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Signal Energy
The signal energy Ef of a signal f(t) is defined by

Ef =

∫ ∞

−∞
|f(t)|2dt

Signal energy can be related to the signal spectrum F (ω) by

Ef =

∫ ∞

−∞
f(t)f∗(t)dt =

∫ ∞

−∞
f(t)

[
1

2π

∫ ∞

−∞
F ∗(ω)e−jωtdω

]
dt,

where f∗(t) is the conjugate of f(t). Interchanging the order of integration yields

Ef =
1

2π

∫ ∞

−∞
F ∗(ω)

[∫ ∞

−∞
f(t)e−jωtdt

]
dω

=
1

2π

∫ ∞

−∞
F (ω)F ∗(ω)dω =

1

2π

∫ ∞

−∞
|F (ω)|2dω

The Parseval’s theorem

Ef =

∫ ∞

−∞
|f(t)|2dt =

1

2π

∫ ∞

−∞
|F (ω)|2dω
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Signal Energy

ω00

∆ω

ω

|F (ω)|2

• The energy of a signal f(t) results from energies contributed by all the spectral
components of the signal f(t). The total signal energy is the area under |F (ω)|2
(divided by 2π).

• If we consider only a small band ∆ω (∆ω → 0), the energy ∆Ef of the spectral
components in this ban is the area of |F (ω)|2 under this band (divided by 2π):

∆Ef =
1

2π
|F (ω)|2∆ω = |F (ω)|2∆F ,

∆ω

2π
= ∆F Hz

Lecture 6: Fourier Transform III J 3/20 I }



Signal Energy
• Therefore, the energy contributed by the components in this band of ∆F (in hertz) is

|F (ω)|2∆F .
• The total signal energy is the sum of energies of all such bands and is indicated by the

area under |F (ω)|2 is the energy spectral density (per unit bandwidth in hertz).
• For real signals, F (ω) and F (−ω) are conjugates, and |F (ω)|2 is an even function of ω

because

|F (ω)|2 = F (ω)F ∗(ω) = F (ω)F (−ω)

• The energy can be expressed as

Ef =
1

π

∫ ∞

0
|F (ω)|2dω

• It follows that the energy contributed by spectral components of frequencies between
ω1 and ω2 is

∆Ef =
1

π

∫ ω2

ω1

|F (ω)|2dω
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Signal Energy
Example I

Find the energy of signal f(t) = e−atu(t). Determine the frequency W (rad/s) so that the
energ contributed by the spectral components of all the frequencies below W is 95% of the
signal energy Ef .
Solution: We have

Ef =

∫ ∞

−∞
f2(t)dt =

∫ ∞

0
e−2atdt =

1

2a

For this signal

F (ω) =
1

jω + a

and

Ef =
1

π

∫ ∞

0
|F (ω)|2dω =

1

π

∫ ∞

0

1

ω2 + a2
dω =

1

πa
tan−1 ω

a

∣∣∣∣∞
0

=
1

2a

The band ω = 0 to ω = W contains 95% of the signal energy, that is, 0.95/2a.
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Signal Energy
Example I

Therefore, with ω1 = 0 and ω2 = W , we obtain

0.95

2a
=

1

π

∫ W

0

dω

ω2 + a2
=

1

πa
tan−1 ω

a

∣∣∣∣W
0

=
1

πa
tan−1 W

a

0.95π

2
= tan−1 W

a
⇒ W = 12.706a rad/s

This result indicates that the spectral components of f(t) in the band from 0 (dc) to 12.706a

rad/s (2.02a Hz) contribute 95% of the total signal energy; all the remaining spectral
components (in the band from 12.706a rad/s to ∞ ) contribute only 5% of the signal energy.

Lecture 6: Fourier Transform III J 6/20 I }



Application of Fourier Transform
System Analysis

Suppose a system is represented by a second-order differential equation with constant
coefficients:

d2

dt2
y(t) + 3

d

dt
y(t) + 2y(t) = x(t)

and that the initial conditions are zero. Let x(t) = δ(t). Find y(t).
Solution: Computing the Fourier transform of the system, we get

[
(jω)2 + 3jω + 2

]
Y (ω) = X(ω)

Then
H(ω) =

1

(jω)2 + 3jω + 2
=

1

(jω + 1)(jω + 2)

=
1

jω + 1
−

1

jω + 2

Then Y (ω) = H(ω)X(ω) = H(ω) and the inverse Fourier transform of Y (ω) is

y(t) =
[
e−t − e−2t

]
u(t)
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Application of Fourier Transform
System Analysis

Given the linear circuit shown below, use Fourier transforms to find the time-domain
steady-state response v(t) to the input function i(t) = 10 sin(9t+ 30◦) .

i(t)
1

2
Ω 1 F

+
v(t)

−

Solution: The transfer function is

V (ω)

I(ω)
= H(ω) =

0.5(1/jω)

0.5 + 1/jω
=

1

2 + jω

Since i(t) = 10 sin(9t+ 30◦) = 10 sin(9t+ π
6
) = 10 sin(9(t+ π

54
)), we have

F{i(t)} = I(ω) = j10π[δ(ω + 9)− δ(ω − 9)]ejπ/54

V (ω) = H(ω)I(ω) =
j10π

2 + jω
[δ(ω + 9)− δ(ω − 9)]ejωπ/54
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Application of Fourier Transform
System Analysis

Then

v(t) = F−1{V (ω)} =
1

2π

∫ ∞

−∞
V (ω)ejωtdω

= j5

[∫ ∞

−∞
δ(ω + 9)

ejωπ/54

2 + jω
ejωtdω −

∫ ∞

−∞
δ(ω − 9)

ejωπ/54

2 + jω
ejωtdω

]

= j5

[
e−jπ/6

2− j9
e−j9t −

ejπ/6

2 + j9
ej9t

]
= 5

[
H(−9)e−j(9t+π/6) −H(9)ej(9t+π/6)

]
= j5

[
|H(9)|

(
e−j(9t+π/6− H(9)) − ej(9t+π/6− H(9))

)]
= 10|H(9)| sin(9t+

π

6
− H(9)) = 1.08 sin(9t+ 30◦ − 77.5◦)

= 1.08 sin(9t− 47.5◦) = 1.08 cos(9t− 137.5◦)

Using phasors is easily with I = 10 30◦ − 90◦ = 10 −60◦ and Z = 1
2+j9

= 0.108 −77.5◦

so that

V = IZ = 1.08 −137.5◦ or v(t) = 1.08 cos(9t− 137.5◦)
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Application to Communication Systems
The application of the Fourier transform in communications is clear. The representation of
signals in the frequency domain and the concept of modulation are basic in communications.
The basic applications are:

• Amplitude (linear) modulation
• Angle (nonlinear) modulation

Given the low-pass nature of most message signals, it is necessary to shift in frequency the
spectrum of the message to avoid using a very large antenna. This can be attained by means
of modulation, which is done by changing either the magnitude or the phase of a carrier:

A(t) cos(ωct+ θc(t))

• When A(t) is proportional to the message, for constant phase, we have amplitude
modulation (AM).

• If we let θ(t) change with the message, keeping the amplitude constant, we then have
frequency modulation (FM) or phase modulation (PM) which are called angle
modulations.
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AM with Suppressed Carrier

m(t)
× Channel Band-pass

filter × Low-pass
filter

m̂(t)

cos(ωct) cos(ωct)

Transmitter Receiver

In amplitude modulation, we have

s(t) = m(t) cos(ωct),

where m(t) is a message signal (e.g., voice or music or both). The cos(ωct) is a carrier signal
with frequency ωc ≫ ω0, where ω0 = 2πf0 is the maximum frequency in the message (for
music f0 is about 22 kHz). the signal s(t) is called amplitude modulated with suppressed
carrier (AM-SC). From Fourier transform, we have

m(t) ⇐⇒ M(ω)

m(t) cos(ωct) ⇐⇒
1

2
[M(ω + ωc) +M(ω − ωc)]
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AM with Suppressed Carrier

m(t)

t ⇐⇒

−2πB 2πB

2A
M(ω)

m(t) cosωct
m(t)

−m(t)

t

⇐⇒ −ωc ωc

A

2A

4πB

USBLSB

ω
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AM with Suppressed Carrier
• The process of modulation shifts the spectrum of the modulating signal to the left and

the right by ωc.
• If the bandwidth of m(t) is B Hz, then the bandwidth of the modulated signal is 2B

Hz.
• The modulated signal spectrum centered at ωc is composed of two parts: a portion tht

lies above ωc, known as the upper sideband (USB), and a portion that lies below ωc,
known as the lower sideband (LSB). This is also the same as the spectrum centered at
−ωc.

• This form of modulation is called double sideband (DSB) modulation.
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Amplitude Modulation (AM)
• For the suppressed carrier scheme, a receiver must generate a carrier in frequency and

phase synchronism with the carrier at the transmitter that may be located hundreds or
thousands of miles away. This method could be costly.

• The other alternative is for the transmitter to transmit a carrier A cosωct (along with
the modulated signal m(t) cosωct] so that there is no need to generate a carrier at the
receiver. In this case the transmitter needs to transmit much larger power, a rather
expensive procedure.

• The second option (transmitting a carrier along with the modulated signal) is the
obvious choice. This is the so-called AM (amplitude modulation), in which the
transmitted signal φAM(t) is given by

φAM(t) = A cosωct︸ ︷︷ ︸
carrier

+ m(t) cosωct︸ ︷︷ ︸
modulation message

= [A+m(t)] cosωct, where A+m(t) ≥ 0

• The AM signal is identical to the DSB-SC signal with A+m(t) as the modulating
signal.
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Amplitude Modulation (AM)
m(t)

t

A+m(t) ̸> 0 ∀t

A
t

⇐⇒

Envelop |A+m(t)|

t

A+m(t) > 0 ∀t

A

t

⇐⇒

Envelop |A+m(t)|

t
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Amplitude Modulation (AM)
• If A is large enough so that A+m(t) ≥ 0 (in nonnegative) for all values of t. The

envelope has the same shape as m(t) (although riding on a dc of magnitude A)
• If A is not large enough so that A+m(t) ̸> 0 for all values of t. The envelope shape is

not m(t) , for some parts get rectified.
• If A is large enough, we can detect the desired signal m(t) by detecting the envelope.

We shall see that the envelope detection is an extremely simple and inexpensive
operation, which does not require generation of a local carrier for the demodulation.
However the envelope of AM has the information about m(t) only if the AM signal
[A+m(t)] cosωct satisfies the condition A+m(t) > 0 for all t.

• If mp is the peak amplitude (positive or negative) of m(t), the m(t) ≥ −mp. Hence,
the condition is equivalent to

A ≥ mp

• We define the modulation index µ as

µ =
mp

A
, 0 ≤ µ ≤ 1
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Amplitude Modulation (AM)
Example

Sketch φAM(t) for modulation indices of µ = 0.5 (50% modulation) and µ = 1 (100%
modulation), when m(t) = B cosωmt.
Solution: In this case, mp = B and the modulation index is

µ =
B

A

Hence, B = µA and

m(t) = B cosωmt = µA cosωmt

Therefore

φAM = [A+m(t)] cosωct = A [1 + µ cosωmt] cosωct
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Amplitude Modulation (AM)

1 + 0.5 cosωmt

µ = 0.5

t

1 + cosωmt

µ = 1

t
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Amplitude Modulation (AM)
Demodulation of AM: The Envelope Detector

AM signal C R

+

vC(t)

−

• In practice, we use the noncoherent methods of AM demodulation, the envelope
detection.

• The Figure shows the simple circuit to do this.
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