 2006].
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Lemma 5.7. Let P1(q, θ(k)) ∈ K(q)m×n1 and P2(q, θ(k)) ∈ K(q)m×n2 with n1+n2 ≥ m.
Let the unimodular U(q, θ(k)) be such that[

P1(q, θ(k)) P2(q, θ(k))
]
U(q, θ(k)) =

[
L(q, θ(k)) 0

]
Then L(q, θ(k)) is a GCLD of P1(q, θ(k)), P2(q, θ(k)). Moreover if L(q, θ(k)) is a
unimodular matrix, then P1(q, θ(k)) and P2(q, θ(k)) are left coprime.

Proof. The proof is similar to in the LTI case [Antsaklis and Michel, 2006] and therefore
omitted.

The following example shows how to use the above algorithm to reduce the maxi-
mum order of the polynomials in the elements of the system matrices.

Example 5.6 [Minimal Realization] Consider an LPV input-output system described by
the following two matrices

Ã(q, θ(k)) =

[
q + θ(k) −1

−θ(k + 1)q − θ(k + 1)θ(k)− θ(k) q + 1 + θ(k + 1)

]
, B̃(q, θ(k)) =

[
−1
0

]
,

then[
Ã(q, θ(k)) B̃(q, θ(k))

]
=

[
q + θ(k) −1 −1

−θ(k + 1)q − θ(k + 1)θ(k)− θ(k) 1
k q + 1 + θ(k + 1) 0

]
.

Using column operations, the Jacobson form is

[
Ã(q, θ(k)) B̃(q, θ(k))

]
=

[
1 0 0
0 q + 1 + θ(k + 1) 0

]
.

Hence a GCLD is

L(q, θ(k)) =

[
1 0
0 q + 1 + θ(k + 1)

]
,

and a unimodular matrix which can be used to transform the original above matrix to the
Jacobson form is

U(q, θ(k)) =

 0 0 1
0 1 θ(k)
−1 −1 q

 .
Left coprime matrices Ã∗(q, θ(k)), B̃∗(q, θ(k)) can be found from the corresponding rows of

U−1(q, θ(k)) =

q + θ(k) −1 −1
−θ(k) 1 0

1 0 0


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and finally we have

Ã∗(q, θ(k)) =

[
q + θ(k) −1
−θ(k) 1

]
, B̃∗(q, θ(k)) =

[
−1
0

]
.

It is clear that the maximum order of the polynomial in the second row of Ã(q, θ(k)) is
reduced by one. If we transform this system by using Ã∗(q, θ(k)) and B̃∗(q, θ(k)) into state-
space form, the order of the system according to the second row output will be less than
using the original input-output system matrices.

�

From the above simple example, it seems that the procedure in Section 5.4.3 can be
implemented practically. However, in practice, the higher the maximum row degree, the
more complicated the unimodular matrix. This happens even when using a symbolic
computing program like Maple. The unimodular matrix which is used to extract the
left coprime matrix of Ã(q, θ(k)) and B̃(q, θ(k)) is too intricate when the maximum
row degree of Ã(q, θ(k)) is greater than 1.

Fortunately, the realization method described in the previous section can be ap-
plied to the identification input-output models. If the identifiability of the input-output
model is given, the left coprimeness of Ã(q, θ(k)) and B̃(q, θ(k)) is automatically guar-
anteed [Ljung, 1999].

5.5 Application to LPV Input-Output System Iden-

tification

In the LTI case, most of input-output model structures are constructed using poly-
nomials in the RPR form. This is also widely used for LPV systems, e.g. [Bamieh
and Giarré, 2002; Wei, 2006]. With this configuration, the realization always contains
dynamic parameter dependence in the LPV state-space model. This issue has been in-
vestigated by Tóth et al. [2007]. The problem is revisited by Tóth et al. [2011], where
three types of input-output model structures for identification are proposed to solve the
problem. Here we extend the idea by considering the structure of the so called shifted
form in [Abbas et al., 2010b], which is equivalent to the LPR in the previous section.
The left- and right representations are preferred since they can be used to categorize
representations better than the shifted form. By using the skew polynomial concept
and the realization procedures described before, we can develop a framework for state-
space realization based on LPR structure, and the equivalence between a state-space
realization and a input-output representation can be shown. Furthermore, if the order
of the skew polynomials in A(q, θ(k)) and B(q, θ(k)) follow the criteria of identifiabil-
ity given in [Ljung, 1999], one can expect that there are no common factors between
A(q, θ(k)) and B(q, θ(k)), i.e. A(q, θ(k)) and B(q, θ(k)) are left coprime. Therefore, an
observable form is always minimal.
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5.5.1 Identifiability of Model Structures

In this section we discuss the equivalence of the left coprimeness of Ã(q, θ(k)) and
B̃(q, θ(k)) and the identifiability concept. In the following, G(q, θ(k),P) denotes the
transfer operator of the plant and H(q, θ(k),P) denotes the transfer operator of the
noise model. The following definition is general for all SISO and MIMO systems.

Definition 5.10 (Identifiability [Gevers et al., 2009; Ljung, 1999]). A model structure
{G(q, θ(k),P), H(q, θ(k),P)} with a parameter domain P ⊂ RnP is called locally
identifiable at a parameter value P1 ∈ P, if ∃δ > 0 such that for all P ∈ P with
‖P−P1‖ ≤ δ, the corresponding one-step-ahead predictors are distinguishable:

H(q, θ(k),P) = H(q, θ(k),P1) (5.33)

and

H−1(q, θ(k),P)G(q, θ(k),P) = H−1(q, θ(k),P1)G(q, θ(k),P1)

⇒ P = P1.
(5.34)

The model structure {G(q, θ(k),P), H(q, θ(k),P)} is called globally identifiable at
P1 if it is locally identifiable at P with δ →∞. Moreover,

{G(q, θ(k),P), H(q, θ(k),P)}

is called globally identifiable if it is globally identifiable at all P ∈P.

For an LPV-ARX model structure, we have

G(q, θ(k),P) = A−1(q, θ(k),P)B(q, θ(k),P), H(q, θ(k),P) = A−1(q, θ(k),P).

In this case, the equality of H(q, θ(k),P) and H(q, θ(k),P1) implies that A(q, θ(k),P)
and A(q, θ(k),P1) are equivalent and B(q, θ(k),P) and B(q, θ(k),P1) must coincide
to make G(q, θ(k),P) equal. This means that (5.33) holds for all P1 in the LPV-
ARX model structure. Moreover, since a common factor between A(q, θ(k),P) and
B(q, θ(k),P) must not exist [Ljung, 1999], the left coprimeness of A(q, θ(k),P) and
B(q, θ(k),P) is obtained.

Other model structures, e.g. LPV-OE, LPV-BJ, are not always identifiable. To
satisfy the identifiability condition, the orders of all polynomials inside the model
matrices have to be selected with care, see [Ljung, 1999].
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5.5.2 LPV Input-Output Models Identification in Left
Polynomial Representation

SISO Case

An LPV-ARX input-output model in LPR form is described as

y(k) +
na∑
i=1

q−iãna−i(θ(k))y(k) =

nb∑
j=0

q−(d+j)b̃nb−j(θ(k))u(k), (5.35)

where ãi(θ(k)) and b̃i(θ(k)) are defined on K, and na ≥ nb + d.

Without loss of generality assume d = 1 and na = nb + d. Multiplying both sides
from the left with qna , we obtain

qnay(k) +
na∑
i=1

qna−iãna−i(θ(k))y(k) =
na−1∑
j=0

qna−(j+1)b̃na−1−j(θ(k))u(k),

hence

[
qnay(k) + qna−1ãna−1(θ(k)) + · · ·+ qã1(θ(k)) + ã0(θ(k))

]
y(k) =[

qna−1b̃na−1(θ(k)) + qna−2b̃na−2(θ(k)) + · · ·+ qb̃1(θ(k)) + qb̃0(θ(k))
]
,

and

ã(q, θ(k))y(k) = b̃(q, θ(k))u(k).

It is clear that b̃na(θ(k)) = 0 since the system is strictly proper. Moreover there is
no common factor between ã(q, θ(k)) and b̃(q, θ(k)) since we identify it in LPV-ARX
structure. Now using a procedure described in Section 5.3.1 we can obtain a state-space
LPV representation in observable form as

xk(k + 1) =


0 · · · 0 −ã0(θ(k))
1 · · · 0 −ã1(θ(k))
...

. . .
...

...
0 · · · 1 −ãna−1(θ(k))

x(k) +


b̃0(θ(k))

b̃1(θ(k))
...

b̃na−1(θ(k))

u(k)

y(k) =
[
0 0 · · · 0 1

]
x(k).

(5.36)

and this state-space representation is minimal.
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MIMO case

An LPV-ARX input-output model in LPR form is described as

y1(k) = −
na1∑
i=1

q−iã1,na1−i(θ(k))y1(k)−
na2∑
i=1

q−iã1,na2−i(θ(k))y2(k)− · · ·

−
nany∑
i=1

q−iã1,nany−i(θ(k))yny(k) +

nb1∑
j=0

q−(d+j)b̃1,na1(θ(k))u1(k) + · · ·

+

nbny∑
j=0

q−(d+j)b̃1,nbny
(θ(k))unu(k)

...

yny(k) = −
na1∑
i=1

qna1−iãny ,na1−i(θ(k))y1(k)−
na2∑
i=1

qna2−iãny ,na2−i(θ(k))y2(k)− · · ·

−
nany∑
i=1

qnany−iãny ,nany−i(θ(k))yny(k) +

nb1∑
j=0

qnb1 b̃ny ,na1(θ(k))u1(k) + · · ·

+

nbny∑
j=0

qnbny b̃ny ,nbny (θ(k))unu(k),

(5.37)

where ãi(θ(k)) and b̃i(θ(k)) are defined on K, and nai ≥ nbi + d.
Again without lost of generality, assume d = 1 , nai = na, nbi = nb and na = nb+d.

Rewrite (5.37) in matrix form and multiply both sides with

Λ̃(q) =

q
na1 · · · 0

0
. . . 0

0 · · · qnany

 .
Then we have

H̃(q, θ(k)) = Ã−1(q, θ(k))B̃(q, θ(k)), (5.38)

where

Ã(q, θ(k)) =

 Ã11(q, θ(k)) Ã12(q, θ(k)) · · · Ã1ny(q, θ(k))
...

...
. . .

...

Ãny1(q, θ(k)) Ãny2(q, θ(k)) · · · Ãnyny(q, θ(k))


B̃(q, θ(k)) =

 B̃11(q, θ(k)) · · · B̃1nu(q, θ(k))
...

. . .
...

B̃ny1(q, θ(k)) · · · B̃nynu(q, θ(k))

 ,



84 Chapter 5. State-Space Realization of LPV Input-Output Models

and

Ãij(q, θ(k)) =

{
qnai + qnai−1ãij,nai−1(θ(k)) + · · ·+ qãij,1(θ(k)) + ãij,0(θ(k)) , i = j

qnaj−1ãij,naj−1(θ(k)) + · · ·+ qãij,1(θ(k)) + ãij,0(θ(k)) , i 6= j

B̃ij(q, θ(k)) = qnbj b̃ij,nbj(θ(k)) + qnbj−1b̃ij,nbj−1
(θ(k)) + · · ·+ qb̃ij,1(θ(k)) + b̃ij,0(θ(k)).

With the method in Section 5.4, we can transform the LPV input-output model into
a state-space form that is minimal, i.e. Ã(q, θ(k)) and B̃(q, θ(k)) are left coprime.

Example 5.7 [MIMO Realization] Consider an input-output model identified in LPR form

y1(k) = q−1ã111(θ(k))y1(k) + q−2ã112(θ(k))y1(k) + q−1ã121(θ(k))y2(k) + q−2ã122(θ(k))y2(k)

+ q−1b̃11(θ(k))u1(k) + q−2b̃12(θ(k))u2(k)

y2(k) = q−1ã211(θ(k))y1(k) + q−1ã221(θ(k))y2(k) + q−1b̃21(θ(k))u1(k).

Rewrite the above system in matrix form and multiply both sides with

Λ̃(q) =

[
q2 0
0 q

]
.

We have[
q2 − qã111(θ(k))− ã112(θ(k)) −qã121(θ(k))− ã122(θ(k))

−ã211(θ(k)) q − ã221(θ(k))

] [
y1(k)
y2(k)

]
=

[
qb̃11(θ(k)) b̃12(θ(k))

b̃21(θ(k)) 0

] [
u1(k)
u2(k)

]
.

With,

Ah(θ(k)) = A−1
h (θ(k)) =

[
1 0
0 1

]
and,

S̆(q) =

[
1 q 0

0 0 1

]
, AT

l (θ(k)) =

[
−ã112(θ(k)) −ã111(θ(k)) −ã211(θ(k))

− ã122(θ(k)) −ã121(θ(k)) −ã221(θ(k))

]

B̃To (θ(k)) =

[
0 b̃11(θ(k)) b̃21(θ(k))

b̃21(θ(k)) 0 0

]
, C̃o(θ(k)) =

[
0 1 0

0 0 1

]

hence

ÃT
p (θ(k)) = [−Al(θ(k))A−1

h (θ(k))]T = −AT
l (θ(k))
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and using the above construction, we get

Ão(θ(k)) =

 0 −ã112(θ(k)) −ã122(θ(k))
1 −ã111(θ(k)) −ã121(θ(k))

0 −ã211(θ(k)) −ã221(θ(k))

 , B̃o(θ(k)) =

 0 b̃21(θ(k))

b̃11(θ(k)) 0

b̃21(θ(k)) 0


C̃o(θ(k)) =

[
0 1 0

0 0 1

]
.

�

It should also be mentioned that, by doing the identification with all polynomials in
LPR structure and using the proposed realization algorithm, the resulting state-space
model will not contain any dynamic dependence. This is a clear benefit of this method
because the more dynamically dependent parameters the state-space model contains,
the more scheduling parameters have to be defined [Kwiatkowski et al., 2006b], i.e.
θ(k) and θ(k+ 1) are considered as different parameters, and the model is not suitable
for LPV controller synthesis methods.

5.6 Conclusion

The noncommutativity issue of the shift operator acting on the scheduling signal plays
an important role in the realization theory of LPV systems. Ignoring this property,
the resulting state-space model may not be equivalent to the original LPV input-
output model. With the help of skew polynomials, this problem can be solved by
separating the LPV input-output structure into RPR and LPR. We show that with
a slight modification, we can use a LTI realization procedure to transform an LPV
input-output representation into reachable or observable state-space form, without
violating the commutative rule. Furthermore, using the LPV identification in LPR
form with an identifiable model structure like LPV-ARX, a minimal state-space model
in observable form is obtained that does not contain any dynamic dependence. The
proposed algorithm can be used for both SISO and MIMO systems.

Finally, the identification of LPV-ARX models with polynomial in LPR structure
and the observable state-space model construction are systematic. This framework has
been developed as a Malab toolbox and it is used in experimental applications will be
shown in the next chapter.
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Chapter 6

Identification for LPV Control of
Nonlinear Plants – Applications

The identification of global LPV input-output models has been introduced by Bamieh
and Giarré [2002]. In spite of the advantages of this method, there are until now only
very few reports of applications to controller design. Practical LPV control design
typically relies on different techniques: e.g. a neural network based LPV state-space
model applied to an arm-driven inverted pendulum plant [Lachhab et al., 2008], in-
terpolation of the frequency response of local linear models applied to wafer steppers
[Steinbuch et al., 2003; Wassink et al., 2005], grey-box identification applied to the
boost pressure of a diesel engine [Wei and del Re, 2007], etc. One reason for the rare
application of LPV input-output identification was revealed by [Tóth et al., 2007]: the
conversion from an LPV input-output model to an LPV state-space model may lead
to an incorrect model.

This chapter shows that the identification and realization techniques proposed in
Chapter 3 and Chapter 5 can be used in real applications. For this purpose, a Matlab
toolbox LIDT was developed ‡. The toolbox is applied to two experimental plants:
a magnetic levitation system [Parks, 1999] and the arm driven-inverted pendulum
(ADIP) [Quanser Consulting Inc., 1993] considered in Chapter 3. Both models are
identified in the quasi-LPV input-output structure with all polynomials in LPR form.
The models are then transformed into LPV state-space models in observable form,
which is then used for LPV controller design. The LPV controller design method
used in this chapter is a technique based on dilated Linear Matrix Inequalities (LMIs)
described for LTI systems in [de Oliveira et al., 2002] and for LPV systems in [Ali and
Werner, 2011].

The magnetic levitation plant is operated at an open-loop stable equilibrium. There-
fore the open-loop identification scheme can be used. The obtained model can be di-
rectly used for designing an LPV controller. On the other hand, the ADIP system is
open-loop unstable as explained in Chapter 3. The closed-loop identification method
has to be used. Closed-loop identification with the objective of designing a controller

‡LIDT stands for Left polynomial representation LPV input-output system IDentification Toolbox.
The interested reader can contact the author via boonto@tu-harburg.de
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is more involved, especially when an LPV controller is to be designed. In this case,
the estimated model must be stabilized by the controller that is used for identifica-
tion, otherwise it cannot be used for the design of a better controller [Codrons, 2005].
The estimated LPV input-output model can be evaluated by the closed-loop time do-
main response and the ν-gap metric. The latter is a framework for assessing model
uncertainty of LTI systems in terms of closed-loop performance [Vinnicombe, 1993a].
However, there is no LPV version of the ν-gap metric. To use this tool for LPV sys-
tems, one can freeze the system at suitable scheduling values and calculate the ν-gap.
This idea has been used in [Fujimori and Ljung, 2005; Wood, 1995], but no connec-
tion was made between system identification and controller design. Here we measure
the quality of the identified LPV models by comparing the ν-gap and the generalized
stability margin of the identified model (see [Vinnicombe, 1993b]). The ν-gap between
the frozen LPV models and the model used to design a controller for identification has
to be less than the generalized stability margin of the identified model for all values of
the scheduling parameters over the considered range. An LPV model which satisfies
this criterion, can be used to design a controller that gives better results than the one
used for identification.

The contents of this chapter are as follows. In Section 6.1 some basic concepts
of model validation using the ν-gap metric are reviewed. Application to experimental
identification and closed-loop control of a magnetic levitation system and an arm driven
inverted pendulum are discussed in Section 6.2 and Section 6.3, respectively.

6.1 ν-Gap and Model Validation for Control

The ν-gap metric and related analysis tools are briefly reviewed in this section.

Consider a closed-loop system made up of the feedback interconnection of a LTI
system G and a LTI controller K; see Figure 6.1. The closed-loop transfer function
matrix T (G,K) from [rT1 (k) rT2 (k)]T to [yT (k) uT (k)]T is

G

K

y(k)

r1(k)

u(k)r2(k)

−

Figure 6.1: Closed-loop system

T (G,K) =

[
K(I +GK)−1G K(I +GK)−1

(I +GK)−1G (I +GK)−1,

]
. (6.1)
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Definition 6.1 (generalized stability margin [Vinnicombe, 1993a]). The generalized
stability margin of the closed-loop system in Figure 6.1 is defined as

bGK =

{
‖T (G,K)‖−1

∞ if T (G,K) is stable,

0 otherwise.
(6.2)

Thus, the generalized stability margin of the closed-loop system takes its values
between 0 and 1; the higher this value, the better the stability margin.

In the case of a two-degrees-of-freedom (2-DOF) control configuration as shown in
Figure 6.2, a controller is split into two parts K1 and K2. K1 acts as a feedforward
prefilter of the reference signal while K2 ensures robust stability. To compute the
generalized stability margin (6.2), the feedforward part is excluded since it is not related
to stability.

[K1 K2] G
y(k)

r2(k)

r1(k)

Figure 6.2: 2-DOF control configuration

The ν-gap metric has been proposed by Vinnicombe [1993a,b] to measure the dis-
tance between two continuous-time transfer matrices G1 and G2, and is defined as
follows.

Definition 6.2 (ν-gap metric). The ν-gap between two transfer matrices G1 and G2,
denoted by δν , is defined as

δν(G1, G2) =


‖κ(G1(ejω), G2(ejω))‖∞ if det Ξ(jω) 6= 0 ∀ω

and wno(det(Ξ(s))) = 0

1 otherwise ,

(6.3)

where

• Ξ(s) , N∗2 (s)N1(s) +M∗
2 (s)M1(s);

• κ(G1(jω), G2(jω) , −Ñ2(jω)M1(jω) + M̃2(jω)N1(jω) is called the chordal dis-
tance between G1 and G2 at frequency ω;

• G1(s) = N1(s)M−1(s) and G2(s) = N2(s)M−1
2 = M̃−1

2 (s)Ñ2(s) are normalized
coprime factorizations of G1 and G2;

• wno(G(s)) = η(G−1(s)) − η(G(s)) is called the winding number of the transfer
function G(s) and is defined as the number of counterclockwise encirclements
around the origin of the Nyquist contour of G(s) indented to the right of any
imaginary axis pole of G(s);
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• η(G(s)) denotes the number of poles of G(s) in C+
0 .

The ν-gap has a value between 0 and 1; the smaller the value, the closer the two
models. If the models are close then a controller designed for one system will work
with the other one as well. The definition can be applied to discrete-time system by
means of the bilinear transformation s = z−1

z+1
.

For closed-loop system identification, the data is collected in closed-loop in which
the unknown true system G0 is stabilized by a controller Kid, and an estimate Ĝ of G0

is obtained. It is obvious that the closed-loop system (Ĝ,Kid) must be stable since the
actual closed-loop system (G0, Kid) is stable. What is required is that G0 and Ĝ are
“close to each other” in a closed-loop sense, i.e., ‖T (G0, Kid) − T (Ĝ,Kid)‖∞ must be
small, where T is the closed-loop transfer matrix. Instead of directly computing the
norm value, it is more convenient to use the ν-gap [Codrons, 2005]. In this case, the
ν-gap metric between G0 and Ĝ must be less than the stability margin bĜ,Kid or

δν(G0, Ĝ) < bĜ,Kid . (6.4)

If the distance between δν(G0, Ĝ) and bĜ,Kid is small, it will be very difficult or im-

possible to design a new controller K based on Ĝ with a better performance on G0.
In practice, bG0,Kid is unknown. One possible solution is to replace it by an estimated
bGid,Kid where Gid is a nominal model used to design Kid to stabilized G0 [Codrons,
2005].

6.2 Application to Magnetic Levitation System

In this Section, we show an application of LPV input-output identification using the
LPV-ARX model structure with polynomials in LPR structure to a magnetic levitation
plant. The magnetic levitation plant used in this chapter is manufactured by Education
Control Product (ECP) [Parks, 1999]. The plant is shown in Figure 6.3: two magnetic
coils can be used to control the position of two magnetic disks. Control inputs are
the currents in the upper and lower coil, respectively, and the feedback signals are the
positions of the upper and lower disk, measured by laser sensors [Parks, 1999].

6.2.1 Physical Plant Model

Figure 6.3b shows a free body diagram of the two suspended magnetic disks, from
which the equations of motion of the system can be derived as

mÿ1 + c1ẏ1 = Fu11(y1, ii)− Fm12(y1, y2)− Fu21(y1, i2)−mg (6.5a)

mÿ2 + c2ẏ2 = Fu22(y2, i2)− Fu12(y1, i1)−mg, (6.5b)

where y1, y2 are the disk positions; yc is considered fixed, Fu11 and Fu22 are the magnetic
forces generated by the input current i1 acting on the lower disk, and by i2 acting on the
upper disk, respectively. Fm12 is the magnet-to-magnet force between the disks, and
Fu21 , Fu12 represent cross-coupling, i.e. the coil-to-magnet forces between lower coil and
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Figure 6.3: Magnetic levitation System

upper disk, and upper coil and lower disk, respectively c1 and c2 are friction coefficients.
The system is nonlinear due to the nonlinearity in the actuator characteristics, in the
magnet-to-magnet characteristics and also to the nonlinearity of the input and output
sensors.

6.2.2 Experiment Setup

In this experiment, we consider a tracking problem to move the disks up and down to
several positions. The nonlinearity of the plant is reduced by using the approximated
inverse characteristic model [Parks, 1999]. To obtain the data for identification, the
upper and lower disks are initially set up at 3 cm from the upper coil and 1.5 cm from
the lower coil, respectively. This is done by passing offset currents to both upper and
lower coils. With this offset current, the plant can be considered as locally open loop
stable when the disks move up and down a small distance around the operating points.
Multi-sine signals are added to both coils as excitation signals. A data set is collected
at 2 msec sampling time and the data is filtered by a 60 Hz low pass filter to exclude
undesired high frequency noise. A block diagram of the identified plant is shown in the
dashed box in Figure 6.4.

6.2.3 Identification Result and Controller Synthesis

The LPV input-output model in the LPR structure is used to identify the plant model
where na = [ 6 6

6 6 ], nb = [ 6 6
6 6 ] and one sample delay. The scheduling signal is y2 and the

scheduling function is given in the vector form by ψ(y2) =
[
1 y2 y2

2

]
. This selection
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Figure 6.4: Magnetic levitation block diagram for identification.

is done by heuristic search and from the fact that the dynamics of the upper disk is
more nonlinear than that of the lower one. A more systematic method to do this is a
principal component analysis (PCA) method [Kwiatkowski and Werner, 2008].

The obtained model is converted into LPV observable state-space form with the
minimal 12th order. Figure 6.5 shows the cross-validation of the LPV-ARX model
compared with measured output data and a linear ARX model; the ARX model uses
same structure and delay time as the LPV-ARX model. It is clear that the LPV-ARX
model with only two scheduling parameters – y2 and y2

2 – gives a more accurate model
than the linear ARX model.

Since y2 is the only scheduling signal, the resulting polytopic model has two vertices;
one at y2 = 1 cm and the other one at y2 = −1 cm from the operating point. In this
case, system matrices are in observable form and the A(θ(k)) and B(θ(k)) matrices
are parameter dependent in affine form. To make B(θ(k)) satisfy assumptions (A3) in
[Apkarian et al., 1995], an input filter WB is added to the input channels [Apkarian
et al., 1995]. A mixed sensitivity controller design approach is used as shown in Figure
6.6. Weighting filters are chosen at each vertex and given below;

WB =
0.9901z + 0.9901

z + 0.9802

WS,y1 =
0.02(z + 1)

z − 1
, WS,y2=

0.2(z + 1)

z − 1

WK,y1=
9.901× 10−5z

z + 0.9802
, WK,y2=

9.901× 10−4z

z + 0.9802

where WB is an input signal filter and is equal for both channels. WK,y1 , WK,y2 are
used for shaping the control sensitivity and WS,y1 , WS,y2 for the sensitivity at the target
positions. The weighting filters related to position y1 are selected to be low-pass filters
at a lower frequency than that of y2. This is because the movement of the lower disk is
slower than the upper disks by physical construction. A resulting 18th order controller
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Figure 6.6: Generalized plant for LPV controller design

is designed using the dilated LMIs approach described for LTI systems in [de Oliveira
et al., 2002] and for LPV systems in [Ali and Werner, 2011]; it achieves an induced `2

gain of 1.6744. Experimental results with this LPV discrete-time controller are shown
in Figure 6.7. The result is compared with a discrete-time LTI H∞ of order 11 which
is the best controller that can be designed by using a linear model, see [Gürcügǧlu,
2010]. Since the main source of the nonlinearity of the magnetic levitation system has
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been compensated by using an inverse nonlinear function, bothH∞ and LPV controller
give satisfactory results. However, the LPV controller gives better performance than
H∞, especially when we look at each peak of the reference signals, see three bottom
rows of Figure 6.7. The LPV controller has clearly a smoother responses and less
cross-coupling than the LTI controller.

10 15 20
0.5

1

1.5

2

y 1
[c
m
]

 

 

H∞ LPV ref

10 15 20
−4

−3

−2

y 2
[c
m
]

12.5 13 13.5
1.8

1.9

2

2.1

Time[sec]

y 1
[c
m
]

13.5 14 14.5

0.6

0.8

1

y 1
[c
m
]

16.5 17 17.5

1.4

1.6

1.8

Time[sec]

y 1
[c
m
]

11 11.5 12

−2.3

−2.2

−2.1

−2
y 2
[c
m
]

15 15.5 16

−2.35

−2.3

−2.25

−2.2

−2.15

y 2
[c
m
]

17 17.5 18

−4

−3.8

−3.6

y 2
[c
m
]

Time[sec]

Figure 6.7: Tracking response of magnetic disks with H∞ (green) and LPV (blue)
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6.3 Arm-Driven Inverted Pendulum (ADIP)

In this section, the identification of an LPV-ARX model in LPR structure is applied
to the Arm-Driven Inverted Pendulum (ADIP) plant shown in Figure 3.9, which is the
same plant as used in Chapter 3. It should be noted that the LPV-ARX model of this
plant identified in Chapter 3 was obtained for practical reasons with the polynomials
in the RPR format and therefore can not be transformed to an LPV state-space model
having static dependence. The model is not suitable for LPV controller synthesis even
though it can be used for other purposes, for example as a simulation model etc.

In this chapter, the objective of the identification is to use the identified LPV
input-output model Ĝlpv to design an LPV controller that can stabilize the ADIP for a
wider operation range than that of the LTI controller used for identification. For this
objective, we design a the 2-DOF controller to improve the tracking performance of
the closed-loop system [Apkarian et al., 1995]. The closed-loop system configuration
is shown in Figure 6.8. The discrete-time H∞ controller denoted by Kid is designed
by using a linear model Gid taken from [Lachhab et al., 2008] which can guarantee the
stability of ADIP up to ±51◦. The multi-sine excitation signal r2(k) adds to the input
u(k). The whole system to be identified is marked as a dashed box. The data y(k)
and u(k) is collected at 5 msec sampling time and is filtered by a 10 Hz low pass filter.
The model is identified by using the two-step method described in Chapter 3. A high
order NARX model is used as a noise filter in the first step; and the second step is the
identification of LPV-ARX model with all polynomials in the LPR form.

r1(k) = 0
Kid

r2(k)

u(k)
PI

uPI(k)
ADIP

ϕ1(k)

− ϕ2(k)

FD
ϕ̇1(k)

−

Plant

Figure 6.8: Block diagram for closed-loop identification

6.3.1 Model Validation

In this experiment, the resulting LPV input-output model structure is selected as
na = [ 2 2

2 2 ], nb = 2 and 1 step delay. The system is then converted to LPV state-space
model with minimal 4th order.

As discussed in Section 6.1, an identified LPV model with a good BFT is not
necessarily suitable for LPV controller synthesis. For controller design, the LPV model
Ĝlpv must be stabilized by Kid, or ‖T (Gid, Kid)− T (Ĝlpv, Kid)‖∞ is small where T (·, ·)
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are closed-loop transfer functions†. For this purpose, the bode magnitude plot of the
frequency response of Ĝlpv at each frozen parameter θ is plotted. Moreover, the ν-gap

metric is used to compare the distance between Ĝlpv and Gid. This gap has to be
smaller than the generalized stability margin bĜlpv otherwise the model cannot be used
for LPV controller design.

The bode magnitude plot of the identified model is shown in Figure 6.9. In the
frequency range of interest around the closed-loop bandwidth of ∼ 10 rad/sec, for both
outputs the difference between the magnitude of Gid and Ĝlpv(θ) are very small.

This means that in frequency domain Ĝlpv is similar to Gid and the model should

be stabilized by Kid. The stability test of T (Ĝlpv, Kid) is implemented by a closed-loop
simulation and shown in Figure 6.10.
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Figure 6.9: Bode magnitude plot of Gid compared with Ĝlpv at each frozen parameter
where −0.96 ≤ θ ≤ 0.96 rad and θ = sin(ϕ1): (a) from u to ϕ1, (b) from
u to ϕ2.

This test confirms that Ĝlpv can be stabilized by Kid. The ν-gap δν(Gid, Ĝlpv) and

the generalized stability margin bĜlpv ,Kid of Ĝlpv at each frozen parameter θ are shown

in Figure 6.10. As bĜlpv ,Kid > δν(Gid, Ĝlpv) in the scheduling parameter range, it follows
that this LPV model is suitable for LPV controller design.

6.3.2 LPV Controller Synthesis

After the LPV model is identified, which is affine in the parameters, it is converted into
the polytopic form. The full-order discrete-time polytopic LPV controller is designed
based on dilated LMIs approach described for LTI systems in [de Oliveira et al., 2002]
and for LPV systems in [Ali and Werner, 2011] to satisfy the following objectives:

• stabilize the plant in a wide-range,

†As mentioned before, since the true system G0 is unknown, Gid is used for test instead.
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Figure 6.10: Closed-loop simulation of T (Gid, Kid) and T (Ĝlpv, Kid)

• control input is in the range of actuator limits,

• small overshoot, rise time (ts), and steady state error.

Due to the sinusoidal scheduling function (θ = sin(ϕ1)), the resulting polytopic model
has three vertices: zero position and ±ϕt1 (target angular position). The weighting
filters for the output ϕ1 are designed to have the same value for each vertex. The
output ϕ2 is more difficult to stabilize at ϕt1, so the weighting filters are selected to be
slower than at the zero position. Moreover, since the real plant does not have ideal
symmetry, the designed weighting filters of this output at positive and negative angles
are different. The weighting filters are selected as

WS1=

0.0125z + 0.0125

z − 1
0

0
0.5553z + 0.05553

z − 0.999

 , WS2=

0.0125z + 0.0125

z − 1
0

0
0.0040z + 0.0040

z − 0.999

 ,

WS3=

0.0125z + 0.0125

z − 1
0

0
0.0050z + 0.0050

z − 0.999

 , WK =
0.1013z + 0.09867

z + 1
,

where WS1,WS2 and WS3 are for shaping the sensitivity function at zero, positive and
negative target positions respectively, while WK is for shaping the control sensitivity
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Figure 6.11: Comparison between ν-gap metric of Ĝlpv(θ) and Gid with generalized
stability margin bĜlpv ,Kid , here −0.96 ≤ θ ≤ −0.96 where θ = sin(ϕ1).

function and is equal for all vertices. The resulting 8th-order polytopic LPV controller
achieves an induced `2 gain of γ = 1.927. The scheduling parameter θ is bounded
between ± sin(1.3). The resulting LPV controller has been tested on a real ADIP
plant and experimental results are shown in Figure 6.12. It should be highlighted
that these experimental results are the best among results achieved with this plant
published so far. An overview is given in Table 6.1.

Table 6.1: Control performance achieved on ADIP

Method ϕt1 ts Overshoot Oscillation

Polytopic LPV with NN state-space
model [Lachhab et al., 2008]

±60◦ 1.5 sec 0◦ ≤ ±2◦

Fixed-structure LFR with NN
state-space model [Lachhab et al., 2008]

±66◦ 1.5 sec 0◦ ≤ ±5◦

Dilated LMI with NN state-space
model [Ali and Werner, 2011]

±67◦ 2.5 sec 5◦ 0◦

Dilated LMI with Proposed method ±70◦ 1.5 sec 0◦ ≤ ±1◦
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6.4 Conclusion

This chapter reports practical applications of LPV input-output identification in LPR
form. For open-loop identification, the model can be identified using an open-loop
method and validated by time-domain criteria. Users have to take care only of the
model structure and the estimation of the nonlinear scheduling function. For closed-
loop system identification, time-domain criteria are not suitable because they do not
guarantee the stability of the feedback system under the controller being used in the
identification experiment. The latter can be achieved with the ν-gap metric. A proce-
dure is proposed and shown to be suitable for model based LPV controller design.



Chapter 7

Conclusions and Outlook

In this thesis several problems associated with the identification of LPV input-output
models have been investigated. The contributions are focused on three main problems:
the approximation of the nonlinear scheduling function of LPV systems, the unbiased
identification of LPV systems, and the construction of state-space realizations of input-
output LPV models. Both open-loop and closed-loop system identification have been
considered. Moreover, the efficiency of the proposed methods is demonstrated by
applying them to several plants in simulation and experiment.

In Chapter 3, the approximation of the nonlinear scheduling function of LPV sys-
tems is conducted by using cubic spline functions, which have more easily tunable pa-
rameters than polynomial functions. A separable least-squares algorithm is proposed
to reduce the number of parameters by separating them into linear and nonlinear parts.
Given initial values of the nonlinear parameters, one can solve for the linear parame-
ters by using a linear least squares method. On the other hand, by fixing the linear
parameters the Levenberg-Marquardt algorithm can be applied to solve for nonlinear
parameters. A recursive version of the algorithm is also discussed for the case when
the dimension of the data exceed the computing capacity. Moreover, for unstable sys-
tems, a model is identified in a closed-loop by using a two-step method with a neural
network as a noise filter. Simulated and experimental results are given, demonstrating
the efficiency of the presented approach.

Concerning the unbiased identification of LPV systems, which is presented in Chap-
ter 4, the bias error is reduced by using instrumental variables with auxiliary model
method. To improve the performance while still maintaining simplicity, an auxiliary
model in LPV-OE structure, which is estimated by an OE method, has been proposed.
Models estimated by the OE method give a predicted output which is free of noise.
Thus they represent better auxiliary models than LPV-ARX. The proposed approach
gives a significant improvement in terms of bias error and variance. A comparison with
an existing method is illustrated by several simulation examples. This technique has
been applied to both LPV and quasi-LPV systems.

A state-space realization of LPV input-output models, typically required for control
synthesis, is difficult because of the noncommutativity of the shift operator and the
coefficient functions which depend on scheduling parameters. Using an LTI procedure,
the resulting state-space models will contain dynamic dependence on the scheduling

101
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parameters. This problem has been solved by using skew polynomials in Chapter 5.
LPV models can be represented as RFD and LFD forms. The former can be converted
to LPV state-space models in a reachable form while the latter can be transformed to
LPV state-space models in an observable form. It has been argued that the observ-
able form is more practical since the obtained models contain only static dependence.
Furthermore, the link between identification and realization has been discussed. In
identification, the model structures should be in LPR form. The estimated model can
then be directly transformed into an LPV state-space model in observable form. LPV
controller synthesis techniques can be used without losing closed-loop performance.
The efficiency of the proposed methods is demonstrated by applying them to a labo-
ratory scale magnetic levitation plant and an ADIP system.

Even though the method for solving the realization problem yields reasonable re-
sults, the identified models may not be ready to be used when they are identified in
the closed-loop. This issue has been explored in Section 6.1. In closed loop, it is ob-
vious that the identified models should be stabilized by the controller which is used
for identification. The use of the ν-gap metric to LPV systems has been proposed to
measure the quality of models. In this case, the ν-gap of the identified model and the
model used for collecting the data in the closed loop, must be less than the generalized
stability margin for all values of the scheduling parameters in a considered range. This
idea has been applied to the identification and control of ADIP system.

There are a number of important issues that have not been considered in this thesis
and which are worthy of being explored further. They are outlined briefly as follows:

• An algorithm utilized in Chapter 3, which combines LS and cubic splines to
calculate the coefficients of LPV input-output models has not yet been shown to
converge.

• Persistency of excitation is an important issue in system identification. Con-
ditions for persistency of excitation for LPV systems have been formulated in
[Bamieh and Giarré, 2002; Wei, 2006]. However, there are no implementation
methods to design such signals to meet the condition. This topic can be ex-
plored in order to design a sufficiently rich excitation signal for both open and
closed-loop identification settings.

• The unbiased LPV identification method proposed in Chapter 4 is tested by
simulation examples. This method would be even more valuable if experimental
results can be shown. Moreover, an extension of the method to closed-loop
identification should be studied.

• The ν-gap metric was designed for LTI systems. A time-varying version of this
tool has not been considered so far in the literature. In Chapter 6, an ad-hoc
method has been applied to LPV systems by freezing them at several values of
the scheduling parameters. Establishing a worst-case bound on the ν-gap for
LPV systems would give a better insight to the quality models.



Appendix A

Derivation of Equations in
Chapter 3

This appendix shows the derivation of equations (3.8) and (3.9). The idea of this proof
is adopted from [Ljung, 1999]. Consider the cost function

VN(P, ZN) =
1

N

N∑
k=1

‖y(k)−PTφ(k)‖2
2, (A.1)

where P ∈ Rny×nr , ny and np are the number of outputs and number of estimated
parameters for each output, y ∈ Rny×1 and φ ∈ R1×nr is the regressor vector.

The cost function (A.1) can be rewritten as

VN(P, ZN) = trace
1

N

N∑
k=1

[y(k)−PTφ(k)][y(k)−PTφ(k)]T

=
1

N

N∑
k=1

{
[y1(k)− pT1 φ(k)]T [y1(k)− pT1 φ(k)]

+ · · ·+ [yny(k)− pTnyφ(k)]T [yny(k)− pTnyφ(k)]
}

=
1

N

N∑
k=1

{
[y2

1(k)− 2φk(k)p1y1(k) + pT1 φ(k)φT (k)p1]

+ · · ·+ [y2
ny(k)− 2φ(k)pnyyny(k) + pTnyφ(k)φT (k)pny ]

}
.

Computing the gradient with respect to each pi we have

∇pTVN =
[
∂VN
∂pT1

. . . ∂VN
∂pTny

]T
,

then

P̂LS
N =

[
1

N

N∑
k=1

φ(k)φT (k)

]−1 [
1

N

N∑
k=1

φ(k)yT (k)

]
.
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We use a more compact representation

Y = PTΦ, (A.2)

where Y = [y1 . . . yN ] and Φ = [φ1 . . . φN ]. Then

Y T = ΦTP

ΦY T = ΦΦTP

P̂LS
N = [ΦΦT ]−1ΦY T .



Appendix B

Properties of the Kronecker
Product

All materials in this Appendix are taken from [Steeb, 2006].
Let A be an m × n matrix and B an r × s matrix. The Kronecker product of A

and B is defined as the (mr)× (ns) matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 . (B.1)

The Kronecker product has the following properties:

Bilinearity and Associativity

A⊗ (B + C) = A⊗B + A⊗ C,
(A+B)⊗ C = A⊗ C +B ⊗ C,

(kA)⊗B = A⊗ (kB) = k(A⊗B),

(A⊗B)⊗ C = A⊗ (B ⊗ C),

where A,B and C are matrices with appropriate dimensions and k is a scalar.

The mixed-product property

Let A,B,C and D be matrices with appropriate dimensions. Then

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Inverse

A⊗B is invertible if and only if A and B are invertible. The inverse of the product is
given by

(A⊗B)−1 = A−1 ⊗B−1.
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Transpose

The operation of transposition is distributive over the Kronecker product:

(A⊗B)T = AT ⊗BT .



Appendix C

Rings, Fields

All materials in this Appendix are taken from [Vidyasagar, 1985] if no other references
are given.

Definition C.1 (Ring). A ring is a nonempty set R together with two binary opera-
tions + (addition) and · (multiplication) such that the following axioms are satisfied:

(R1) R[+] is a commutative group. This means that

a+ (b+ c) = (a+ b) + c, ∀a, b, c ∈ R,
a+ b = b+ a, ∀a, b ∈ R.

There exists an element 0 ∈ R such that

a+ 0 = 0 + a = a, ∀a ∈ R.

For every element a ∈ R, there exists a corresponding element −a ∈ R such that
a+ (−a) = 0.

(R2) R[·] is a semigroup. This means that

a · (b · c) = (a · b) · c, ∀a, b, c ∈ R.

(R3) Multiplication is distributive over addition. This means that

a · (b+ c) = a · b+ a · c,
(a+ b) · c = a · c+ b · c, a, b, c ∈ R.

As is customary, a · b is denoted as ab, and a+ (−b) is denoted as a− b.
Definition C.2 (Commutative). A ring R is said to be commutative if ab = ba ∀a, b ∈
R, and is said to have an identity if there exists an element 1 ∈ R such that 1 · a =
a · 1 = a ∀a ∈ R.

Definition C.3 (Unit). An element in x in a ring R is called a unit of R if there is a
y ∈ R such that xy = yx = 1. It can be shown that such a y is unique; y is called the
inverse of x and is denoted by x−1.
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Definition C.4 (Field). A field is a commutative ring F with an identity, satisfying
two additional assumptions:

(F1) F contains at least two elements.

(F2) Every nonzero element of F is a unit.
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J. Sjöberg and M. Viberg. Separable non-linear least-squares minimization – possible
improvements for neural net fitting. In IEEE Workshop Neural Networks and Signal
Processing, pages 345–354, 1997. – 2 citations in pages 22 and 24.
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List of Symbols and Abbreviations

A,B,C,D State-space matrices, input-output polynomial matrices
Ao, Bo, Co, Do State-space matrices, observable form
Ac, Bc, Cc, Dc State-space matrices, reachable form
H Noise model
F Adaptation matrix gain
G Plant
I Identity matrix
J Jacobian matrix
JL Jacobian matrix with respect to linear parameters
JNL Jacobian matrix with respect to nonlinear parameters
JS Jacobian matrix with respect to both linear and nonlinear parameters
K Controller
N Number of sample data
PL Orthogonal projection onto the column of Jl
V, Ṽ Cost function
Z Data set
a, b, c, d Input-output representation coefficients
d delay sample
e White noise signal
f Parameter dependent function
k Sampling instant
l Recursive algorithm step
max Maximum
min Minimum
n Number of states
na The order of past output polynomial
nb The order of past input polynomial
nh Number of hidden neurons
ns Number of harmonics
nu Number of input signals
ny Number of output signals
np Number of constant parameters
nρext Number of external scheduling signals
nρint Number of internal scheduling signals
nρ Number of scheduling signals
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nθ Number of scheduling parameters
nη Number of knots in a cubic spline function
q Forward time-shift operator
u Input vector
v Disturbance signals
x State vector
y Output vector
z z-transform

C Set of complex numbers
E Expectation
H2 Signal 2-norm of impulse response of system
H∞ Induced 2-norm of a transfer function
K Field
NL Nonlinear system
Pθ Scheduling Domain
P Constant coefficient parameter matrix
R Set of real number
S System set
Z Integer set
Z+ Positive integer set
p Constant coefficient parameter vector
p0 True constant coefficient parameters
ρ, ρext, ρint Vector of scheduling signals
θ Scheduling parameters
λ forgetting factor
ψ Vector of scheduling parameters (functions)
ϕ Input-Ouput regressor vector
φ LPV Input-Output regressor vector
ψPoly Vector of scheduling parameters of polynomial functions
ψsp Vector of scheduling parameters of cubic spline functions
η Cubic spline knot position
ε Prediction error
δν ν-gap metric
Ω Open set

‖ · ‖ Sequence-2-norm, matrix-2-norm
‖ · ‖∞ Sequence-∞-norm, H∞-norm
‖ · ‖F Frobenius norm
? Transpose of the off-diagonal block matrix
⊗ Kronecker product
(·)T Transpose
∇ Gradient
∇2 Hessian
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� End of example
� End of proof[
A B
C D

]
To represent block partitioned matrix

[
A B
C D

]
Transfer function in terms of state-space matrices, input-output

operator in terms of an LPV stat-space realization

Abbreviations

ADIP Arm Driven Inverted Pendulum
ARX Auto Regression with eXogenous input
BFT Best FiT
BJ Box-Jenkins
IV Instrumental Variables
LPR Left Polynomial Representation
LPV Linear Parameter-Varying
LTI Linear Time-Invariant
LTV Linear Time-Varying
LRNN Linear Recurrent Neural Network
LS Least Squares
MIMO Multi-Input Multi-Output
MOESP Multivariable Output-Error State-Space
MSE Mean Square Error
PAA Parameter Adaptation Algorithm
PEM Prediction Error Method
OE Output Error
RIV Refined Instrumental Variable
RLS Recursive Least Squares
RPR Right Polynomial Representation
SI Spark-Ignited
SISO Single-Input Single-Output
SIMO Single-Input Multiple-Output
SLS Separable Least-Squares
SNR Signal to Noise Ratio
SRIV Simplify Refined Instrumental Variable
SVD Singular Value Decomposition
VAF The Variance Accounted For
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