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Some properties of the Fourier Transform
the time-frequency duality ∫ ∞

−∞
f(t)e−jωtdt

F (ω)

1

2π

∫ ∞

−∞
F (ω)ejωtdω

f(t)

The direct and the inverse Fourier transforms.
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Some properties of the Fourier Transform
the time-frequency duality

f(t)
F⇐==⇒ F (ω)

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt, f(t) =

1

2π

∫ ∞

−∞
F (ω)ejωtdω

• the direct and the inverse transform operations are remarkably similar.
• the factor 2π appears only in the inverse operator, and the exponential indices in the

two operations have opposite signs. Otherwise the two operations are symmetrical.
• It is the basis of the so-called duality of time and frequency.
• For example, the time-shifting property, to be proved later, states that if

f(t)
F⇐==⇒ F (ω), then

f(t− t0)
F⇐==⇒ F (ω)e−jωt0

f(t)ejω0t F⇐==⇒ F (ω − ω0)

• This properties of the Fourier transform are useful not only in deriving the direct and
inverse transforms of many functions, but also very useful in signal processing.
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Some properties of the Fourier Transform
Symmetry Property

Symmetry Property

f(t)
F⇐==⇒ F (ω)

then

F (t)
F⇐==⇒ 2πf(−ω)

Proof:

f(t) =
1

2π

∫ ∞

−∞
F (x)ejxtdx

2πf(−t) =

∫ ∞

−∞
F (x)e−jxtdx

Changing t to ω yields the result.
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Some properties of the Fourier Transform
Symmetry Property :examples I

− τ
2

τ
2

0
t

f(t)

⇐⇒
− 2π

τ
2π
τ

τ

ω

F (ω)

(a)

−2π
τ

−2π
τ

τ

t

f(t)

⇐⇒
− τ

2
τ
2

2π

ω

F (ω)

(b)
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Some properties of the Fourier Transform
Symmetry Property :examples I

We have

rect

(
t

τ

)
︸ ︷︷ ︸

f(t)

F⇐==⇒ τ sinc
(ωτ

2

)
︸ ︷︷ ︸

F (ω)

Here F (t) is the same as F (ω) with ω replaced by t, and f(−ω) is the same as f(t) with t

replaced by −ω. Using the symmetry property yields

τ sinc

(
τt

2

)
︸ ︷︷ ︸

F (t)

F⇐==⇒ 2π rect

(
−ω

τ

)
︸ ︷︷ ︸

2πf(−ω)

= 2π rect
(ω

τ

)

Note that rect (−x) = rect (x) because rect is an even function.
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Some properties of the Fourier Transform
Symmetry Property :examples II

Show that 1
jt+a

F⇐==⇒ 2πeaω1(−ω)

Solution:

e−at
1(t)︸ ︷︷ ︸

f(t)

F⇐==⇒
1

jω + a︸ ︷︷ ︸
F (ω)

1

jt+ a︸ ︷︷ ︸
F (t),(ω→t)

F⇐==⇒ 2πeaω1(−ω)︸ ︷︷ ︸
2πf(−ω),(t→−ω)

Show that δ(t+ t0) + δ(t− t0)
F⇐==⇒ 2 cos t0ω

Solution:

cosω0t
F⇐==⇒ π[δ(ω − ω0) + δ(ω + ω0)]

π[δ(t+ t0) + δ(t− t0)]
F⇐==⇒ 2π cos t0(−ω)
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Some properties of the Fourier Transform
Scaling Property

Scaling Property
If

f(t)
F⇐==⇒ F (ω)

then, for any real constant a,

f(at)
F⇐==⇒

1

|a|
F
(ω

a

)
Proof:

F [f(at)] =

∫ ∞

−∞
f(at)e−jωtdt =

1

a

∫ ∞

−∞
f(x)e(−jω/a)xdx

Let τ = at, for a > 0, we have t = τ/a, t = ∞ → τ = ∞ , t = −∞ → τ = −∞

F {f(at)} =
1

a

∫ ∞

−∞
f(τ)e(−jω/a)τdτ =

1

a
F (

ω

a
)
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Some properties of the Fourier Transform
Scaling Property

If a < 0, the integration limits flip which introduces an extra minus sign, we have
t = ∞ → τ = −∞, t = −∞ → τ = ∞

F {f(at)} =
1

a

∫ −∞

∞
f(τ)e(−jω/a)τdτ = −

1

a

∫ ∞

−∞
f(τ)e(−jω/a)τdτ

= −
1

a
F
(ω

a

)
Hence,

F (ω) =


1

a
F
(ω

a

)
, a > 0

−
1

a
F
(ω

a

)
, a < 0

=
1

|a|
F
(ω

a

)
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Some properties of the Fourier Transform
Scaling Property

• The function f(at) represents the function f(t) compressed in time by a factor a.
• Similarly, a function F (ω/a) represents the function F (ω) expanded in frequency by

the same factor a.
• for example cos 2ω0t is the same as the signal cosω0t time-compressed by a factor of

2. Clearly, the spectrum of the former (impulse at ±2ω0) is an expanded version of the
spectrum of the latter (impulse at ±ω0).

• The scaling property implies that if f(t) is wider, its spectrum is narrower, and vice
versa.

• Doubling the signal duration halves its bandwidth and vice versa.
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Some properties of the Fourier Transform
Scaling Property

− τ
2

τ
2

0
t

f(t)

⇐⇒
− 2π

τ
2π
τ

τ

ω

F (ω)

(a)

−τ τ

0
t

f(t)

⇐⇒
−π

τ
π
τ

2τ

ω

F (ω)

(b)
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Some properties of the Fourier Transform
Time and frequency inversion property

Time and Frequency inversion
From,

f(at)
F⇐==⇒

1

|a|
F
(ω

a

)
By letting a = −1, we obtain the time and frequency inversion property

f(−t)
F⇐==⇒ F (−ω)

Example Find the Fourier transforms of eat1(−t) and e−a|t|. From

e−at
1(t)

F⇐==⇒
1

jω + a
then eat1(−t)︸ ︷︷ ︸

f(−t)

F⇐==⇒
1

−jω + a︸ ︷︷ ︸
F (−ω)

Then e−a|t| = e−at
1(t) + eat1(−t)

e−a|t| F⇐==⇒
1

jω + a
+

1

−jω + 1
=

2a

a2 + ω2
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Some properties of the Fourier Transform
Time and frequency inversion property

1
f(t) = e−a|t|

t

f(t)

⇐⇒

F (ω) =
2a

a2 + ω2

ω

F (ω)
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Some properties of the Fourier Transform
Time-Shifting Property

Time-Shifting
If

f(t)
F⇐==⇒ F (ω) then f(t− t0)

F⇐==⇒ F (ω)e−jωt0

Proof: By definition,

F [f(t− t0)] =

∫ ∞

−∞
f(t− t0)e

−jωtdt

Letting t− t0 = x, we have

F [f(t− t0)] =

∫ ∞

−∞
f(x)e−jω(x+t0)dx

= e−jωt0

∫ ∞

−∞
f(x)e−jωxdx = F (ω)e−jωt0

The result shows that delaying a signal by t0 seconds does not change its amplitude
spectrum. The phase spectrum, however, is changed by −ωt0.
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Some properties of the Fourier Transform
Physical Explanation of the Linear Phase

• time delay in a signal causes a linear phase shift in its spectrum but does not change
its amplitude spectrum.

Example Find the Fourier transform of e−a|t−t0|

This is the time-shift version of e−a|t|

e−a|t−t0| F⇐==⇒
2a

a2 + ω2
e−jωt0

1
f(t) = e−a|t−t0|

t

f(t)

⇐⇒

|F (ω)| = 2a

a2 + ω2

̸ F (ω) = −ωt0

ω

F (ω)
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Some properties of the Fourier Transform
Physical Explanation of the Linear Phase: Example

Find the Fourier transform of the gate pulse f(t)

τ
2

τ

1

t

f(t)

The pulse f(t) is the gate pulse rect
(
t
τ

)
delayed by τ/2 seconds. Hence, its Fourier

transform is the Fourier transform of rect
(
t
τ

)
multiplied by e−jωτ/2. Therefore

F (ω) = τ sinc
(ωτ

2

)
e−jωτ/2

The amplitude spectrum |F (ω)| of this pulse is the same as rect
(
t
τ

)
. But the phase

spectrum has an added linear term −ωτ/2.
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Some properties of the Fourier Transform
Physical Explanation of the Linear Phase: Example

−4π
τ

−2π
τ

− 2π
τ

4π
τ

0

ω

|F (ω)|

−4π
τ

−2π
τ

− 2π
τ

4π
τ−π

π

2π

3π

4π

0
ω

̸ F (ω)
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Some properties of the Fourier Transform
The Frequency-Shifting Property

Frequency-Shifting
If

f(t)
F⇐==⇒ F (ω) then f(t)ejω0t F⇐==⇒ F (ω − ω0)

Proof: By definition,

F
[
f(t)ejω0t

]
=

∫ ∞

−∞
f(t)ejω0te−jωtdt

=

∫ ∞

−∞
f(t)e−j(ω−ω0)tdt = F (ω − ω0)

Changing ω0 to −ω0 this property yields

f(t)e−jω0t F⇐==⇒ F (ω + ω0)

This property shows that the multiplication of a signal by a factor ejω0t shifts the spectrum
of that signal by ω = ω0. Note the duality between the time-shifting and the
frequency-shifting properties.
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Some properties of the Fourier Transform
The Frequency-Shifting Property

Because ejω0t is not a real function that can be generated, frequency shifting in practice is
achieved by multiplying f(t) by sinusoid.

f(t) cosω0t =
1

2

[
f(t)ejω0t + f(t)e−jω0t

]
It follows that

f(t) cosω0t
F⇐==⇒

1

2
[F (ω − ω0) + F (ω + ω0)]

The result shows that the multiplication of a signal f(t) by a sinusoid of frequency ω0 shifts
the spectrum F (ω) by ±ω0

• Multiplication of a sinusoid cosω0t by f(t) amounts to modulation the sinusoid
amplitude.

• This type of modulation is known as amplitude modulation.
• The sinusoid cosω0t is called the carrier, the signal f(t) is the modulating signal, and

the signal f(t) cosω0t is the modulated signal.
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Some properties of the Fourier Transform
The Frequency-Shifting Property

t

f(t)

⇐⇒

−W W

2A

ω

F (ω)

f(t) cosω0t

t

f(t)

⇐⇒ −ω0 ω0

A

2A

2W

ω

F (ω)
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Some properties of the Fourier Transform
The Frequency-Shifting Property: Example

Find and sketch the Fourier transform fo the modulated signal f(t) cos 10t in which f(t) is a
gate pulse rect

(
t
4

)
Solution: From Fourier Transform table, we have

rect

(
t

4

)
F⇐==⇒ 4 sinc (2ω)

It follows that

f(t) cos 10t
F⇐==⇒

1

2
[F (ω + 10) + F (ω − 10)]

In this case, F (ω) = 4 sinc(2ω), Therefore

f(t) cos 10t
F⇐==⇒ 2 sinc[2(ω + 10)] + 2 sinc[2(ω − 10)]

The spectrum of f(t) cos 10t is obtained by shifting F (ω) to the left by 10 and also to the
right by 10, and then multiplying it by one-half.
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Some properties of the Fourier Transform
The Frequency-Shifting Property: Example

−2 2

1

t

f(t)

⇐⇒
−π

2
π
2

4

ω

F (ω)

−2 2

1

t

f(t)

⇐⇒ −10 10

2

4

ω

F (ω)
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Some properties of the Fourier Transform
The Frequency-Shifting Property: Application

• Modulation is used to shift signal spectra.
• If several signals, each occupying the same frequency band, are transmitted

simultaneously over the same transmission medium, they will all interfere; it will be
impossible to separate or retrieve them at a receiver. For example, if all radio stations
decide to broadcast audio signals simultaneously, the receiver will not be able to
separate them.

• This problem is solved by using modulation, whereby each radio station is assigned a
distinct carrier frequency. Each station transmits a modulated signal. This procedure
shifts the signal spectrum to its allocated band, which is not occupied by any other
station.

• A radio receiver can pick up any station by tuning to the band of the desired station.
The receiver must now demodulate the received signal. Demodulation therefore
consists of another spectral shift required to restore the signal to its original band.

• Both modulation and demodulation implement spectral shifting.
• The method of transmitting several signals simultaneously over a channel by sharing its

frequency band is known as frequency-division multiplexing (FDM)
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Some properties of the Fourier Transform
The Frequency-Shifting Property: Application

• For effective radiation of power over a radio link, the antenna size must be of the order
of the wavelength of the signal to be radiated.

• Audio signal frequencies are so low (wavelengths are so large) that impracticably large
antennas will be required for radiation.

• Here, shifting the spectrum to a higher frequency (a smaller wavelength) by
modulation solves the problem.
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Some properties of the Fourier Transform
Convolution

The time convolution property and its dual, the frequency convolution property, state that if

f1(t)
F⇐==⇒ F1(ω) and f2(t)

F⇐==⇒ F2(ω)

then (time convolution)

f1(t) ∗ f2(t)
F⇐==⇒ F1(ω)F2(ω)

and (frequency convolution)

f1(t)f2(t)
F⇐==⇒

1

2π
F1(ω) ∗ F2(ω)

Proof: By definition

F [f1(t) ∗ f2(t)] =

∫ ∞

−∞
e−jωt

[∫ ∞

−∞
f1(τ)f2(t− τ)dτ

]
dt

=

∫ ∞

−∞
f1(τ)

[∫ ∞

−∞
e−jωtf2(t− τ)dt

]
dτ
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Some properties of the Fourier Transform
Convolution

The inner integral is the Fourier transform of f2(t− τ), given by [time-shifting property]
F2(ω)e−jωτ . Hence

F [f1(t) ∗ f2(t)] =

∫ ∞

−∞
f1(τ)e

−jωτF2(ω)dτ = F2(ω)

∫ ∞

−∞
f1(τ)e

−jωτdτ = F1(ω)F2(ω)

The transfer function H(ω) is the Fourier transform of the unit impulse response h(t). Thus

h(t)
F⇐==⇒ H(ω)

Application of the time convolution property to y(t) = f(t) ∗ h(t) yields

Y (ω) = F (ω)H(ω)

The frequency convolution property can be proved in exactly the same way by reversing the
roles of f(t) and F (ω).
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Some properties of the Fourier Transform
Convolution : Example

Using the time convolution property, show that if

f(t)
F⇐==⇒ F (ω)

then ∫ t

−∞
f(τ)dτ

F⇐==⇒
F (ω)

jω
+ πF (0)δ(ω)

Because

1(t− τ) =

{
1 τ ≤ t

0 τ > t

it follows that

f(t) ∗ 1(t) =
∫ ∞

−∞
f(τ)1(t− τ)dτ =

∫ t

−∞
f(τ)dτ
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Some properties of the Fourier Transform
Convolution : Example

Now, from the time convolution property, it follows that

f(t) ∗ 1(t) =
∫ t

−∞
f(τ)dτ

F⇐==⇒ F (ω)

[
1

jω
+ πδ(ω)

]
=

F (ω)

jω
+ πF (0)δ(ω)

Lecture 6: Fourier Transform II J 28/35 I }



Some properties of the Fourier Transform
Time Differentiation

Differentiation

If f(t) F⇐==⇒ F (ω) then (time differentiation)

df

dt

F⇐==⇒ jωF (ω)

Proof: Differentiation of both side of the inverse Fourier transform equation as follow:

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω

df

dt
=

1

2π

∫ ∞

−∞
jωF (ω)ejωtdω

The result shows that df

dt

F⇐==⇒ jωF (ω) and also dnf

dtn
F⇐==⇒ (jω)nF (ω)
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Some properties of the Fourier Transform
Time Differentiation and Time Integration: Example

Using the time-differentiation property, find the Fourier transform of the triangle pulse ∆
(
t
τ

)
illustrated in Figure below.

− τ
2

τ
2

1

0

f(t) = ∆
(

t
τ

)

t

f(t)

Solution: To find the Fourier transform of this pulse we differentiate the pulse successively 2
times.

− τ
2

τ
2

− 2
τ

2
τ

0

df
dt

t

f(t)

− τ
2

τ
2

0

d2f
dt2

2
τ

2
τ

− 4
τ

t

f(t)
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Some properties of the Fourier Transform
Time Differentiation and Time Integration: Example

The 2nd derivative is

d2f

dt2
=

2

τ

[
δ
(
t+

τ

2

)
− 2δ(t) + δ

(
t−

τ

2

)]
From the time-differentiation property

d2f

dt2
F⇐==⇒ (jω)2F (ω) = −ω2F (ω)

From the time-shifting property

δ(t− t0)
F⇐==⇒ e−jωt0

Then

−ω2F (ω) =
2

τ

[
ej

ωτ
2 − 2 + e−j ωτ

w

]
=

4

τ

(
cos

ωτ

2
− 1

)
= −

8

τ
sin2

(ωτ

4

)
F (ω) =

8

ω2τ
sin2

(ωτ

4

)
=

τ

2

[
sin

(
ωτ
4

)
ωτ
4

]2

=
τ

2
sinc2

(ωτ

4

)
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Some properties of the Fourier Transform
Time Integration

Integration

If f(t) F⇐==⇒ F (ω) then time integration

∫ t

−∞
f(τ)dτ

F⇐==⇒
F (ω)

jω
+ πF (0)δ(ω)

Proof Because

1(t− τ) =

{
1, τ ≤ t

0, τ > t

It follows that

f(t) ∗ 1(t) =
∫ ∞

−∞
f(τ)1(t− τ)dτ =

∫ t

−∞
f(τ)dτ
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Some properties of the Fourier Transform
Time Integration

Now, from the time convolution property, it follows that

f(t) ∗ 1(t) =
∫ t

−∞
f(τ)dτ

F⇐==⇒ F (ω)

[
1

jω
+ πδ(ω)

]
=

F (ω)

jω
+ πF (0)δ(ω)
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Some properties of the Fourier Transform
Time Differentiation and Time Integration: Example

This procedure of finding the Fourier transform can be applied to any function f(t) made up
of straight-line segments with f(t) → 0 as |t| → ∞. This example suggests a numerical
method of finding the Fourier transform of an arbitrary signal f(t) by approximating the
signal by straight-line segments. The spectrum of this example is show below.

− 8π
τ

− 4π
τ

4π
τ

8π
τ

τ
2

0

τ
2
sinc2

(
ωτ
4

)

ω

F (ω)
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