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Discrete-Time System Equations
Advanced operator form:

y[k + n] + an−1y[k + n − 1] + · · ·+ a1y[k + 1] + a0y[k] =

bmf[k + m] + bm−1f[k + m − 1] + · · ·+ b1f[k + 1] + b0f[k]

The left-hand side of this form consists of the output at instants k + n, k + n − 1, k + n − 2,
and so on. The right-hand side of the equation consists of the input at instants k + m,
k + m − 1, k + m − 2, and so on.

The condition that the above system is causal is m ≤ n. For a general causal case, m = n,
the above system can be expressed as

y[k + n] + an−1y[k + n − 1] + · · ·+ a1y[k + 1] + a0y[k] =

bnf[k + n] + bn−1f[k + n − 1] + · · ·+ b1f[k + 1] + b0f[k]
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Discrete-Time System Equations
Delay operator form: In case m = n, we can replace k by k − n throughout the equation.
Such replacement yields the delay operator form.

y[k] + an−1y[k − 1] + · · ·+ a1y[k − n + 1] + a0y[k − n] =

bnf[k] + bn−1f[k − 1] + · · ·+ b1f[k − n + 1] + b0f[k − n]
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Iterative Solution of Difference Equations
From the delay operator form

y[k] + an−1y[k − 1] + · · ·+ a1y[k − n + 1] + a0y[k − n] =

bnf[k] + bn−1f[k − 1] + · · ·+ b1f[k − n + 1] + b0f[k − n]

It can be expressed as

y[k] = −an−1y[k − 1]− an−2y[k − 2]− · · · − a0y[k − n]

+ bnf[k] + bn−1f[k − 1] + · · ·+ b0f[k − n]

There are the past n values of the output: y[k − 1], y[k − 2],. . ., y[k − n], the past n values of
the input: f[k − 1], f[k − 2], . . ., f[k − n], and the present value of the input f[k].
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Initial Conditions and Iterative Solution of Difference
Equations

If the input is causal, the f[−1] = f[−2] = . . . = f[−n] = 0, and we need only n initial
conditions y[−1], y[−2], . . ., y[−n]. This result allows us to compute iteratively or recursively
the output y[0], y[1], y[2], y[3], . . ., and so on. For instant,

• to find y[0] we set k = 0.
• the left-hand side is y[0], and the right-hand side contains terms y[−1], y[−2], …,

y[−n] and the input f[0], f[−1], f[−2], …, f[−n].
• Therefore, we must know the n initial conditions y[−1], y[−2], …, y[−n] to find y[0],

y[1], y[2], . . . and so on.
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Iterative Solution of Difference Equations
Examples

Solve iteratively

y[k]− 0.5y[k − 1] = f[k]

with initial condition y[−1] = 16 and causal input f[k] = k2.
Solution: Rewritten the equation in the delay operator form and move all past outputs to the
left:

y[k] = 0.5y[k − 1] + f[k]

We obtain

y[0] = 0.5y[−1] + f[0] = 0.5(16) + 0 = 8
y[1] = 0.5y[0] + f[1] = 0.5(8) + (1)2 = 5
y[2] = 0.5y[1] + f[2] = 0.5(5) + (2)2 = 6.5
y[3] = 0.5y[2] + f[3] = 0.5(6.5) + (3)2 = 12.25
y[4] = 0.5y[3] + f[4] = 0.5(12.25) + (4)2 = 22.125
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Iterative Solution of Difference Equations
Examples cont.
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Figure: Iterative solution of a difference
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Iterative Solution of Difference Equations
Examples cont.

Solve iteratively

y[k + 2]− y[k + 1] + 0.24y[k] = f[k + 2]− 2f[k + 1]

with initial conditions y[−1] = 2, y[−2] = 1 and a causal input f[k] = k.
Solution: Rewritten the equation in the delay operator form and move all past outputs to the
left:

y[k] = y[k − 1]− 0.24y[k − 2] + f[k]− 2f[k − 1]

We obtain

y[0] = y[−1]− 0.24y[−2] + f[0]− 2f[−1] = 2 − 0.24(1) + 0 − 0 = 1.76
y[1] = y[0]− 0.24y[−1] + f[1]− 2f[0] = 1.76 − 0.24(2) + 1 − 0 = 2.28
y[2] = y[1]− 0.24y[0] + f[2]− 2f[1] = 2.28 − 0.24(1.76) + 2 − 2(1) = 1.8576
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E operator
In continuous-time system we used the operator D to denote the operation of differentiation.
For discrete-time systems we use the operator E to denote the operation for advancing the
sequence by one time unit. Thus

Ef[k] = f[k + 1]
E2f[k] = f[k + 2]

...
Enf[k] = f[k + n]

For example

y[k + 1]− ay[k] = f[k + 1]
Ey[k]− ay[k] = Ef[k]
(E − a)y[k] = Ef[k]
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E operator
cont.

For the second-order difference equation

y[k + 2] + 1
4

y[k + 1] + 1
16

y[k] = f[k + 2](
E2 +

1
4

E +
1
16

)
y[k] = E2f[k]

A general nth-order difference equation (n = m)can be expressed as(
En + an−1En−1 + · · ·+ a1E + a0

)
y[k] =(

bnEn + bn−1En−1 + · · ·+ b1E + b0
)

f[k]
Q[E]y[k] = P[E]f[k]

where
Q[E] = En + an−1En−1 + · · ·+ a1E + a0

P[E] = bnEn + bn−1En−1 + · · ·+ b1E + b0

Lecture 9: Time-Domain Analysis of Discrete-Time Systems J 11/60 I }



Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response

Similar to the continuous-time case,

Total response = zero-input response + zero-state response

The zero-input response y0[k] is the solution of the system with f[k] = 0; that is,

Q[E]y0[k] = 0

or

(
En + an−1En−1 + · · ·+ a1E + a0

)
y0[k] = 0

y0[k + n] + an−1y0[k + n − 1] + · · ·+ a1y0[k + 1] + a0y0[k] = 0
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

The equation states that a linear combination of y0[k] and advanced y0[k] is zero not for
some values of k but for all k. Such situation is possible if and only if y0[k] and advanced
y0[k] have the same form. This is true only for an exponential function γk. Since

γk+m = γmγk

Therefore, if y0[k] = cγk we have

Ey0[k] = y0[k + 1] = cγk+1 = cγγk

E2y0[k] = y0[k + 2] = cγk+2 = cγ2γk

...
Eny0[k] = y0[k + n] = cγk+n = cγnγk
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

Substitution of these results to the system equation yields

c
(
γn + an−1γ

n−1 + · · ·+ a1γ + a0
)
γk = 0

For a nontrivial solution of this equation

(
γn + an−1γ

n−1 + · · ·+ a1γ + a0
)
= 0 or Q[γ] = 0

Q[γ] is an nth-order polynomial and can be expressed in the factorized form (assuming all
distinct roots):

(γ − γ1)(γ − γ2) · · · (γ − γn) = 0

Clearly, γ has n solutions γ1, γ2, · · · , γn and, the system has n solutions
c1γk

1, c2γk
2, . . . , cnγk

n.
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

The zero-input response is

y0[k] = c1γ
k
1 + c2γ

k
2 + · · ·+ cnγ

k
n

where γ1, γ2, . . . , γn are the roots of the polynomial.
• Q[γ] is called the characteristic polynomial of the system.
• Q[γ] = 0 is the characteristic equation of the system.
• γ1, γ2, . . . , γn are called characteristic roots or characteristic values (also eignevalues)

of the system.
• The exponentials γk

i (i = 1, 2, . . . ,n) are characteristic modes or natural modes of the
system.
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

Repeated Roots:
If two or more roots are repeated, the form of the characteristic modes is modified. Similar
to the continuous-time case, if a root γ repeats r times, the characteristic modes
corresponding to this root are γk, kγk, k2γk, . . ., kr−1γk.
If the characteristic equation of a system is

Q[γ] = (γ − γ1)
r(γ − γr+1)(γ − γr+2) · · · (γ − γn)

the zero-input response of the system is

y0[k] = (c1 + c2k + c3k2 + · · ·+ crkr−1)γk
1

+ cr+1γ
k
r+1 + cr+2γ

k
r+2 + · · ·+ cnγ

k
n
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

Complex Roots:
As in the case of continuous-time systems, the complex roots of a discrete-time system must
occur in pairs of conjugates so that the system equation coefficients are real. Like the case of
continuous-time systems, we can eliminate dealing with complex numbers by using the real
form of the solution.

• First express the complex conjugate roots γ and γ∗ in polar form.

γ = |γ|ejβ and γ∗ = |γ|e−jβ

• the zero-input response is given by

y0[k] = C1γ
k + C2(γ

∗)k

= C1|γ|kejβk + C2|γ|ke−jβk
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

For a real system, C1 and C2 must be conjugates so that y0[k] is a real function of k. Let

C1 =
C
2

ejθ and C2 =
C
2

e−jθ

y0[k] =
C
2
|γ|k

[
ej(βk+θ) + e−j(βk+θ)

]
= C|γ|k cos(βk + θ)

where C and θ are arbitrary constants determined from the auxiliary conditions.
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

For an LTID system described by the difference equation

y[k + 2]− 0.6y[k + 1]− 0.16y[k] = 5f[k + 2]

Find the zero-input response y0[k] of the system if the initial conditions are y[−1] = 0 and
y[−2] = 25

4 .

The system equation in E operator form is

(E2 − 0.6E − 0.16)y[k] = 5E2f[k]

The characteristic equation is

γ2 − 0.6γ − 0.16 = (γ + 0.2)(γ + 0.8) = 0

The zero-input response is

y0[k] = C1(−0.2)k + C2(0.8)k
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

Substitute y0[−1] = 0 and y0[−2] = 25
4 we obtain

−5C1 +
5
4

C2 = 0

25C1 +
25
16

C2 =
25
4

and C1 = 1
5 and C2 = 4

5 . Therefore

y0[k] =
1
5
(−0.2)k +

4
5
(0.8)k, k ≥ 0.
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

A system specified by the equation

(E2 + 6E + 9)y[k] = (2E2 + 6E)f[k]

determine y0[k], the zero-input response, if the initial condition are y0[−1] = − 1
3 and

y0[−2] = − 2
9 .

The characteristic equation is

γ2 + 6γ + 9 = (γ + 3)2 = 0

and we have a repeated characteristic root at γ = −3. Hence, the zero-input response is

y0[k] = (C1 + C2k)(−3)k.

From the initial conditions we have

C1 − C2 = 1
C1 − 2C2 = −2

and C1 = 4 , C2 = 3 . Finally, we have y0[k] = (4 + 3k)(−3)k, k ≥ 0.
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

Find the zero-input response of an LTID system described by the equation

(E2 − 1.56E + 0.81)y[k] = (E + 3)f[k]

when the initial conditions are y0[−1] = 2 and y0[−2] = 1.
The characteristic equation is

(γ2 − 1.56γ + 0.81) = (γ − 0.78 − j0.45)(γ − 0.78 + j0.45) = 0.

The characteristic roots are 0.78 ± j0.45; that is , 0.9e±j π6 . Thus, |γ| = 0.9 and β = π
6 , and

the zero-input response is given by

y0[k] = C(0.9)k cos(
π

6
k + θ).

Substituting the initial conditions y0[−1] = 2 and y0[−2] = 1, we obtain

C
0.9

cos

(
−
π

6
+ θ

)
=

C
0.9

[
cos(−

π

6
) cos θ − sin(−

π

6
) sin θ

]
=

C
0.9

[√
3

2
cos θ +

1
2
sin θ

]
= 2
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Response of Linear Discrete-Time Systems
System response to Internal Conditions: The Zero-Input Response cont.

and

C
(0.9)2 cos

(
−
π

3
+ θ

)
=

C
0.81

[
cos(−

π

3
) cos θ − sin(−

π

3
) sin θ

]
=

C
0.81

[
1
2
cos θ +

√
3

2
sin θ

]
= 1

or √
3

1.8
C cos θ +

1
1.8

C sin θ = 2

1
1.62

C cos θ +

√
3

1.62
C sin θ = 1.

We have C cos θ = 2.308 and C sin θ = −0.397. Then

θ = tan−1 −0.397
2.308

= −0.17 rad

Substituting θ = −0.17 radian in C cos θ = 2.308 yields C = 2.34 and

y0[k] = 2.34(0.9)k cos

(
π

6
k − 0.17

)
, k ≥ 0
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The Unit Impulse Response h[k]
Consider an nth-order system specified by the equation(

En + an−1En−1 + · · ·+ a1E + a0
)

y[k] =(
bnEn + bn−1En−1 + · · ·+ b1E + b0

)
f[k]

or

Q[E]y[k] = P[E]f[k]

The unit impulse response h[k] is the solution of this equation for the input δ[k] with all the
initial conditions zero; that is

Q[E]h[k] = P[E]δ[k]

subject to initial conditions

h[−1] = h[−2] = · · · = h[−n] = 0
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The Unit Impulse Response h[k]
h[k] is the system response to the input δ[k], which is zero for k > 0. We know that when the
input is zero, only the characteristic modes can be sustained by the system. Therefore, h[k]
must be made up of characteristic modes for k > 0. At k = 0, it may have some nonzero
value, and h[k] can be expressed as

h[k] = b0
a0

δ[k] + yn[k]u[k].

The n unknown coefficients in yn[k] can be determined from a knowledge of n values of h[k].
It is a straightforward task to determine values of h[k] iteratively.
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The Unit Impulse Response h[k]
The Closed-Form Solution of h[k] Deviation

For a discrete-time system specified above, we have

h[k] = A0δ[k] + yn[k]u[k]

Then

Q[E](A0δ[k] + yn[k]u[k]) = P[E]δ[k]

because yn[k]u[k] is a sum of characteristic modes

Q[E](yn[k]u[k]) = 0, k ≥ 0

The above equation reduces to

A0Q[E]δ[k] = P[E]δ[k], k ≥ 0
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The Unit Impulse Response h[k]
The Closed-Form Solution of h[k] Deviation cont.

or

A0
(
En + an−1En−1 + · · ·+ a1E + a0

)
δ[k]

=
(
bnEn + bn−1En−1 + · · ·+ b1E + b0

)
δ[k]

A0(δ[k + n] + an−1δ[k + n − 1] + · · ·+ a1δ[k + 1] + a0δ[k])
= bnδ[k + n] + bn−1δ[k + n − 1] + · · ·+ b1δ[k + 1] + b0δ[k]

If we set k = 0 in the equation and recognize that δ[0] = 1 and δ[m] = 0 when m ̸= 0, all but
the last terms vanish on both sides, yielding

A0a0 = b0 and A0 =
b0
a0

Note: for the special case a0 = 0 see the reference.
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The Unit Impulse Response h[k]
Example

Determine the unit impulse response h[k] for a system specified by the equation

y[k]− 0.6y[k − 1]− 0.16y[k − 2] = 5f[k]

This equation can be expressed in the advance operator form as

y[k + 2]− 0.6y[k + 1]− 0.16y[k] = 5f[k + 2]

or (
E2 − 0.6E − 0.16

)
y[k] = 5E2f[k]

The characteristic equation is

γ2 − 0.6γ − 0.16 = (γ + 0.2)(γ − 0.8) = 0.

Therefore

yn[k] = C1(−0.2)k + C2(0.8)k
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The Unit Impulse Response h[k]
Example cont.

From the system we have a0 = −0.16 and b0 = 0. Therefore

h[k] = 0
−0.16

δ[k] +
[
C1(−0.2)k + C2(0.8)k

]
u[k] =

[
C1(−0.2)k + C2(0.8)k

]
u[k]

To determine C1 and C2, we need to find two values of h[k] iteratively. To do this, we must
let the input f[k] = δ[k] and the output y[k] = h[k] in the system equation. The resulting
equation is

h[k]− 0.6h[k − 1]− 0.16h[k − 2] = 5δ[k]

subject to zero initial state; that is , h[−1] = h[−2] = 0.
Setting k = 0 in this equation yields

h[0]− 0.6(0)− 0.16(0) = 5(1) =⇒ h[0] = 5

Next, setting k = 1 and using h[0] = 5, we obtain

h[1]− 0.6(5)− 0.16(0) = 5(0) =⇒ h[1] = 3
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The Unit Impulse Response h[k]
Example cont.

Then we have

h[0] = C1(−0.2)0 + C2(0.8)0 = C1 + C2 = 5

h[1] = C1(−0.2)1 + C2(0.8)1 = −0.2C1 + 0.8C2 = 3

and C1 = 1, C2 = 4. Therefore

h[k] =
[
(−0.2)k + 4(0.8)k

]
u[k]
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System Response to External Input
The Zero-State Response

The zero-state response y[k] is the system response to an input f[k] when the system is in
zero state. Like in the continuous-time case an arbitrary input f[k] can be expressed as a sum
of impulse components.

−2 −1 1 2 3 4

f[k]

k
−2 −1 1 2 3 4

f[−2]δ[k + 2]

−2 −1 1 2 3 4

f[−1]δ[k + 1]

−2 −1 1 2 3 4

f[1]δ[k− 1]

k

kk
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System Response to External Input
The Zero-State Response cont.

The previous page shows how a signal f[k] can be expressed as a sum of impulse components.
The component of f[k] at k = m is f[m]δ[k − m], and f[k] is the sum of all these components
summed from m = −∞ to ∞. Therefore

f[k] = f[0]δ[k] + f[1]δ[k − 1] + f[2]δ[k − 2] + · · ·

+ f[−1]δ[k + 1] + f[−2]δ[k + 2] + · · ·

=
∞∑

m=−∞
f[m]δ[k − m]

If we knew the system response to impulse δ[k], the system response to any arbitrary input
could be obtained by summing the system response to various impulse components.
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System Response to External Input
The Zero-State Response cont.

If

δ[k] =⇒ h[k]

then

δ[k − m] =⇒ h[k − m]

f[m]δ[k − m] =⇒ f[m]h[k − m]

∞∑
m=−∞

f[m]δ[k − m]

︸ ︷︷ ︸
f[k]

=⇒
∞∑

m=−∞
f[m]h[k − m]

︸ ︷︷ ︸
y[k]
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System Response to External Input
The Zero-State Response cont.

We have the response y[k] to input f[k] as

y[k] =
∞∑

m=−∞
f[m]h[k − m].

This summation on the right-had side is known as the convolution sum of f[k] and h[k], and
is represented symbolically by f[k] ∗ h[k]

f[k] ∗ h[k] =
∞∑

m=−∞
f[m]h[k − m]
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Properties of the Convolution Sum
The Commutative Property

The Commutative Property

f1[k] ∗ f2[k] = f2[k] ∗ f1[k]

This can be proved as follow:

f1[k] ∗ f2[k] =
∞∑

m=−∞
f1[m]f2[k − m]

= −
−∞∑

w=∞
f1[w − k]f2[w], w = k − m

=
∞∑

w=−∞
f2[w]f1[w − k]

= f2[k] ∗ f1[k]
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Properties of the Convolution Sum
The Distributive Property

The Distributive Property

f1[k] ∗ (f2[k] + f3[k]) = f1[k] ∗ f2[k] + f1[k] ∗ f3[k]

The proof is as follow:

f1[k] ∗ (f2[k] + f3[k]) =
∞∑

m=−∞
f1[m] (f2[k − m] + f3[k − m])

=
∞∑

m=−∞
f1[m]f2[k − m] +

∞∑
m=−∞

f1[m]f3[k − m]

= f1[k] ∗ f2[k] + f1[k] ∗ f3[k]
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Properties of the Convolution Sum
The Associative Property

The Associative Property

f1[k] ∗ (f2[k] ∗ f3[k]) = (f1[k] ∗ f2[k]) ∗ f3[k]

The proof is as follow:

f1[k] ∗ (f2[k] ∗ f3[k]) =
∞∑

m1=−∞
f1[m1] (f2[k − m1] ∗ f3[k − m1])

=
∞∑

m1=−∞
f1[m1]

∞∑
m2=−∞

f2[m2]f3[k − m1 − m2]

=
∞∑

m1=−∞

∞∑
m2=−∞

f1[λ− m2]f2[m2]f3[k − λ]

,where λ = m1 + m2.
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Properties of the Convolution Sum
The Associative Property cont.

Then we have

f1[k] ∗ (f2[k] ∗ f3[k]) =
∞∑

m1=−∞

∞∑
m2=−∞

f1[λ− m2]f2[m2]f3[k − λ]

= (f1[k] ∗ f2[k]) ∗ f3[k]

The Convolution with an Impulse

f[k] ∗ δ[k] =
∞∑

m=−∞
f[m]δ[k − m]

Since δ[k − m] = 1, if k − m = 0 or m = k, then

f[k] ∗ δ[k] = f[k].

Lecture 9: Time-Domain Analysis of Discrete-Time Systems J 38/60 I }



Properties of the Convolution Sum
The shifting Property

The shifting Property
If

f1[k] ∗ f2[k] = c[k]

then

f1[k] ∗ f2[k − n] = f1[k] ∗ f2[k] ∗ δ[k − n]
= c[k] ∗ δ[k − n] = c[k − n]

f1[k − n] ∗ f2[k] = f1[k] ∗ δ[k − n] ∗ f2[k]
= f1[k] ∗ f2[k] ∗ δ[k − n]
= c[k] ∗ δ[k − n] = c[k − n]

f1[k − n] ∗ f2[k − l] = f1[k] ∗ δ[k − n] ∗ f2[k] ∗ δ[k − l]
= c[k] ∗ δ[k − n] ∗ δ[k − l] = c[k − n − l]
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Properties of the Convolution Sum
The shifting Property

The Width Property
If f1[k] and f2[k] have lengths of m and n elements respectively, then the length of c[k] is
m + n − 1 elements.
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Causality and Zero-State Response
• We assumed the system to be linear and time-invariant.
• In practice, almost all of the input signals are causal, and a majority of the system are

also causal.
• If the input f[k] is causal, then f[m] = 0 for m < 0.
• Similarly, if the system is causal, then h[x] = 0 for negative x, so that h[k − m] = 0

when m > k.
• Therefore, if f[k] and h[k] are both causal, the product f[m]h[k − m] = 0 for m < 0 and

for m > k, and it is nonzero only for the range 0 ≤ m ≤ k. Therefore, the convolution
sum is reduced to

y[k] =
k∑

m=0
f[k]h[k − m]

Lecture 9: Time-Domain Analysis of Discrete-Time Systems J 41/60 I }



Convolution Sum
Analytical Method Example

Determine c[k] = f[k] ∗ g[k] for

f[k] = (0.8)ku[k] and g[k] = (0.3)ku[k]

we have

c[k] =
k∑

m=0
f[m]g[k − m]

since both signals are causal.

c[k] =


k∑

m=0
(0.8)m(0.3)k−m k ≥ 0

0 k < 0

c[k] = (0.3)k
k∑

m=0

(
0.8
0.3

)m
u[k] = (0.3)k (0.8)k+1 − (0.3)k+1

(0.3)k(0.8 − 0.3)
u[k]

= 2
[
(0.8)k+1 − (0.3)k+1

]
u[k]
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Zero-State Response
Analytical Method Example

Find the zero-state response y[k] of an LTID system described by the equation

y[k + 2]− 0.6y[k + 1]− 0.16y[k] = 5f[k + 2]

if the input f[k] = 4−ku[k] and h[k] =
[
(−0.2)k + 4(0.8)k] u[k].

We have

yi[k] = f[k] ∗ h[k]

= (4)−ku[k] ∗
[
(−0.2)ku[k] + 4(0.8)ku[k]

]
= (4)−ku[k] ∗ (−0.2)ku[k] + (4)−ku[k] ∗ 4(0.8)ku[k]

= (0.25)ku[k] ∗ (−0.2)ku[k] + 4(0.25)ku[k] ∗ (0.8)ku[k]

Using Pair 4 from the convolution sum table:

y[k] =
[
(0.25)k+1 − (−0.2)k+1

0.25 − (−0.2)
+ 4 (0.25)k+1 − (0.8)k+1

0.25 − 0.8

]
u[k]

Lecture 9: Time-Domain Analysis of Discrete-Time Systems J 43/60 I }



Zero-State Response
Analytical Method Example cont.

y[k] =
(

2.22
[
(0.25)k+1 − (−0.2)k+1

]
− 7.27

[
(0.25)k+1 − (0.8)k+1

])
u[k]

=
[
−5.05(0.25)k+1 − 2.22(−0.2)k+1 + 7.27(0.8)k+1

]
u[k]

Recognizing that

γk+1 = γ(γ)k

We can express y[k] as

y[k] =
[
−1.26(0.25)k + 0.444(−0.2)k + 5.81(0.8)k

]
u[k]

=
[
−1.26(4)−k + 0.444(−0.2)k + 5.81(0.8)k

]
u[k]
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Graphical Procedure for the Convolution Sum
The convolution sum of causal signals f[k] and g[k] is given by

c[k] =
k∑

m=0
f[k]g[k − m]

• Invert g[m] about the vertical axis (m = 0) to obtain g[−m].
• Time shift g[−m] by k units to obtain g[k − m]. For k > 0, the shift is to the right

(delay); for k < 0, the shift is to the left (advance).
• Next we multiply f[m] and g[k − m] and add all the products to obtain c[k]. The

procedure is repeated to each value of k over the range −∞ to ∞.

Lecture 9: Time-Domain Analysis of Discrete-Time Systems J 45/60 I }



Graphical Procedure for the Convolution Sum
Example

Find c[k] = f[k] ∗ g[k], where f[k] and g[k] are depicted in the Figures.

k0 1 2 3 4

f[k]
1

(0.8)k

k0 1 2 3 4

g[k]
1

(0.3)k

m0 1 2 3 4

f[m]
1

(0.8)m

m
0−1−2−3−4

g[−m]

1
(0.3)−m
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Graphical Procedure for the Convolution Sum
Example

−1−2−3−4

g[−m]
1

m
0 1 2 3 4

f[m]

g[k−m]
1

m

f[m]

k

The two functions f[m] and g[k − m] overlap over the interval 0 ≤ m ≤ k.
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Graphical Procedure for the Convolution Sum
Example

Therefore

c[k] =
k∑

m=0
f[m]g[k − m]

=
k∑

m=0
(0.8)m(0.3)k−m

= (0.3)k
k∑

m=0

(
0.8
0.3

)m

= 2
[
(0.8)k+1 − (0.3)k+1

]
, k ≥ 0

For k < 0, there is no overlap between f[m] and g[k − m], so that c[k] = 0 k < 0 and

c[k] = 2
[
(0.8)k+1 − (0.3)k+1

]
u[k].
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Graphical Procedure for the Convolution Sum
Sliding Tape Method

Using the sliding tape method, convolve the two sequences f[k] and g[k].
• write the sequences f[k] and g[k] in the slots of two tapes
• leave the f tape stationary (to correspond to f[m]). The g[−m] tape is obtained by

time inverting the g[m]

• shift the inverted tape by k slots, multiply values on two tapes in adjacent slots, and
add all the products to find c[k].
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Graphical Procedure for the Convolution Sum
Sliding Tape Method cont.

For the case of k = 0,

c[0] = 0 × 1 = 0

For k = 1

c[1] = (0 × 1) + (1 × 1) = 1

Similarly,

c[2] = (0 × 1) + (1 × 1) + (2 × 1) = 3

c[3] = (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) = 6

c[4] = (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) + (4 × 1) = 10

c[5] = (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) + (4 × 1) + (5 × 1) = 15

c[6] = (0 × 1) + (1 × 1) + (2 × 1) + (3 × 1) + (4 × 1) + (5 × 1) = 15
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Graphical Procedure for the Convolution Sum
Sliding Tape Method cont.

1 2 3 40
111111. . .

1 2 3 40
111111. . .

1 2 3 40

k

5

0 1 2 3 4

f[k]

1

5 6 7
k

1
g[k]

1

1 3 5

. . .

. . .
5

1 1 1 1 1 1
1 2 3 40

5
f[m]

c[2] = 3

5
f[m]

c[1] = 1

5
111111. . .

←− g[−m]

f[m]

c[0] = 0
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Graphical Procedure for the Convolution Sum
Sliding Tape Method cont.

1 2 3 40

1 2 3 40

15

5

c[k]

k

5
f[m]

c[3] = 6

5
f[m]

c[6] = 15

5
f[m]

c[5] = 15
111111. . .

1 2 3 40

5
f[m]

c[4] = 10
111111. . .

1 2 3 40

111111. . .

111111. . .
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Total Response
The total response of an LTID system can be expressed as a sum of the zero-input and
zero-state components:

Total response y[k] =
n∑

j=1
cjγ

k
j︸ ︷︷ ︸

Zero-input component

+ f[k] ∗ h[k]︸ ︷︷ ︸
Zero-state component

From the previous example, the system described by the equation

y[k + 2]− 0.6y[k + 1]− 0.16y[k] = 5f[k + 2]

with initial conditions y[−1] = 0, y[−2] = 25
4 and input f[k] = (4)−ku[k]. We have

y[k] = 0.2(−0.2)k + 0.8(0.8)k︸ ︷︷ ︸
Zero-input component

−1.26(4)−k + 0.444(−0.2)k + 5.81(0.8)k︸ ︷︷ ︸
Zero-state component
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Classical solution of Linear Difference Equations
If yn[k] and yϕ[k] denote the natural and the forced response respectively, the the total
response is given by

Total response y[k] = yn[k]︸ ︷︷ ︸
modes

+ yϕ[k]︸ ︷︷ ︸
nonmodes

Because yn[k] + yϕ[k] is a solution of the system, we have

Q[E](yn[k] + yϕ[k]) = P[E]f[k]

yn[k] is made up of characteristic modes,

Q[E]yn[k] = 0

Substitution of this equation yields

Q[E]yϕ[k] = P[E]f[k]
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Classical solution of Linear Difference Equations
Forced Response

By definition, the forced response contains only nonmode terms and and the list of the inputs
and the corresponding forms of the forced function is show below:

Input f[k] Forced Response yϕ[k]
1. rk r ̸= γi (i = 1, 2, · · · ,n) crk

2. rk r = γi ckrk

3. cos(βk + θ) c cos(βk + ϕ)

4.
( m∑

i=0
αiki

)
rk

( m∑
i=0

ciki
)

rk

Note: By definition yϕ[k] cannot have any characteristic mode terms.
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Classical solution of Linear Difference Equations
Forced Response example

Determine the total response y[k] of a system

(E2 − 5E + 6)y[k] = (E − 5)f[k]

if the input f[k] = (3k + 5)u[k] and the auxiliary conditions are y[0] = 4, y[1] = 13.
The characteristic equation is

γ2 − 5γ + 6 = (γ − 2)(γ − 3) = 0

Therefore, the natural response is

yn[k] = B1(2)k + B2(3)k

To find the form of forced response yϕ[k], we use above Table, Pair 4 with r = 1,m = 1.
This yields

yϕ[k] = c1k + c0
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Classical solution of Linear Difference Equations
Forced Response example cont.

Therefore

yϕ[k + 1] = c1(k + 1) + c0 = c1k + c1 + c0

yϕ[k + 2] = c1(k + 2) + c0 = c1k + 2c1 + c0

Also

f[k] = 3k + 5

and

f[k + 1] = 3(k + 1) + 5 = 3k + 8

Substitution of the above results yiels

c1k + 2c1 + c0 − 5(c1k + c1 + c0) + 6(c1k + c0) = 3k + 8 − 5(3k + 5)
2c1k − 3c1 + 2c0 = −12k − 17
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Classical solution of Linear Difference Equations
Forced Response example cont.

Comparison of similar terms on the two sides yields

2c1 = −12
−3c1 + 2c0 = −17

and c1 = −6, c2 = − 35
2 . Therefore

yϕ[k] = −6k −
35
2

The total response is

y[k] = yn[k] + yϕ[k]

= B1(2)k + B2(3)k − 6k −
35
2
, k ≥ 0
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Classical solution of Linear Difference Equations
Forced Response example cont.

To determine arbitrary constants B1 and B2 we set k = 0 and 1 and substitute the initial
conditions y[0] = 4, y[1] = 13 to obtain

B1 + B2 −
35
2

= 4

2B1 + 3B2 −
47
2

= 13

and B1 = 28, B2 = − 13
2 .

Therefore

yn[k] = 28(2)k −
13
2
(3)k

and

y[k] = 28(2)k −
13
2
(3)k︸ ︷︷ ︸

yn[k]

−6k −
35
2︸ ︷︷ ︸

yϕ[k]
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