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Motivation
The Laplace Transform convert integral and differential equations into
algebraic equations.

It can applies to

• general signal, not just sinusoids

• handles transient conditions

It can be used to analyze

• Linear Constant Coefficient Ordinary Differential Equation
(LCCODE) or LTI system

• complicated RLC circuits with sources

• complicated systems with integrators, differentiators, gains
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The Unilateral Laplace transform
We will be interested in signals defined for t > 0.

Definition
Let f(t), t > 0, be a given signal (function). The Unilateral Laplace
transform of a signal (function) f(t) is defined by

F(s) = L{f(t)} =

∫ ∞

0
f(t)e−stdt,

for those s ∈ C for which the integral exists.

• F is a complex-values function of complex numbers
• s is called the (complex) frequency variable, with units sec−1; t is

called the time variable (in sec); st is unitless.
• For convenience, we will call the unilateral laplace transform as the

laplace transform.
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The Laplace transform
Example

Exponential function: f(t) = et

F(s) =
∫ ∞

0
ete−stdt =

∫ ∞

0
e(1−s)tdt = 1

1 − se(1−s)t
∣∣∣∣∞
0

=
1

s − 1

provide we can say e(1−s)t → 0 as t → ∞, which is true for Re s > 1:

|e(1−s)t| = |e−j(Im s)t|︸ ︷︷ ︸
=1

|e(1−Re s)t| = e(1−Re s)t

• the integral defining F(s) exists for all s ∈ C with Re s > 1. This
condition is called region of convergence (ROC) of F(s).

• however the resulting formula for F(s) makes sense for all s ∈ C
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The Laplace transform
Example cont.

Constant or unit step function: f(t) = u(t) (for t ≥ 0)

F(s) =
∫ ∞

0
e−stdt = −1

s e−st
∣∣∣∣∞
0

=
1
s

provided we can say e−st → 0 as t → ∞, which is true for Re s > 0 since

|e−st| = |e−j(Im s)t||e−(Re s)t| = e−(Re s)t

• the integral defining F(s) makes sense for all s with Re s > 0.

• however the resulting formula for F(s) makes sense for all s except
s = 0.
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The Laplace transform
Example cont.

Sinusoid : first express f(t) = cosωt as

f(t) = 1
2ejωt +

1
2e−jωt

now we can find F as

F(s) =
∫ ∞

0
e−st

(
1
2ejωt +

1
2e−jωt

)
dt

=
1
2

∫ ∞

0
e(−s+jω)tdt + 1

2

∫ ∞

0
e(−s−jω)tdt

=
1
2

1
s − jω +

1
2

1
s + jω

=
s

s2 + ω2

(valid for Re s > 0; final formula for s ̸= ±jω)Lecture 4: Laplace Transform and Its Applications J 7/76 I }



The Laplace transform
Example cont.

Powers of t: f(t) = tn, (n ≥ 1)

F(s) =
∫ ∞

0
tne−stdt = tn

(
−e−st

s

)∣∣∣∣∞
0

+
n
s

∫ ∞

0
tn−1e−stdt

=
n
sL(t

n−1)

provided tne−st → 0 if t → ∞, which is true for Re s > 0. Applying the
formular recursively, we obtain

F(s) = n!
sn+1

valid for Re s > 0; final formula exists for all s ̸= 0.
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The Laplace transform
Impulses at t = 0

If f(t) contains impulses at t = 0 we choose to include them in the
integral defining F(s):

F(s) =
∫ ∞

0−
f(t)e−stdt

example: impulse function, f(t) = δ(t)

F(s) =
∫ ∞

0−
δ(t)e−stdt = e−st∣∣

t=0 = 1 sampling property

Similarly for f(t) = δ(k)(t) we have

F(s) =
∫ ∞

0−
δ(k)(t)e−stdt = (−1)k dk

dtk e−st
∣∣∣∣
t=0

= ske−st
∣∣∣
t=0

= sk
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The Laplace transform
Multiplication by t

Let f(t) be a signal and define

g(t) = tf(t) then we have G(s) = − d
dsF(s)

To verify formula, just differentiate both sides of

F(s) =
∫ ∞

0
e−stf(t)dt

with respect to s to get

d
dsF(s) =

∫ ∞

0
(−t)e−stf(t)dt =

∫ ∞

0
(−t)f(t)e−stdt

= −
∫ ∞

0
tf(t)e−stdt = −G(s)
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The Laplace transform
Multiplication by t examples

Examples:

• f(t) = e−t, g(t) = te−t

L
{

te−t} = − d
ds

1
s + 1 =

1
(s + 1)2

• f(t) = te−t, g(t) = t2e−t

L
{

t2e−t} = − d
ds

1
(s + 1)2 =

2
(s + 1)3

• in general

L
{

tke−λt
}
=

k!
(s + λ)k+1
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The Laplace transform
Inverse Laplace transform

In principle we can recover f(t) from F(s) via

f(t) = 1
2πj

∫ σ+j∞

σ−j∞
F(s)estds

where σ is large enough that F(s) is defined for Re s ≥ σ.

In practical, no one uses this formula!.
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Inverse Laplace Transform
Finding the inverse Laplace transform by using the standard formula

f(t) = 1
2πj

∫ σ+j∞

σ−j∞
F(s)estds

is difficult and tedious.

• We can find the inverse transforms from the transform table.

• All we need is to express F(s) as a sum of simpler functions of the
forms listed in the Laplace transform table.

• Most of the transforms F(s) of practical interest are rational
functions: that is ratios of polynomials in s.

• Such functions can be expressed as a sum of simpler functions by
using partial fraction expansion.
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Inverse Laplace Transform
Partial fraction expansion

Example: Find the inverse Laplace transform of 7s − 6
s2 − s − 6

.

F(s) = 7s − 6
(s + 2)(s − 3)

=
k1

s + 2
+

k2
s − 3

Using a “cover up” method:

k1 =
7s − 6
s − 3

∣∣∣∣
s=−2

=
−14 − 6
−2 − 3

= 4

k2 =
7s − 6
s + 2

∣∣∣∣
s=3

=
21 − 6
3 + 2

= 3

Therefore

F(s) = 7s − 6
(s + 2)(s − 3)

=
4

s + 2
+

3
s − 3
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Inverse Laplace Transform
Partial fraction expansion cont.

Using the table of Laplace transforms, we obtain

f(t) = L−1
{

4
s + 2

+
3

s − 3

}
= (4e−2t + 3e3t), t ≥ 0.

Example: Find the inverse Laplace transform of F(s) = 2s2 + 5
s2 + 3s + 2

.
F(s) is an improper function with m = n. In such case we can express F(s) as a sum of the
coefficient bn (the coefficient of the highest power in the numerator) plus partial fractions
corresponding to the denumerator.

F(s) = 2s2 + 5
(s + 1)(s + 2)

= 2 +
k1

s + 1
+

k2
s + 2
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Inverse Laplace Transform
Partial fraction expansion cont.

where

k1 =
2s2 + 5
s + 2

∣∣∣∣
s=−1

=
2 + 5
−1 + 2

= 7

and

k2 =
2s2 + 5
s + 1

∣∣∣∣
s=−2

=
8 + 5
−2 + 1

= −13

Therefore F(s) = 2 +
7

s + 1
−

13
s + 2

. From the table, we obtain

f(t) = 2δ(t) + 7e−t − 13e−2t, t ≥ 0.
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Inverse Laplace Transform
Partial fraction expansion cont.

Example: Find the inverse Laplace transform of F(s) = 6(s + 34)
s(s2 + 10s + 34)

F(s) = 6(s + 34)
s(s2 + 10s + 34)

=
6(s + 34)

s(s + 5 − j3)(s + 5 + j3)

=
k1
s

+
k2

s + 5 − j3
+

k∗2
s + 5 + j3

Note that the coefficients (k2 and k∗2) of the conjugate terms must also be conjugate. Now

k1 =
6(s + 34)

s2 + 10s + 34

∣∣∣∣
s=0

=
6 × 34

34
= 6

k2 =
6(s + 34)

s(s + 5 + j3)

∣∣∣∣
s=−5+j3

=
29 + j3
−3 − j5

= −3 + j4

k∗2 = −3 − j4

To use the Laplace transform table, we need to express k2 and k∗2 in polar form

−3 + j4 =
√

32 + 42ej tan−1(4/−3) = 5ej tan−1(4/−3)Lecture 4: Laplace Transform and Its Applications J 17/76 I }



Inverse Laplace Transform
Partial fraction expansion cont.

From the Figure below, we observe that

k2 = −3 + j4 = 5ej126.9◦ and k∗2 = 5e−j126.9◦

Therefore F(s) = 6
s
+

5ej126.9◦

s + 5 − j3
+

5e−j126.9◦

s + 5 + j3

From the table pair 10b

f(t) =
[
6 + 10e−5t cos(3t + 126.9◦)

]
u(t)

−3 + j4 j4

−3

126.9◦

−53.1◦

3 − j4
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Inverse Laplace Transform
Alternative Method Using Quadratic Factors

F(s) = 6(s + 34)
s(s2 + 10s + 34)

=
k1
s

+
As + B

s2 + 10s + 34

We have already determined that k1 = 6 by the (Heaviside) “cover-up” method. Therefore

6(s + 34)
s(s2 + 10s + 34)

=
6
s
+

As + B
s2 + 10s + 34

Clearing the fractions by multiplying both sides by s(s2 + 10s + 34) yields

6(s + 34) = 6(s2 + 10s + 34) + s(As + B)

= (6 + A)s2 + (60 + B)s + 204

Now, equating the coefficients of s2 and s on both sides yields

0 = (6 + A) =⇒ A = −6

6 = 60 + B =⇒ B = −54
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Inverse Laplace Transform
Alternative Method Using Quadratic Factors cont.

and

F(s) = 6
s
+

−6s − 54
s2 + 10s + 34

Now from the table, the parameters for this inverse are A = −6,B = −54, a = 5, c = 34, and
b =

√
c − a2 = 3, and

r =

√
A2c + B2 − 2ABa

c − a2 = 10, θ = tan−1 Aa − B
A
√

c − a2
= 126.9◦

b =
√

c − a2

Therefore

f(t) =
[
6 + 10e−5t cos(3t + 126.9◦)

]
u(t)

which agrees with the previous result.
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Inverse Laplace Transform
Alternative Method Using Short-Cuts

F(s) = 6(s + 34)
s(s2 + 10s + 34)

=
6
s
+

As + B
s2 + 10s + 34

This step can be accomplished by multiplying both sides of the above equation by s and then
letting s → ∞. This procedure yields

0 = 6 + A =⇒ A = −6.

Therefore

6(s + 34)
s(s2 + 10s + 34)

=
6
s
+

−6s + B
s2 + 10s + 34

To find B, we let s take on any convenient value, say s = 1, in this equation to obtain

210
45

= 6 +
B − 6

45
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Inverse Laplace Transform
Alternative Method Using Short-Cuts cont.

Multiplying both sides of this equation by 45 yields

210 = 270 + B − 6 =⇒ B = −54

a deduction which agrees with the results we found earlier.
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Inverse Laplace Transform
Partial fraction expansion: repeated roots

Example: Find the inverse Laplace transform of F(s) = 8s + 10
(s + 1)(s + 2)3

F(s) = 8s + 10
(s + 1)(s + 2)3 =

k1
s + 1

+
a0

(s + 2)3 +
a1

(s + 2)2 +
a2

a + 2

where
k1 =

8s + 10
(s + 2)3

∣∣∣∣
s=−1

= 2

a0 =
8s + 10
(s + 1)

∣∣∣∣
s=−2

= 6

a1 =

{
d
ds

[
8s + 10
(s + 1)

]}
s=−2

= −2

a2 =
1
2

{
d2

ds2

[
8s + 10
(s + 1)

]}
s=−2

= −2

Note : the general formula is

an =
1
n!

{
dn

dsn
[
(s − λ)

rF(s)
]}

s=λ
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Inverse Laplace Transform
Partial fraction expansion: repeated roots

Therefore

F(s) = 2
s + 1

+
6

(s + 2)3 −
2

(s + 2)2 −
2

s + 2

and

f(t) =
[
2e−t + (3t2 − 2t − 2)e−2t] u(t)

Alternative Method: A Hybrid of Heaviside and Clearing Fractions: Using the values
k1 = 2 and a0 = 6 obtained earlier by the Heaviside “cover-up” method, we have

8s + 10
(s + 1)(s + 2)3 =

2
s + 1

+
6

(s + 2)3 +
a1

(s + 2)2 +
a2

s + 2
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Inverse Laplace Transform
Partial fraction expansion: repeated roots

We now clear fractions by multiplying both sides of the equation by (s + 1)(s + 2)3. This
procedure yields

8s + 10 = 2(s + 2)3 + 6(s + 1) + a1(s + 1)(s + 2) + a2(s + 1)(s + 2)2

= (2 + a2)s3 + (12 + a1 + 5a2)s2 + (30 + 3a1 + 8a2)s + (22 + 2a1 + 4a2)

Equating coefficients of s3 and s2 on both sides, we obtain

0 = (2 + a2) =⇒ a2 = −2

0 = 12 + a1 + 5a2 = 2 + a1 =⇒ a1 = −2

Equating the coefficients of s1 and s0 serves as a check on our answers.

8 = 30 + 3a1 + 8a2

10 = 22 + 2a1 + 4a2

Substitution of a1 = a2 = −2, obtained earlier, satisfies these equations.
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Inverse Laplace Transform
Partial fraction expansion: repeated roots

Alternative Method: A Hybrid of Heaviside and Short-Cuts: Using the values k1 = 2 and
a0 = 6, determined earlier by the Heaviside method, we have

8s + 10
(s + 1)(s + 2)3 =

2
s + 1

+
6

(s + 2)3 +
a1

(s + 2)2 +
a2

s + 2

There are two unknowns, a1 and a2. If we multiply both sides by s and then let s → ∞, we
eliminate a1. This procedure yields

0 = 2 + a2 =⇒ a2 = −2

Therefore

8s + 10
(s + 1)(s + 2)3 =

2
s + 1

+
6

(s + 2)3 +
a1

(s + 2)2 −
2

s + 2

There is now only one unknown, a1. This value can be determined readily by equal to any
convenient value, say s = 0. This step yields

10
8

= 2 +
3
4
+

a1
4

− 1 =⇒ a1 = −2.
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The Laplace transform properties
Linearity

The Laplace transform is linear: if f(t) and g(t) are any signals, and a is
any scalar, we have

L{af(t)} = aF(s), L{(f(t) + g(t))} = F(s) + G(s)

i.e., homogeneity and superposition hold.
Example:

L
{

3δ(t)− 2et} = 3L{δ(t)} − 2L
{

et}
= 3 − 2

s − 1

=
3s − 5
s − 1
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The Laplace transform properties
One-to-one property

The Laplace transform is one-to-one: if L{f(t)} = L{g(t)} then
f(t) = g(t).

• F(s) determines f(t)

• inverse Laplace transform L−1 {f(t)} is well defined.

Example:

L−1
{

3s − 5
s − 1

}
= 3δ(t)− 2et

in other words, the only function f(t) such that
F(s) = 3s − 5

s − 1

is f(t) = 3δ(t)− 2et.
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The Laplace transform properties
Time delay

This property states that if

f(t) ⇐⇒ F(s)

then for T ≥ 0

f(t − T) ⇐⇒ e−sTF(s)

(If g(t) is f(t), delayed by T seconds), then we have G(s) = e−sTF(s).
Derivation:

G(s) =
∫ ∞

0
e−stg(t)dt =

∫ ∞

0
e−stf(t − T)dt

=

∫ ∞

0
e−s(τ+T)f(τ)dτ = e−sTF(s)
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The Laplace transform properties
Time delay

To avoid a pitfall, we should restate the property as follow:

f(t)u(t) ⇐⇒ F(s)

then

f(t − T)u(t − T) ⇐⇒ e−sTF(s), T ≥ 0.
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The Laplace transform properties
Time delay example

f(t)

0

1

1 2 3 4

Find the Laplace Transform of f(t) depicted in Figure above.
The signal can be described as

f(t) = (t − 1)[u(t − 1)− u(t − 2)] + [u(t − 2)− u(t − 4)]

= (t − 1)u(t − 1)− (t − 1)u(t − 2) + u(t − 2)− u(t − 4)

= (t − 1)u(t − 1)− (t − 2)u(t − 2)− u(t − 4)
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The Laplace transform properties
Time delay example

Since t ⇐⇒
1
s2 yields

(t − 1)u(t − 1) ⇐⇒
1
s2 e−s and (t − 2)u(t − 2) ⇐⇒

1
s2 e−2s

Also u(t) ⇐⇒
1
s

yields

u(t − 4) ⇐⇒
1
s

e−4s

Therefore

F(s) = 1
s2 e−s −

1
s2 e−2s −

1
s

e−4s
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The Laplace transform properties
Time delay example

Find the inverse Laplace transform of

F(s) = s + 3 + 5e−2s

(s + 1)(s + 2)

The F(s) can be separated in two parts

F(s) = s + 3
(s + 1)(s + 2)︸ ︷︷ ︸

F1(s)

+
5e−2s

(s + 1)(s + 2)︸ ︷︷ ︸
F2(s)e−2s

where

F1(s) =
s + 3

(s + 1)(s + 2)
=

2
s + 1

−
1

s + 2

F2(s) =
5

(s + 1)(s + 2)
=

5
s + 1

−
5

s + 2
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The Laplace transform properties
Time delay example

Therefore

f1(t) =
(
2e−t − e−2t)

f2(t) = 5
(
e−t − e−2t)

Since

F(s) = F1(s) + F2(s)e−2s

f(t) = f1(t) + f2(t − 2)

=
(
2e−t − e−2t) u(t) + 5

[
e−(t−2) − e−2(t−2)

]
u(t − 2)
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The Laplace transform properties
Time scaling

Define a signal g(t) by g(t) = f(at), where a > 0; then

G(s) = 1
aF( s

a).

time are scaled by a, then frequencies are scaled by 1/a.

G(s) =
∫ ∞

0
f(at)e−stdt = 1

a

∫ ∞

0
f(τ)e−

s
a τdτ =

1
aF( s

a),

where τ = at.
Example: L

{
et} =

1
s − 1 so

L
{

eat} =
1
a

1
s
a − 1 =

1
s − a
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The Laplace transform properties
Exponential scaling

Let f(t) be a signal and a a scale, and define g(t) = eatf(t); then

G(s) = F(s − a)

Proof:

G(s) =
∫ ∞

0
e−steatf(t)dt =

∫ ∞

0
e−(s−a)tf(t)dt = F(s − a)

Example: L{cos t} =
s

s2 + 1 , and hence

L
{

e−t cos t
}
=

s + 1
(s + 1)2 + 1 =

s + 1
s2 + 2s + 2
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The Laplace transform properties
Exponential scaling

Example: Consider F(s) = −6s − 54
s2 + 10s + 34 . By using the exponential

exponential scaling, we obtain

−6s − 54
s2 + 10s + 34 =

−6(s + 5)− 24
(s + 5)2 + 9 =

−6(s + 5)
(s + 5)2 + 32 +

−8(3)
(s + 5)2 + 32

Then,

f(t) = −6e−5t cos 3t − 8e−5t sin 3t

= 10e−5t cos(3t + 127◦)

You can do this inverse Laplace transform using only standard Laplace
transform table.
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The Laplace transform properties
Derivative

If signal f(t) is continuous at t = 0, then

L
{

df
dt

}
= sF(s)− f(0);

• time-domain differentiation becomes multiplication by frequency
variable s (as with phasors)

• plus a term that includes initial condition (i.e., −f(0))
higher-order derivatives: applying derivative formula twice yields

L
{

d2f(t)
dt2

}
= sL

{
df(t)
dt

}
− df(t)

dt

= s(sF(s)− f(0))− df(0)
dt = s2F(s)− sf(0)− df(0)

dt

similar formulas hold for L
{

f(k)
}

.
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The Laplace transform properties
Derivation of derivative formula

Start from the defining integral

G(s) =
∫ ∞

0

df(t)
dt e−stdt

integration by parts yields

G(s) = e−stf(t)
∣∣∣∞
0

−
∫ ∞

0
f(t)(−se−st)dt

= f(t)e−s∞ − f(0) + sF(s)

we recover the formula

G(s) = sF(s)− f(0)
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The Laplace transform properties
Derivative example

1. f(t) = et, so f′(t) = et and

L{f(t)} = L
{

f′(t)
}
=

1
s − 1

by using L{f′(t)} = s 1
s − 1

− 1, which is the same.

2. sinωt = − 1
ω

d
dt cosωt, so

L{sinωt} = −
1
ω

(
s s

s2 + ω2 − 1
)

=
ω

s2 + ω2

3. f(t) is a unit ramp, so f′(t) is a unit step

L
{

f′(t)
}
= s

(
1
s2

)
− 0 =

1
s
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The Laplace transform properties
Integral

Let g(t) be the running integral of a signal f(t), i.e.,

g(t) =
∫ t

0
f(τ)dτ

then G(s) = 1
s F(s), i.e., time-domain integral become division by

frequency variable s.
Example: f(t) = δ(t) is a unit impulse function, so F(s) = 1; g(t) is the
unit step

G(s) = 1
s .

Example: f(t) is a unit step function, so F(s) = 1/s; g(t) is the unit
ramp function (g(t) = t for t ≥ 0),

G(s) = 1
s2
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The Laplace transform properties
Derivation of integral formula:

G(s) =
∫ ∞

t=0

(∫ t

τ=0
f(τ)dτ

)
e−stdt

here we integrate horizontally first over the triangle 0 ≤ τ ≤ t.

t

τ

Let’s switch the order, integrate vertically
first:

G(s) =
∫ ∞

τ=0

∫ ∞

t=τ
f(τ)e−stdtdτ

=

∫ ∞

τ=0
f(τ)

(∫ ∞

t=τ
e−stdt

)
dτ

=

∫ ∞

τ=0
f(τ)1

s e−sτdτ =
F(s)

s
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The Laplace transform properties
Convolution

The convolution of signals f(t) and g(t), denoted h(t) = f(t) ∗ g(t), is the
signal

h(t) =
∫ t

0
f(τ)g(t − τ)dτ

In terms of Laplace transforms:

H(s) = F(s)G(s)

The Laplace transform turns convolution into multiplication.

Lecture 4: Laplace Transform and Its Applications J 43/76 I }



The Laplace transform properties
Convolution cont.

Let’s show that L{f(t) ∗ g(t)} = F(s)G(s) :

H(s) =
∫ ∞

t=0
e−st

(∫ t

τ=0
f(τ)g(t − τ)dτ

)
dt

=

∫ ∞

t=0

∫ t

τ=0
e−stf(τ)g(t − τ)dτdt

where we integrate over the triangle 0 ≤ τ ≤ t. By changing the order
of the integration and changing the limits of integration yield

H(s) =
∫ ∞

τ=0

∫ ∞

t=τ
e−stf(τ)g(t − τ)dtdτ
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The Laplace transform properties
Convolution cont.

Change variable t to t̄ = t − τ ; d̄t = dt; region of integration becomes
τ ≥ 0, t̄ ≥ 0

H(s) =
∫ ∞

τ=0

∫ ∞

t̄=0
e−s(̄t+τ)f(τ)g(̄t)d̄tdτ

=

(∫ ∞

τ=0
e−sτ f(τ)dτ

)(∫ ∞

t̄=0
e−s̄tg(̄t)d̄t

)
= F(s)G(s)
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The Laplace transform properties
Convolution cont.

Example: Using the time convolution property of the Laplace transform, determine
c(t) = eatu(t) ∗ ebtu(t). From the convolution property, we have

C(s) = 1
s − a

1
s − b

=
1

a − b

[
1

s − a
−

1
s − b

]

The inverse transform of the above equation yields

c(t) = 1
a − b

(eat − ebt), t ≥ 0.
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Applications
Solution of Differential and Integro-Differential Eqautions

Solve the second-order linear differential equation

(D2 + 5D + 6)y(t) = (D + 1)f(t)

if the initial conditions are y(0−) = 2, ẏ(0−) = 1, and the input f(t) = e−4tu(t).
The equation is

d2y
dt2 + 5 dy

dt
+ 6y(t) = df

dt
+ f(t).

Let

y(t) ⇐⇒ Y(s).

Then
dy
dt

⇐⇒ sY(s)− y(0−) = sY(s)− 2.
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Applications
Solution of Differential and Integro-Differential Eqautions

and

d2y
dt2 ⇐⇒ s2Y(s)− sy(0−)− ẏ(0−) = s2Y(s)− 2s − 1.

Moreover, for f(t) = e−4tu(t),

F(s) = 1
s + 4

, and df
dt

⇐⇒ sF(s)− f(0−) =
s

s + 4
− 0 =

s
s + 4

.

Taking the Laplace transform, we obtain

[
s2Y(s)− 2s − 1

]
+ 5 [sY(s)− 2] + 6Y(s) = s

s + 4
+

1
s + 4

Collecting all the terms of Y(s) and the remaining terms separately on the left-hand side, we
obtain

(s2 + 5s + 6)Y(s)− (2s + 11) = s + 1
s + 4
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Applications
Solution of Differential and Integro-Differential Equations

Therefore

(s2 + 5s + 6)Y(s) = (2s + 11) + s + 1
s + 4

=
2s2 + 20s + 45

s + 4

and

Y(s) = 2s2 + 20s + 45
(s2 + 5s + 6)(s + 4)

=
2s2 + 20s + 45

(s + 2)(s + 3)(s + 4)

Expanding the right-hand side into partial fractions yields

Y(s) = 13/2
s + 2

−
3

s + 3
−

3/2
s + 4

The inverse Laplace transform of the above equation yields

y(t) =
(

13
2

e−2t − 3e−3t −
3
2

e−4t
)

u(t).
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Applications
Zero-Input and Zero-State Components of Response

• The Laplace transform method gives the total response, which
includes zero-input and zero-state components.

• The initial condition terms in the response give rise to the
zero-input response.

For example in the previous example,
(s2 + 5s + 6)Y(s)− (2s + 11) = s + 1

s + 4
so that

(s2 + 5s + 6)Y(s) = (2s + 11)︸ ︷︷ ︸
initial condition terms

+
s + 1
s + 4︸ ︷︷ ︸

input terms
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Applications
Zero-Input and Zero-State Components of Response

Therefore

Y(s) = 2s + 11
s2 + 5s + 6︸ ︷︷ ︸

zero-input component

+
s + 1

(s + 4)(s2 + 5s + 6)︸ ︷︷ ︸
zero-state component

=

[
7

s + 2 − 5
s + 3

]
+

[
−1/2
s + 2 +

2
s + 3 − 3/2

s + 4

]
Taking the inverse transform of this equation yields

y(t) = (7e−2t − 5e−3t)u(t)︸ ︷︷ ︸
zero-input response

+(−1
2e−2t + 2e−3t − 3

2e−4t)u(t)︸ ︷︷ ︸
zero-state response
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Analysis of Electrical Networks
Basic concept

• It is possible to analyze electrical networks directly without having
to write the integro-differential equation.

• This procedure is considerably simpler because it permits us to
treat an electrical network as if it was a resistive network.

• To do such a procedure, we need to represent a network in
“frequency domain” where all the voltages and currents are
represented by their Laplace transforms.
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Analysis of Electrical Networks
Basic concept

zero initial conditions case:
If v(t) and i(t) are the voltage across and the current through an
inductor of L henries, then

v(t) = Ldi(t)
dt ⇐⇒ V(s) = sLI(s), i(0) = 0.

Similarly, for a capacitor of C farads, the voltage-current relationship is

i(t) = Cdv(t)
dt ⇐⇒ V(s) = 1

CsI(s), v(0) = 0.

For a resistor of R ohms, the voltage-current relationship is

v(t) = Ri(t) ⇐⇒ V(s) = RI(s).
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Analysis of Electrical Networks
Basic concept

• Thus, in the “frequency domain,” the voltage-current relationships
of an inductor and a capacitor are algebraic;

• These elements behave like resistors of “resistance” Ls and 1/Cs,
respectively.

• The generalized “resistance” of an element is called its impedance
and is given by the ratio V(s)/I(s) for the element (under zero
initial conditions).

• The impedances of a resistor of R ohms, and inductor of L henries,
and a capacitance of C farads are R, Ls, and 1/Cs, respectively.

• The Kirchhoff’s laws remain valid for voltages and currents in the
frequency domain.
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Analysis of Electrical Networks
A simple RC circuit

Find the loop current i(t) in the circuit, if all the initial conditions are zero.

−

+
10u(t)

1 H 3 Ω

1

2
Fi(t)

−

+10

s

s 3

2

s
I(s)

In the first step, we represent the circuit in the frequency domain shown in the right hand
side. The impedance in the loop is

Z(s) = s + 3 +
2
s
=

s2 + 3s + 2
s

The input voltage is V(s) = 10/s. Therefore, the loop current I(s) is

I(s) = V(s)
Z(s)

=
10/s

(s2 + 3s + 2)/s
=

10
s2 + 3s + 2

=
10

(s + 1)(s + 2)
=

10
s + 1

−
10

s + 2

The inverse transform of the equation yields: i(t) = 10(e−t − e−2t)u(t).
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Analysis of Electrical Networks
Initial Condition Generators

A capacitor C with an initial voltage v(0) can be represented in the
frequency domain by an uncharged capacitor of impedance 1/Cs in
series with a voltage source of value v(0)/s or as the same uncharged
capacitor in parallel with a current source of value Cv(0).

i(t)

C
+
v(0)

−

−

v(t)

+

(a)

I(s)

1

Cs

−

+ v(0)

s

−

V (s)

+

(b)

I(s)

1

Cs
Cv(0)

−

V (s)

+

(c)

i(t) = Cdv
dt ⇐⇒ I(s) = C[sV(s)− v(0)]

Rearranging the equation, we obtain

V(s) = 1
CsI(s) + v(0)

s or V(s) = 1
Cs [I(s) + Cv(0)]

Lecture 4: Laplace Transform and Its Applications J 56/76 I }



Analysis of Electrical Networks
Initial Condition Generators

An inductor L with an initial voltage i(0) can be represented in the
frequency domain by an inductor of impedance Ls in series with a
voltage source of value Li(0) or by the same inductor in parallel with a
current source of value i(0)/s.

i(t)

L

−

v(t)

+

(a)

I(s)

Ls

−

+
Li(0)

−

V (s)

+

(b)

I(s)

Ls
i(0)

s

−

V (s)

+

(c)

v(t) = Ldi
dt ⇐⇒ V(s) = L[sI(s)− i(0)]

Rearranging the equation, we obtain

V(s) = sLI(s)− Li(0) or V(s) = Ls
[
I(s)− i(0)

s

]
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Analysis of Electrical Networks
A simple RLC circuit with initial condition generators

Find the loop current i(t) in the circuit, if y(0) = 2 and vC(0) = 10.

−

+
10u(t)

y(0−) = 2

1 H 2 Ω

1

5
F

+
10 V

−

y(t)
−

+10

s

s
− +

2
2

5

s

−

+ 10

s

Y (s)

The right hand side figure shows the frequency-domain representation of the circuit.
Applying mesh analysis we have

−
10
s

+ sY(s)− 2 + 2Y(s) + 5
s

Y(s) + 10
s

= 0

Y(s) = 2
s + 2 + 5

s

=
2s

s2 + 2s + 5
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Analysis of Electrical Networks
A simple RLC circuit with initial condition generators

Y(s) = 2s
s2 + 2s + 5

=
2(s + 1)

(s + 1)2 + 22 −
2

(s + 1)2 + 22)

Therefore

y(t) = e−t(2 cos 2t − sin 2t) = e−t(C cos θ cos 2t − C sin θ sin 2t),

since

C =
√

22 + 1 =
√

5, θ = tan−1 2
4
= 26.6◦

then

y(t) =
√

5e−t cos(2t + 26.6◦)u(t).
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Analysis of Electrical Networks
An RLC circuit with initial condition generators

The switch in the circuit is in the closed position for a long time before t = 0, when it is
opened instantaneously. Find the currents y1(t) and y2(t) for t ≥ 0.

20 V

y1(t)

1 F
+

vC− 1 Ω

1
2

H

4 V

t = 0

1
5

Ω y2(t) −
+20

s

−+

16
s

1
s 1

s
2

−
+

2

Y1(s)
1
5

Y2(s)

When the switch is closed and the steady-state conditions are reached, the capacitor voltage
vC = 16 volts, and the inductor current y2 = 4 A. The right hand side circuit shows the
transformed version of the circuit in the left hand side. Using mesh analysis, we obtain

Y1(s)
s

+
1
5
[Y1(s)− Y2(s)] =

4
s

−
1
5

Y1(s) +
6
5

Y2(s) +
s
2

Y2(s) = 2
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Analysis of Electrical Networks
An RLC circuit with initial condition generators

Rewriting in matrix form, we have

[ 1
s + 1

5 − 1
5

− 1
5

6
5 + s

2

] [
Y1(s)
Y2(s)

]
=

[ 4
s
2

]

Therefore,

Y1(s) =
24(s + 2)

s2 + 7s + 12

=
24(s + 2)

(s + 3)(s + 4)
=

−24
s + 3

+
48

s + 4

Y2(s) =
4(s + 7)

s2 + 7s + 12
=

16
s + 3

−
12

s + 4
.

Finally,

y1(t) = (−24e−3t + 48e−4t)u(t)

y2(t) = (16e−3t − 12e−4t)u(t)
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Transfer Functions of Linear Continuous-Times Systems

Transfer Function
The transfer function of a linear time-invariant continuous-time system (LTICT) is the ratio
of the Laplace transforms of the output and the input under zero initial conditions.

−
+

−

v1(t)
+

i1(t) R i2(t) R

C
+
v2(t)−

C

The loop equation for zero initial conditions,

(
R +

1
sC

)
I1(s)−

1
sC

I2(s) = V1(s)

−
1

sC
I1(s) +

(
R +

2
sC

)
I2(s) = 0

Solving the equations, we obtain

I2(s) =
sCV1

s2C2R2 + sCR + 1
= sCV2(s)

H(s) = V2(s)
V1(s)

=
1

s2C2R2 + sCR + 1
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Transfer Functions of Linear Continuous-Times Systems
Poles and Zeros

• Poles and zeros are the roots of the denominator and numerator
polynomials,respectively, of a rational function.

• The poles of the transfer function are also its natural frequencies.
• The zeros of a transfer function can be considered as the frequencies at which there will

be no output; in other words, inputs at these frequencies will be blocked by the system.

H(s) = 20(s + 1)
(s + 2)(s2 + 4s + 13)

• We have a zero at −1 and three poles
at −2,−2 ± j3.

• We can reconstruct the transfer
function from the pole-zero map, except
the scale factor.

Re

Im

×

×

×−2 ◦−1

j3

−j3
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Laplace Transforms of Causal Repeating Functions
How can we take the Laplace transform of a causal function, which repeats every T seconds
for t > 0?

• Let us denote this function as x(t) and define X1(s) as the Laplace transform of the
first cycle of the function. This implies that

X1(s) =
∫ T−

0−
x(t)e−stdt

• Using the fact that all subsequent complete cycles of the function can be obtained by
shifting the first cycle by T, 2T, 3T, . . . ,, we can write the following expression for the
Laplace transform of the entire function x(t):

X(s) = X1(s)
(

1 + e−sT + e−sT + e−3sT + · · ·
)

=
X1(s)

1 − e−sT

• The last line follows from the properties of a geometric series:
∞∑

n=0
e−nsT =

1
1 − e−sT
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Laplace Transforms of Causal Repeating Functions
Example

T
2

T 3T
2

2T

−A

A

0
t

x(t)

The first cycle of this waveform can be expressed as

x1(t) = Au(t)− 2Au(t − T
2
) + Au(t − T)

Taking the Laplace transform we get

X1(s) =
A
s

(
1 − 2e−sT/2 + e−sT

)
⇒ X(s) = X1(s)

1 − e−sT

X(s) = A
s

(
1 − 2e−sT/2 + e−sT)

1 − e−sT =
A
s
(1 − e−sT/2)(1 − e−sT/2)

(1 − e−sT/2)(1 + e−sT/2)
=

A
s
(1 − e−sT/2)

(1 + e−sT/2)
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Laplace Transforms of Causal Repeating Functions
Example

Another method:

x(t) = Au(t)− 2Au(t − T
2
) + 2Au(t − T)− 2Au(t − 3T

2
) + 2Au(t − 2T)− · · ·

X(s) = A
s

−
2A
s

e−s(T/2) +
2A
s

e−sT −
2A
s

e−s(3T/2) +
2A
s

e−s(2T) + · · ·

=
A
s

−
2A
s

e−s(T/2)
(

1 − e−s(T/2) + e−sT − e−s(3T/2) + e−s(2T) − · · ·
)

Let

S = 1 − e−s(T/2) + e−sT − e−s(3T/2) + e−s(2T) − · · ·

−e−s(T/2)S = −e−s(T/2) + e−sT − e−s(3T/2) + e−s(2T) − · · ·

(1 + e−s(T/2))S = 1 ⇒ S =
1

1 + e−s(T/2)

Then

X(s) = A
s

(
1 − 2e−s(T/2)

(
1

1 + e−s(T/2)

))
=

A
s
(1 − e−sT/2)

(1 + e−sT/2)
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Laplace Transforms of Causal Repeating Functions
Response to causal repeating inputs

The response of the system to the causal repeating input in Laplace domain is

Y(s) = H(s)X(s) = H(s)X(s)
1 − e−sT

The roots of the system is not only the root of the denominator of the product H(s)X(s) but
also the roots of the equation

1 − e−sT = 0.

It has an infinite number of roots, located at s = j2πn/T, where n is any positive or
negative integer. Then we cannot find y(t) using the inverse Laplace transforms. To
overcome this problem:

• Express Y(s) in the following from:

Y(s) = H(s)X1(s)
[
1 + e−sT + e−2sT + e−3sT + · · ·

]
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Laplace Transforms of Causal Repeating Functions
Response to causal repeating inputs

• If we just obtain the inverse Laplace transform of H(s)X1(s), then the remaining terms
are obtained by shifting in time.

• If we define

y1(t) = L−1 [H(s)X1(s)]

then during the interval (n − 1)T < t < nT, the output can be expressed as

y(t) = y1(t)u(t) + y1(t − T)u(t − T) + · · ·+ y1(t − nT + T)u(t − nT + T)
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Laplace Transforms of Causal Repeating Functions
Response to causal repeating inputs:example

The square wave is applied to the RC circuit. The amplitude of the waveform is 20 V and the
period T is 2 sec. The switch is closed at t = 0 and the initial voltage across the capacitor is
10 V.

−
+vi(t)

t = 0
R = 0.5 MΩi(t)

C = 1 µF
+
v(t)

−

v(t) + RC dv
dt

= vi(t)

(1 + sRC)V(s) = Vi(s) + RCv(0)

with the given values, RC = 0.5, v(0) = 10,
and

Vi(s) =
20(1 − 2e−s + e−2)

s(1 − e−2s)
Solving for V(s), the Laplace transform of the voltage across the capacitor, we obtain

V(s) = 10
s + 2

+
40(1 − 2e−s + e−2s)

s(s + 2)(1 − e−2s)
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Laplace Transforms of Causal Repeating Functions
Response to causal repeating inputs:example

By using a long division, we have

1 − 2e−s + e−2s

1 − e−2s =
(

1 − 2e−s + e−2s)(1 + e−2s + e−4s + · · ·
)

= 1 − 2e−s + 2e−2s − 2e−3s + 2e−4s − · · ·

Then

V(s) = 10
s + 2

+
40

s(s + 2)

(
1 − 2e−s + 2e−2s − 2e−3s + 2e−4s − · · ·

)
= V1(s) + Ṽ2(s)

(
1 − 2e−s + 2e−2s − 2e−3s + 2e−4s − · · ·

)
= V1(s) + V2(s)

v1(t) = 10e−2t

ṽ2(t) = 20 − 20e−2t

v2(t) = 20 − 20e−2t − 40(1 − e−2(t−1))u(t − 1)

+ 40(1 − e−2(t−2))u(t − 2)− 40(1 − e−2(t−3))u(t − 3) + · · ·
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Laplace Transforms of Causal Repeating Functions
Response to causal repeating inputs:example

If we consider one nth period, that is 2(n − 1) < t < 2n, we have for example 3 < t < 4
( u(t) = u(t − 1) = u(t − 2) = u(t − 3) = 1,u(t − 4) = 0)

v2(t) = 20 − 20e−2t − 40(1 − e−2(t−1)) + 40(1 − e−2(t−2))− 40(1 − e−2(t−3))

= −20 + 20e−2t − 40e−2t
(

1 − e2 + e4 − e6
)

If n < t < n + 1

v2(t) = (−1)n20 + 20e−2t − 40e−2t
(

1 − e2 + e4 − e6 + · · ·+ (−e2)n
)

Then

v(t) = 10e−2t + (−1)n20 + 20e−2t − 40e−2t
[

1 − (−e2)n+1

1 − e2

]
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Laplace Transforms of Causal Repeating Functions
Steady-State Response to causal repeating inputs

• The total response of the system during the period nT < t < (n + 1)T can usually be
expressed in a compact form by using some algebraic properties of geometric series.

• We could not easily determine the steady-state component. The problem is caused by
the fact that we cannot simply assume t to be very large and drop all terms multiplied
by negative exponentials.

• for example from the last example if we do that we will get a square wave as an
output, which is not correct.

• To find the steady-state response, one way can do as follow:
• Find the Laplace transform of zero-state response of the system to only the first

cycle of the repetitive input.
• Find the transient component from the residues at the poles of the system

transfer function. These poles must lie strictly in the left half of the s-plane for
the system to have a steady-state response.

• The steady-state response is

yss(t) = L−1 [H(s)X1(s)]−
n∑

i=1
Aie−pit,

where X1(s) is the Laplace transform of the first cycle of x(t).
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Laplace Transforms of Causal Repeating Functions
Steady-State Response to causal repeating inputs: example

From the last example we have the Laplace transform of the first cycle of vi(t) is given by:

Vi1(s) =
20(1 − 2e−s + e−2)

s

The Laplace transform of the zero-state response is by giving v(0) = 0 and

H(s) = V(s)
Vi(s)

=
2

s + 2

The zero-state response of the first cycle is

vs(t) = L−1 [H(s)Vi1(s)] = L−1
[

40(1 − 2e−s + e−2s

s(s + 2)

]
= 20(1 − e−2t)u(t)− 40

[
1 − e−2(t−1)

]
u(t − 1) + 20

[
1 − e−2(t−2)

]
u(t − 2)
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Laplace Transforms of Causal Repeating Functions
Steady-State Response to causal repeating inputs: example

To calculate the transient component of the complete (all periods) zero-state response, we
consider the residue at the pole at s = −2 as follow:

H(s)Vi(s) =
40(1 − 2e−s + e−2s)

s(s + 2)(1 − e−2s)
=

A
s

+
B

s + 2

B =
40(1 − 2e−s + e−2s)

s(1 − e−2s)

∣∣∣∣
s=−2

= 15.232

Then the steady-state output during the first cycle is given by

vss(t) = v1(t)− Be−2t = (20 − 35.232e−2t)u(t)− 40[1 − e−2(t−1)]u(t − 1), 0 < t < 2

The last term of vs(t) is equal zero during the first cycle 0 < t < 2.
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Laplace Transforms of Causal Repeating Functions
Steady-State Response to causal repeating inputs: example

1 2 3

−15.232

15.232

0 t

v(t)
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