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Introduction to Filters
• An electric filter can be defined as a network or system that transforms an input signal

in some specified way to yield an output signal with desired characteristics.
• Filter is a frequency-selective device, and its frequency response has significant values

only in certain bands along the frequency axis.
• Filters are used extensively in electronic devices. For instance, telephone, radio,

telegraph, television, radar, sonar, and space vehicles utilize filters in one form or
another.

• Filters may be either analog or digital. Here we consider only analog filters. The
components of an analog filter may be passive circuit elements like RLC circuits.
Alternatively, it may be an active one; RLC circuit with operational amplifiers.

• The earliest work in filter theroy was done by Campbell in the United States and
Wagner in Germany in 1915.
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Filter Classifications
Filters can be classified on the basis of their frequency response: low-pass(a), high-pass(b),
band-pass(c), band-eliminating(notch)(d), and all-pass filters.
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• These are ideal filter
• There are several way to show that the ideal filter is not realizable.
• One way, we can show that we cannot make |H(jω)| = −∞ dB at any frequency.
• |H(jω)| = 1× 10−5 ⇒ −100 dB only.
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Filter Classifications
• It may also show that the inverse transform of the rectangular pulse in

frequency-domain is the sinc function in time-domain. For example, the impulse
response of the ideal low-pass filter will be the sinc function, which is noncausal and
therefore physically unrealizable.

• It is not really necessary to requeire the ideal frequency response characteristics.
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Filter Classifications
Simple RLC circuit
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• Low-pass filter

VC(s) =
Vi(s)/s

1 + s+ 1/s
=

Vi(s)

s2 + s+ 1

Hlp(s) =
1

s2 + s+ 1
=

1

(jω/1)2 + j2ζ(ω/1) + 1

at low frequency ω = 0 (dc), the inductor is short circuit and the capacitor is an open
circuit, so that the voltage in the capacitor is equal to the voltage in the source. On
the other hand, if the frequency of the input source is very high, then the inductor is
an open circuit (j∞) and the capacitor a short circuit (1/j∞) so that the capacitor
voltage is zero.
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Filter Classifications
Simple RLC circuit

• High-pass filter Now we let the output be the voltage across the inductor. We have

Hhp(s) =
VL(s)

Vi(s)
=

s2

s2 + s+ 1

At high frequency the impedance of inductor is zero, so that the inductor voltage is
zero, and for very high frequency the impedance of the inductor is very large so that it
can be considered open circuit and the voltage in the inductor equals that of the
source.

• Band-pass filter Letting the output be the voltage across the resistor, its transfer
function is

Hbp(s) =
VR(s)

Vi(s)
=

s

s2 + s+ 1

For zero frequency, the capacitor is an open circuit so the voltage across the resistor is
zero. At the very high frequency the impedance of the inductor is very large, or an
open circuit and the voltage across the resistor is zero. For some middle frequency the
serial of the inductor and the capacitor resonates and will have zero impedance. We
have the maximum voltage across the resistor.
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Filter Classifications
Simple RLC circuit

• Band-stop filter Suppose we consider as output the voltage across the connection of
the inductor and the capacitor. At low and high frequencies, the impedance of the LC
connection is very high, or open circuit, and so the output voltage is the input voltage.
At the resonance frequency ω = 1 the impedance of the LC connection is zero, so the
output voltage is zero. The band-stop filter is

Hbs(s) =
s2 + 1

s2 + s+ 1
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Approximation Filter
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• Generally, a certain amount of tolerance is permissible, both in the pass-band and the
stop-band, so that the frequency response of a low-pass filter can be of the form shown
in Figure above. Where the frequency response has been shown for only positive values
of ω.

• We have a transition band between the pass-band and the stop-band. The frequency
range from ωc to ωp.

• In the pass-band it is required that the gain be within the range 1± ϵ, where ϵ is a
specified tolerance.

• In the stop-band the gain must not exceed another specified tolerance δ.
• By reducing the values of the tolerances and the width of the transition region, we

obtain a closer approximation to the ideal filter.
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Butterworth Filter
The amplitude response |H(jω)| of an nth order Butterworth low-pass filter is given by

|H(jω)| =
1√

1 +
(

ω
ωc

)2n

At ω = ωc, the gain |H(jω)| = 1/
√
2 or −3 dB.

• Because the power is proportional to the amplitude squared, the power ratio (output
power to input power) drops by a factor 2 at ω = ωc

• The ωc is called the half-power frequency (the amplitude ratio of
√
2 is 3 dB).

• It is convenient to consider a normalized filter H(s), whose half-power frequency is 1

rad/s (ωc = 1). The amplitude characteristic reduces to

|H(jω)| =
1

√
1 + ω2n

• We can obtain the desired transfer function H(s) for any value of ωc by simple
frequency scaling, where we replace s by s/ωc in the normalized H(s).
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Butterworth Filter
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• The Butterworth amplitude response decreases monotonically. Moreover, the first
2n− 1 derivatives of the amplitude response are zero at ω = 0. For this reason this
characteristic is called maximally flat at ω = 0.

• The filter gain is 1(0dB) at ω = 0 and 0.707(−3dB) at ω = 1 for all n. Therefore, the
3− dB (or half power) bandwidth is 1 rad/s for all n.

• The last n, the amplitude response approaches the ideal characteristic.
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Butterworth Filter
To determine the corresponding transfer function H(s), recall that H(−jω) is the complex
conjugate of H(jω). Therefore

H(jω)H(−jω) = |H(jω)|2 =
1

1 + ω2n

Substituting s = jω in this equation, we obtain

H(s)H(−s) =
1

1 + (s/j)2n

The poles of H(s)H(−s) are given by

s2n = −(j)2n

In this result we use the fact that −1 = ejπ(2k−1) for integral values of k, and j = ejπ/2 to
obtain

s2n = ejπ(2k−1+n), k integer
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Butterworth Filter
This equation yields the poles of H(s)(− s) as

sk = e
jπ
2n

(2k+n−1), k = 1, 2, 3, . . . , 2n

• We can see that all poles have a unit magnitude; that is, they are located on a unit
circle in the s-plane separated by angel π/n.

• Since H(s) is stable and causal, its poles must lie in the LHP, which are

sk = e
jπ
2n

(2k+n−1) = cos
π

2n
(2k + n− 1) + j sin

π

2n
(2k + n− 1),

where k = 1, 2, 3, . . . , n and H(s) is given by

H(s) =
1

(s− s1)(s− s2) · · · (s− sn)

Lecture 7: Frequency Response and Continuous-Time Filters II J 12/22 I }



Butterworth Filter
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We find the poles of H(s) for n = 4 to be at angles 5π/8, 7π/8, 9π/8, and 11π/8. These lie
on the unit circle and are given by −0.3827± j0.9239, −0.9239± j0.3827. Hence, H(s) is

H(s) =
1

(s2 + 0.7654s+ 1)(s2 + 1.478s+ 1)
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Butterworth Filter
Determination of n, the Filter Order

If Ĝx is the gain of a low-pass Butterworth filter in dB units at ω = ωx, then

Ĝx = 20 log |H(jωx)| = −20 log

√
1 +

(
ω

ωc

)2n

= −10 log

[
1 +

(
ωx

ωc

)2n
]

ωp ωs

Gs

Gp
1

0
ω

|H(jω)| We have

Ĝp = −10 log

[
1 +

(
ωp

ωc

)2n
]

Ĝs = −10 log

[
1 +

(
ωs

ωc

)2n
]

Or

(
ωp

ωc

)2n

= 10−Ĝp/10 − 1,

(
ωs

ωc

)2n

= 10−Ĝs/10 − 1
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Butterworth Filter
Determination of n, the Filter Order

Dividing both equations, we obtain

(
ωs

ωp

)2n

=

[
10−Ĝs/10 − 1

10−Ĝp/10 − 1

]

and

n =
log

[(
10−Ĝs/10 − 1

)
/
(
10−Ĝp/10 − 1

)]
2 log(ωs/ωp)

Also we have

ωc =
ωp[

10−Ĝp/10 − 1
]1/2n

ωc =
ωs[

10−Ĝs/10 − 1
]1/2n
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Butterworth Filter
Determination of n, the Filter Order: Example

Design a Butterworth low-pass filter to meet the specifications:
1. Pass-band gain to lie between 1 and Gp = 0.794(Ĝp = −2 dB) for 0 ≤ ω < 10.
2. Stop-band gain not to exceed Gs = 0.1 (Ĝs = −20 dB) for ω ≥ 20.

Solution:

1. Determine n. Here ωp = 10, ωs = 20, Ĝp = −2 dB, and Ĝs = −20 dB.

n =
log

[(
10−Ĝs/10 − 1

)
/
(
10−Ĝp/10 − 1

)]
2 log(ωs/ωp)

= 3.701 ≈ 4

2. Determine ωc. From

ωc =
ωp[

10−Ĝp/10 − 1
]1/2n = 10.693 ⇒ Gp = 0.794

3. The normalized transfer function H(s) for n = 4 is

H(s) =
1

s4 + 2.6131s3 + 3.4142s2 + 2.613s+ 1
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Butterworth Filter
Determination of n, the Filter Order: Example

4. The final filter transfer function H(s) is with ωc = 10.693, so we have

H(s) =
1(

s
10.693

)4
+ 2.6131

(
s

10.693

)3
+ 3.4142

(
s

10.693

)2
+ 2.6131

(
s

10.693

)
+ 1

=
13073.7

s4 + 27.942s3 + 390.4s2 + 3194.88s+ 13073.7
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Chebyschev Filter
The frequency response of the Butterworth filter is flat near the frequency ω = 0 , but its
cutoff rate is not high. A better cutoff rate is obtained by using Chebyschev filters with the
magnitude response

|H(jω)| =
1√

1 + ϵ2C2
n(ω)

,

where Cn(ω) , the nth-order Chebyshev polynomial, is given by

Cn(ω) = cos(n cos−1 ω)

Cn(ω) is also expressible in polynomial form as follow:
• C0(ω) = cos(0) = 1 and C1(ω) = cos(cos−1(ω)) = ω

• Let us define ω = cosϕ so that Cn(ω) = cosnϕ. By using the trigonometric identity

cos[(n+ 1)ϕ] + cos[(n− 1)ϕ] = 2 cosnϕ cosϕ

Then we have

Cn+1(ω) + Cn−1(ω) = 2Cn(ω)ω ⇒ Cn+1(ω) = 2ωCn(ω)− Cn−1(ω)
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Chebyschev Filter
The following are easily established:

C0(ω) = 1, C1(ω) = ω

C2(ω) = 2ωC1(ω)− C0(ω) = 2ω2 − 1

C3(ω) = 2ωC2(ω)− C1(ω) = 4ω3 − 3ω

C4(ω) = 2ωC3(ω)− C2(ω) = 8ω4 − 8ω2 + 1

C5(ω) = 2ωC4(ω)− C3(ω) = 16ω5 − 20ω3 + 5ω

C6(ω) = 2ωC5(ω)− C4(ω) = 32ω6 − 48ω4 + 18ω2 − 1

C7(ω) = 2ωC6(ω)− C5(ω) = 64ω7 − 112ω5 + 56ω3 − 7ω

1

1√
1+ϵ2

1

0
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ω
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1√
1+ϵ2

1

0

n = 7
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Chebyschev Filter
• The Chebyshev amplitude response has ripoles in the passband and is smooth

(monotonic) in the stop-band. The pass-band is 0 ≤ ω ≤ 1, and there is a total of n
maxima and minima over the pass-band 0 ≤ ω ≤ 1

• We observe that

C2
n(0) =

{
0, n odd
1, n even

Therefore, the dc gain is

|H(0)| =

1, n odd
1√
1+ϵ2

, n even

• The parameter ϵ controls the height of ripples. In the pass-band, r, the ratio of the
maximum gain to the minimum gain is r =

√
1 + ϵ2. The ratio r is

r̂ = 20 log
√

1 + ϵ2 = 10 log(1 + ϵ2) =⇒ ϵ2 = 10r̂/10 − 1
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Chebyschev Filter
• The ripple is present only over the pass-band 0 ≤ ω ≤ 1. At ω = 1, the amplitude

response is 1/
√
1 + ϵ2 = 1/r. For ω > 1, the gain decreases monotonically. Because

all the ripples in the pass-band are of equal height, the Chebyshev polynomials Cn(ω)

are known as equal-ripple functions.
• If we reduce the ripple, the pass-band behavior improves, but it does so at the cost of

stope-band behavior. As ϵ is reduced, the gain in the stop-band increases, and
vice-versa.

• The transfer function H(s) corresponding to the function |H(jω)| can be obtained by
noting that

|H(jω)|2 = H(jω)H(−jω)

It follows that the poles of H(s) can be obtained from the roots in the left half of the
of the complex plant of the equation

1 + ϵ2C2
n(ω) = 0
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