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Motivation
• An arbitrary input f(t) can be expressed as a sum of its impulse components.

∆τ

f(t)

t

f(n∆τ)

t = n∆τ

• There are infinite possible ways of expressing an input f(t) in terms of other signals.
• This chapter addresses the Fourier series method.
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Signals and Vectors
Component of a Vector

αx x

e
f

θ

x and f are vectors with magnitudes |x| and |f|,
respectively. The dot (inner or scalar) product
of these two vector is

f · x = |f||x| cos θ,

where θ is the angle between these vectors.

• The vector f can be expressed in terms of vector x as

f = cx + e

• this is not the only way to express f in terms of x .
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Signals and Vectors
Component of a Vector

α1x x

e1
f

θ

α2x x

e2
f

θ

• The figure show two of the infinite other possibilities.

f = α1x + e1 = α2x + e2

• Three representations f is represented in terms of x plus another vector called the error
vector

• If f ≃ αx, the error in the approximation is the vector e = f − αx.
• Mathematically, we α such that e is minimum.
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Signals and Vectors
Component of a Vector

• The length of the component of f along x is

|f| cos θ = α|x|

• Multiplying both sides by |x| yields

α|x|2 = |f||x| cos θ = f · x

Therefore

α =
f · x
x · x

=
1

|x|2
f · x

• When f and x are perpendicular (orthogonal), then f has a zero component along x or
α = 0

• We define f and x to be orthogonal if the inner (scalar or dot) product of the two
vectors is zero, if f · x = 0.
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Signals and Vectors
Component of a Signal

We could use the concept of a vector component and orthogonality with signals.
• Consider the problem of approximating a real signal f(t) in terms of another real signal

x(t) over the interval [t1, t2]:

f(t) ≃ αx(t), t1 ≤ t ≤ t2

• the error e(t) in this approximation is

e(t) =
{

f(t)− αx(t), t1 ≤ t ≤ t2

0, otherwise

• We select the signal energy as a measured tool. The best approximation, we need to
minimize the error signal–that is, minimize its size, which is its energy Ee over the
interval [t1, t2] given by

Ee =

∫ t2

t1
e2(t)dt =

∫ t2

t1
[f(t)− αx(t)]2 dt
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Signals and Vectors
Component of a Signal

To minimize Ee the necessary condition is

dEe
dα

= 0

d
dα

[∫ t2

t1
[f(t)− αx(t)]2 dt

]
= 0

Expanding the squared term, we obtain

d
dα

[∫ t2

t1
f2(t)dt

]
−

d
dα

[
2α

∫ t2

t1
f(t)x(t)dt

]
+

d
dα

[
α2

∫ t2

t1
x2(t)dt

]
= 0

−2
∫ t2

t1
f(t)x(t)dt + 2α

∫ t2

t1
x2(t)dt = 0

α =

∫ t2

t1
f(t)x(t)dt∫ t2

t1
x2(t)dt

=
1

Ex

∫ t2

t1
f(t)x(t)dt
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Signals and Vectors
Component of a Signal

• This is behavior is similar to the behavior of vectors.
• The area under the product of two signals corresponds to the inner product of two

vectors.
• The inner product of f(t) and x(t) is defined by the area under the product of f(t) and

x(t) and denoted by ⟨f, x⟩.
• energy of a signal is the inner product of a signal with itself, for instant ⟨x, x⟩.
• The Ee is minimum if the signals f(t) and x(t) are orthogonal over the interval [t1, t2]

• The real signals f(t) and x(t) to be orthogonal over the interval [t1, t2] if

∫ t2

t1
f(t)x(t)dt = 0
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Signals and Vectors
Component of a Signal: example

For the square signal f(t) shown in Fig. below find the component in f(t) of the form sin t. In
other words, approximate f(t) in terms of sin t.

0 π 2π

−1

1

t

f(t)

f(t) ≃ α sin t, 0 ≤ t ≤ 2π

Find α that minimize the energy of the error
signal.

x(t) = sin t and Ex =

∫ 2π

0
sin2(t)dt = π

α =
1
π

∫ 2π

0
f(t) sin tdt

=
1
π

[∫ π

0
sin t dt +

∫ 2π

π
− sin t dt

]
=

4
π

Thus

f(t) ≃ 4
π
sin t

represents the best approximation of f(t) by the function sin t, which will minimize the error
energy.
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Signal representation by Orthogonal Signal Set
Orthogonal Vector Space

α1x1

α2x2

α3x3

f

e

α1x1 + α2x2

f ≃ α1x1 + α2x2

The error e in this approximation is

e = f − (α1x1 + α2x2)

f = α1x1 + α2x2 + e

We can observer that the error vector is
orthogonal to both the vector x1 and x2

• if we approximate f with three mutually orthogonal vector: x1, x2, and x3

• the vectors x1, x2, and x3 represent a complete set of orthogonal vectors in
three-dimensional space.

• αi =
f · xi
xi · xi

= 1
|xi|2

f · xi, i = 1, 2, 3

Lecture 5: Fourier Series I J 10/32 I }



Signal representation by Orthogonal Signal Set
Orthogonal Signal Space

Define orthogonality of a real signal set x1(t), x2(t), · · · , xN(t) over interval [t1, t2] as

∫ t2

t1
xm(t)xn(t)dt =

{
0, m ̸= n
En m = n

If the energies En = 1 for all n, then the set is normalized and is called an orthonormal set.
An orthogonal set can always be normalized by dividing xn(t) by

√
En for all n.

• The approximation of the signal f(t) over the interval [t1, t2] is a set of N real,
mutually orthogonal signals x1(t), x2(t), . . ., xN(t) as

f(t) ≃ α1x1(t) + α2x2(t) + · · ·+ αNxN(t)

=

N∑
n=1

αnxn(t)

• The error e(t) in the approximation is

e(t) = f(t)−
N∑

n=1
αnxn(t)
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Signal representation by Orthogonal Signal Set
Orthogonal Signal Space

The error signal e(t) is minimized if we choose

αn =

∫ t2

t1
f(t)xn(t)dt∫ t2

t1
x2

n(t)dt
=

1
En

∫ t2

t1
f(t)xn(t)dt n = 1, 2, . . . ,N

The error signal energy Ee is given by

Ee =

∫ t2

t1
f2(t)dt −

N∑
n=1

α2
nEn

The error energy Ee generally decreases as N is increased because the term α2
kEk is

nonnegative.

f(t) = α1x1(t) + α2x2(t) + · · ·+ αnxn(t) + · · ·

=
∞∑

n=1
αnxn(t) t1 ≤ t ≤ t2
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Signal representation by Orthogonal Signal Set
Orthogonal Signal Space

• The series on the right-hand side is called the generalized Fourier series of f(t) with
respect to the set {xn(t)}

• the error energy Ee → 0 as N → ∞ for every member of some particular class.
• We call that the set {xn(t)} is complete on [t1, t2] for that class of f(t) and the set

{xn(t)} is called a set of basis functions or basis signals.
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Trigonometric Fourier Series
Consider a signal set:

{1, cosω0t, cos 2ωt, . . . , cosnω0t, . . . ; sinω0t, sin 2ω0t, . . . , sinnω0t, . . .}

• A sinusoid of frequency nω0 is called the nth harmonic of the sinusoid of frequency ω0
when n is an integer.

• In this set the sinusoid of frequency ω0, called the fundamental.
• This set is orthogonal over any interval of duration T0 = 2π/ω0, which is the period of

the fundamental.
• we can show that

∫
T0

cosnω0t cosmω0tdt =
{

0, n ̸= m
T0
2 , m = n ̸= 0∫

T0
sinnω0t sinmω0tdt =

{
0, n ̸= m
T0
2 , n = m ̸= 0∫

T0
sinnω0t cosmω0tdt = 0 ∀n and m
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Trigonometric Fourier Series
We can express a signal f(t) by a trigonometric Fourier series over any interval of duration T0
seconds as

f(t) = a0 +
∞∑

n=1
(an cosnω0t + bn sinnω0t) , t1 ≤ t ≤ t1 + T0,

where ω0 = 2π/T0. Using the orthogonality of signal we can determine the Fourier
coefficients a0, an and bn as

an =

∫ t1+T0

t1
f(t) cosnω0tdt∫ t1+T0

t1
cos2 nω0tdt

In denominator, the integrand is T0/2 when n ̸= 0 (with m = n). For n = 0 the denominator
is T0. Hence

a0 =
1

T0

∫ t1+T0

t1
f(t)dt, an =

2
T0

∫ t1+T0

t1
f(t) cosnω0tdt, n = 1, 2, 3, . . .

bn =
2

T0

∫ t1+T0

t1
f(t) sinnω0tdt, n = 1, 2, 3, . . .

Lecture 5: Fourier Series I J 15/32 I }



Trigonometric Fourier Series
Compact Series

Since in each frequency, we have

an cosnω0t + bn sinnω0t = Cn cos(nω0t + θn),

where

Cn =
√

a2
n + b2

n

θn = tan−1
(
−bn
an

)

We denote the dc term a0 by C0, that is

C0 = a0

The compact form of the trigonometric Fourier series is

f(t) = C0 +
∞∑

n=1
Cn cos(nω0t + θn), t1 ≤ t ≤ t1 + T0
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Fourier Series
Example I

−2π −π π 2π

1

0

e−
1
2
t

t

f(t)

Find the compact trigonometric Fourier series for the exponential e−t/2 over the shaded
interval 0 ≤ t ≤ π.
Since T0 = π, then the fundamental frequency is ω0 = 2π

T0
= 2. Therefore

f(t) = a0 +
∞∑

n=1
(an cos 2nt + bn sin 2nt) , 0 ≤ t ≤ π

a0 =
1
π

∫ π

0
e−t/2dt = 0.504

an =
2
π

∫ π

0
e−t/2 cos 2ntdt = 0.504

(
2

1 + 16n2

)
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Fourier Series
Example I cont.

bn =
2
π

∫ π

0
e−t/2 sin 2ntdt = 0.504

(
8n

1 + 16n2

)

Therefore

f(t) = 0.504
[

1 +

∞∑
n=1

2
1 + 16n2 (cos 2nt + 4n sin 2nt)

]
, 0 ≤ t ≤ π

We can find the compact Fourier series as follow:

C0 = a0 = 0.504

Cn =
√

a2
n + b2

n = 0.504

√
4

(1 + 16n2)2 +
64n2

(1 + 16n2)2 = 0.504
(

2
√

1 + 16n2

)
θn = tan−1

(
−bn
an

)
= tan−1(−4n) = − tan−1 4n
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Fourier Series
Example I cont.

n 0 1 2 3 4 5 6 7

Cn 0.504 0.244 0.125 0.084 0.063 0.0504 0.042 0.036

θn 0 −75.96 −82.87 −85.24 −86.42 −87.14 −87.61 −87.95

2 4 6 8 10

0.504

0.244
0.125

ω

C
n

−π/2

2 4 6 8 10
ω

θ n
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Fourier Series
Periodicity

The trigonometric Fourier series is a periodic function of period T0 (the period of the
fundamental). Let us denote the trigonometric Fourier series by φ(t). Therefore

φ(t) = C0 +
∞∑

n=1
Cn cos(nω0t + θn), ∀t

and

φ(t + T0) = C0 +
∞∑

n=1
Cn cos[nω0(t + T0) + θn]

= C0 +
∞∑

n=1
Cn cos[(nω0t + 2nπ) + θn]

= C0 +
∞∑

n=1
Cn cos(nω0t + θn)

= φ(t) ∀t
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Fourier Series
Periodicity

−2π −π π 2π

1

0

e−t/2

t

φ(t)

• φ(t), the Fourier series of f(t), is a periodic function in which the segment of f(t) over
the interval (0 ≤ t ≤ π) repeats periodically every π seconds.

• The function f(t) and its Fourier series φ(t) is equal only over that interval of T0
seconds. Outside this interval, the Fourier series repeats periodically with period T0.
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Fourier Series
Periodicity

• If the function f(t) were itself to be periodic with period T0, then a Fourier series
representing f(t) over an interval T0 will also represent f(t) for all t.

• The periodic signal f(t) can be generated by a periodic repetition of any of its segment
of duration T0.

• The trigonometric Fourier series representing a segment of f(t) of duration T0 starting
at any instant represents f(t) for all t.

• The Fourier coefficients of a series representing a periodic signal f(t) can be expressed
as

a0 =
1

T0

∫
T0

f(t)dt

an =
2

T0

∫
T0

f(t) cosnω0tdt, n = 1, 2, 3, . . .

bn =
2

T0

∫
T0

f(t) sinnω0tdt, n = 1, 2, 3, . . .
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Fourier Series
Example: periodic

−2T −T T 2T
−1

1

0
t

f(t)

We have a0 = 0 (the average is zero.) Also

an =
2
T

[∫ T/2

0
1 · cosnωntdt +

∫ T

T/2
(−1) cosnω0tdt

]
= 0

bn =
2
T

[∫ T/2

0
1 · sinnω0tdt +

∫ T

T/2
(−1) sinnω0tdt

]
=

{
0, even n

4
nπ , odd n

x(t) =
∞∑

k=1

4
(2k − 1)π

sin(2k − 1)ω0t
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Fourier Series
Fourier Spectrum

• The compact trigonometric Fourier series indicates that a periodic signal f(t) can be
experessed as a sum of sinusoids of frequencies 0 (dc), ω0, 2ω0, · · · , nω0, · · · , whose
amplitudes are C0, C1, C2, · · · , Cn, · · · , and whose phase are 0, θ1, θ2, · · · , θn, · · · ,
respectively.

• The plot amplitude Cn vs. ω is called an amplitude spectrum.
• The plot phase θn vs. ω is called a phase spectrum.
• Both plots are called the frequency spectra of f(t).
• Knowing the frequency spectra, we can reconstruct or synthesize φ(t) as

f(t) = 0.504 + 0.244 cos(2t − 75.96◦) + 0.125 cos(4t − 82.87◦)
0.084 cos(6t − 85.24◦) + 0.063 cos(8t − 86.42◦) + · · · 0 ≤ t ≤ π

• From the Example I, we have the time-domain description of φ(t) and the
frequency-domain description (Fourier spectra) of φ(t).
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Fourier Series
Existence of the Fourier Series: Dirichlet Conditions

There are two basic conditions for the existence of the Fourier series
1. For the series to exist, the coefficients an, an, and bn must be finite. It follows that

the existence of these coefficients is guaranteed if f(t) is absolutely integrable over one
period; that is ∫

T0
|f(t)|dt < ∞

This condidtion is known as the weak Dirichlet condition. If a function f(t) satisfies
this condition the existence of a Fourier series is guaranteed, but the series may not
converge at every point.

2. The function f(t) have only a finite number of maxima and minima in pone period, and
only a finite number of finite discontinuities in one period. This tow conditions are
known as the strong Dirichlet conditions. All periodic waveform that can be generated
in a laboratory satisfies strong Dirichlet conditions, and hence possesses a convergent
Fourier series.

Lecture 5: Fourier Series I J 25/32 I }



Fourier Series
Example III

Find the compact trigonometric Fourier series for the periodic square wave f(t) and sketch its
amplitude and phase spectra.

A

−1

−2

1

2

−A

t

f(t)

Solution In this case the period T0 = 2. Hence

ω0 =
2π
2

= π

f(t) = a0 +
∞∑

n=1
an cosnπt + bn sinnπt,

f(t) =
{

2At, |t| ≤ 1
2

2A(1 − t) 1
2 < t ≤ 3

2
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Fourier Series
Example III

The average value (dc) of f(t) is zero, so that a0 = 0.

an =
2
2

∫ 3/2

−1/2
f(t) cosnπtdt

=

∫ 1/2

−1/2
2At cosnπtdt +

∫ 3/2

1/2
2A(1 − t) cosnπtdt = 0

bn =

∫ 1/2

−1/2
2At sinnπtdt +

∫ 3/2

1/2
2A(1 − t) sinnπtdt

=
8A

n2π2 sin
(nπ

2

)
=


0, n even

8A
n2π2 , n = 1, 5, 9, 13, · · ·
− 8A

n2π2 , n = 3, 7, 11, 15, · · ·

Therefore

f(t) = 8A
π2

[
sinπt − 1

9
sin 3πt + 1

25
sin 5πt − 1

49
sin 7πt + · · ·

]
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Fourier Series
Example III

In order to plot Fourier spectra, the series must be converted into compact form as:

f(t) = 8A
π2

[
cos(πt − 90◦) + 1

9
cos(3πt + 90◦) + 1

25
cos(5πt − 90◦) + 1

49
cos(7πt + 90◦ + · · ·

]

π 3π 5π 7π 9π

8A

π2

8A

9π2

8A

25π2

ωC
n

−π
2

π
2

π

3π

5π

7π

9π
ω

θ n
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Fourier Series
Symmetry property

For the symmetry (even or odd), the information of one period of f(t) is implicit in only half
the period. For this reason, the Fourier coefficients in these cases can be computed by
integrating over only half the period rather than a complete period. To prove this, recall that

a0 =
1

T0

∫ T0/2

−T0/2
f(t)dt, an =

2
T0

∫ T0/2

−T0/2
f(t) cosnω0tdt, bn =

2
T0

∫ T0/2

−T0/2
f(t) sinnω0tdt

Since cosnω0t is an even function and sinnω0t is an odd function of t. If f(t) is an even
function of t, then f(t) cosnω0t is also an even function and f(t) sinnω0t is an odd function
of t. Therefore

a0 =
2

T0

∫ T0/2

0
f(t)dt, an =

4
T0

∫ T0/2

0
f(t) cosnω0tdt, bn = 0

If f(t) is an odd function of t, then f(t) cosnω0t is an odd function of t and f(t) sinnω0t is an
even function of t. Therefore

a0 = an = 0, bn =
4

T0

∫ T0/2

0
f(t) sinnω0tdt
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Fourier Series
Symmetry property: example

Find the Fourier series of the signal x(t)

x(t) =
{

1 + 4t, − 1
2 ≤ t < 0

1 − 4t, 0 ≤ t < 1
2

Solution: In this case T0 = 1 and x(t) is an even function. Then

a0 =
2

T0

∫ 1/2

0
(1 − 4t)dt = 0

an =
4

T0

∫ 1/2

0
(1 − 4t) cos 2nπtdt = 4

n2π2 (1 − cosnπ)

=

0, n even
8

n2π2 , n odd
, bn = 0

x(t) = 8
π2

[
cos 2πt + 1

9
cos 6πt + 1

25
cos 10πt + · · ·

]
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Fourier Series
Symmetry property: example Maxima

We could code Maxima as follow:

(declare(n,integer), assume(n>0),facts());
a0: integrate((1-4*x),x,0,1/2)*2 ;
/* T_0 = 1 */
an: integrate((1-4*x)*cos(2*n*%pi*x),x,0,1/2)*4;
define(a(n),an);
an_list: map('a,[1,2,3,4,5,6]);

We get the coefficient of 1, 3, 5 harmonics as

[
8
π2 ,

8
9π2 ,

8
25π2

]
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