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Introduction
Linear Differential Systems

Consider Linear Time-Invariant Continuous-Time (LTIC) Systems,
for which the input f(t) and the output y(t) are related by linear
differential equations of the form

dny
dtn + an−1

dn−1y
dtn−1 + · · ·+ a1

dy
dt + a0y(t) =

bm
dmf
dtm + bm−1

dm−1f
dtm−1 + · · ·+ b1

df
dt + b0f(t),

where all the coefficients ai and bi are constants.

• Theoretically the powers m and n can be take on any value.

• Practical noise considerations, require m ≤ n.

• For the rest of this course we assume implicitly that m ≤ n.
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The D-Operator

D-operator

Dy ≡ dy
dt , Dy is taking first-order derivative of y w.r.t. t.

D2y = D(Dy) = d2y
dt2

... =
...

Dny =
dny
dtn , n is a positive interger.

Hence the D-operator is a differential operator; applying the D-operator
on function f(t) means differentiating f(t) with respect to t, i.e.,

Df(t) = df(t)
dt .
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The D-Operator
Properties

The following properties of the D-operator can be easily verified:

1. D[y1(t) + y2(t)] =
d
dt(y1 + y2) =

dy1
dt +

dy2
dt = Dy1 + Dy2;

2. D[cy(t)] = d
dt(cy) = cdy

dt = cDy, c = constant.

3. D[c1y1(t) + c2y2(t)] = c1Dy1 + c2Dy2, c1, c2 = constants.

Using the D-operator to the LTIC system, we can express the equation
as (

Dn + an−1Dn−1 + · · ·+ a1D + a0
)

y(t) =(
bmDm + bm−1Dm−1 + · · ·+ b1D + b0

)
f(t)

or

Q(D)y(t) = P(D)f(t)
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The D-Operator
Examples

Rewrite the following differential equations using the D-operator:

1. 6x2 d2y
dx2 + 2xdy

dx − 3y = x3e2x

Solution:

(6x2D2 + 2xD − 3)y = x3e2x, D ≡ d
dx

2. 5d3x
dt3 + 2d2x

dt2 − dx
dt + 7x = 3 sin 8t

Solution:

(5D3 + 2D2 − D + 7)x = 3 sin 8t, D ≡ d
dt .
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Total Response
The response of the linear system (discussed above) can be expressed as
the sum of two components: the zero-input component and the
zero-state component (decomposition property).
Therefore

Total response = zero-input response + zero-state response

• the zero-input component is the system response when the input
f(t) = 0 so that it is the result of internal system conditions (such
as energy storages, initial conditions) alone.

• the zero-state component is the system response to the external
input f(t) when the system is in zero state, meaning the absence of
all internal energy storages; that is all initial conditions are zero.
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Total Response
Decomposition property

We can verify that the LTIC system has the decomposition property. If
y0(t) is the zero-input response of the system, then, by definition

Q(D)y0(t) = 0.

If yi(t) is the zero-state response, then yi(t) is the solution of

Q(D)yi(t) = P(D)f(t)

subject to zero initial conditions (zero-state). The addition of these two
equations yields

Q(D)[y0(t) + yi(t)] = P(D)f(t).

Clearly, y0(t) + y(t) is the general solution of the linear system.
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System Response to Internal Condition
Zero-Input Response

The zero-input response y0(t) is the solution of the LTIC system when
the input f(t) = 0 so that

Q(D)y0(t) = 0

(Dn + an−1Dn−1 + · · ·+ a1D + a0)y0(t) = 0 (1)

• the last equation shows that a linear combination of y0(t) and its n
successive derivatives is zero, not at some values of t but for all t.

• the result is possible if and only if y0(t) and all its n successive
derivatives are of the same form. Other wise their sum can never
add to zero for all values of t.

Lecture 3: Time-Domain Analysis of Continuous-Time Systems J 9/101 I }



System Response to Internal Condition
Zero-Input Response cont.

An exponential function eλt is an only function has the property. Let us
assume that

y0(t) = ceλt

is a solution to Eq. (1). Then

Dy0(t) =
dy0
dt

= cλeλt

D2y0(t) =
d2y0
dt2 = cλ2eλt

...

Dny0(t) =
dny0
dtn = cλneλt

Substituting these results in Eq. (1), we obtain

c
(
λn + an−1λ

n−1 + · · ·+ a1λ+ a0
)

eλt = 0
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System Response to Internal Condition
Distinct roots.

For a nontrivial solution of this equation,

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0 (2)

• this result means that ceλt is indeed a solution of Eq. (1), provided
that λ satisfies Eq. (2).

• this polynomial is identical to the polynomial Q(D) in Eq. (1), with
λ replacing D. Therefore Q(λ) = 0.

• Q(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn) = 0 distinct roots.

• λ has n solutions: λ1, λ2, . . . , λn. Eq. (1) has n possible solutions:
c1eλ1t,c2eλ2t,. . .,cneλnt, with c1, c2, . . . , cn as arbitrary constants.
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System Response to Internal Condition
Distinct roots.

We can show that a general solution is given by the sum of these n
solutions, so that

y0(t) = c1eλ1t + c2eλ2t + · · ·+ cneλnt,

where c1, c2, . . . , cn are arbitrary constants determined by n constraints
(the auxiliary conditions) on the solution.

• Q(λ) is characteristic of the system, has nothing to do with the
input.

• Q(λ) is called the characteristic polynomial of the system.

• Q(λ) = 0 is called the characteristic equation of the system.
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System Response to Internal Condition
Distinct roots.

• λ1, λ2, . . . , λn are the roots of the characteristic equation; they are
called the characteristic roots of the system.

• we also called them characteristic values, eigenvalues, and
natural frequencies.

• The exponentials eλit(i = 1, 2, . . . ,n) in the zero-input response are
the characteristic modes (also known as modes or natural
modes) of the system.

• There is a characteristic mode for each characteristic root of the
system, and the zero-input response is a linear combination of the
characteristic modes of the system.

• The entire behavior of a system is dictated primarily by its
characteristic modes.
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System Response to Internal Condition
Repeated Roots

The solution of Eq. (1) assumes that the n characteristic roots
λ1, λ2, . . . , λn are distinct. If there are repeated roots, the form of the
solution is modified slightly. For example

(D − λ)2y0(t) = (D2 − 2λD + λ2)y0(t) = 0,

by using distinct method, has

y0(t) = c1eλt + c2eλt = (c1 + c2)eλt = ceλt,

then there is an only one arbitrary constant. However, for a 2nd-order
differential equation, the solution must contain 2 arbitrary constants. To
solve the problem, one can seek a second linearly independent solution.
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System Response to Internal Condition
Repeated Roots cont.

Try a solution of the form y0(t) = v(t)eλt. Since

Dy0 = eλtDv + λveλt = eλt(Dv + λv),
D2y0 = eλtD2v + λeλtDv + λ2eλtv + λeλtDv

= eλt(D2v + 2λDv + λ2v).

Substituting in the original equation yields

D2y0 − 2λDy0 + λ2y0 = 0
eλt (D2v + 2λDv + λ2v

)
− 2λeλt(Dv + λv) + λ2veλt = 0

eλtD2v = 0
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System Response to Internal Condition
Repeated Roots cont.

Hence v(t) satisfies the differential equation D2v = 0. Integrating twice
leads to

v(t) = c1 + c2t.

The solution is then

y0(t) = (c1 + c2t)eλt,

in which there two arbitrary constants.
• the root λ repeats twice. The characteristic modes in this case are

eλt and teλt.
• for (D − λ)ry0(t) = 0 the characteristic modes are eλt, teλt, t2eλt,

. . .,tr−teλt, and that the solutions is

y0(t) = (c1 + c2t + · · ·+ crtr−1)eλt.
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System Response to Internal Condition
Repeated Roots cont.

Consequently, for a system with the characteristic polynomial

Q(λ) = (λ− λ1)
r︸ ︷︷ ︸

rrepeated roots

n−r distinct roots︷ ︸︸ ︷
(λ− λr+1) · · · (λ− λn)

the characteristic modes are eλ1t,teλ1t,. . .,tr−1eλ1t,. . .,eλnt and the
solution is

y0(t) = (c1 + c2t + · · ·+ crtr−1)eλ1t + cr+1eλr+1t + · · ·+ cneλnt
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System Response to Internal Condition
Complex roots

The procedure for handling complex roots is the same as that for real
roots.

• for a real system, complex roots must occur in pairs of conjugates if
the coefficients of the characteristic polynomial Q(λ) are to be real.

• if α+ jβ is a characteristic root, α− jβ must also be a
characteristic root.

• the zero-input response corresponding to this pair of complex
conjugate roots is

y0(t) = c1e(α+jβ)t + c2e(α−jβ)t.
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System Response to Internal Condition
Complex roots cont.

For a real system, the response y0(t) must also be real. This is possible
only if c1 and c2 are conjugates. Let

c1 =
c
2ejθ and c2 =

c
2e−jθ

This yields

y0(t) =
c
2ejθe(α+jβ)t +

c
2e−jθe(α−jβ)t

=
c
2eαt

[
ej(βt+θ) + e−j(βt+θ)

]
= ceαt cos(βt + θ)

This form is more convenient because it avoids dealing with complex
numbers.Lecture 3: Time-Domain Analysis of Continuous-Time Systems J 19/101 I }



System Response to Internal Condition
Example: distinct roots

Find y0(t), the zero-input component of the response of an LTI system described by the
following differential equation:

(D2 + 3D + 2)y(t) = Df(t)

when the initial conditions are y0(0) = 0, ẏ0(0) = −5. Note that y0(t), being the zero-input
component (f(t) = 0), is the solution of (D2 + 3D + 2)y0(t) = 0.
Solution: The characteristic polynomial of the system is λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2) = 0
The characteristic roots of the system are λ1 = −1 and λ2 = −2, and the characteristic
modes of the system are e−t and e−2t. Consequently, the zero-input component of the loop
current is

y0(t) = c1e−t + c2e−2t

To determine the arbitrary constants c1 and c2, we differentiate above equation to obtain

ẏ0(t) = −c1e−t − 2c2e−2t
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System Response to Internal Condition
Example: distinct roots cont.

Setting t = 0 in both equations, and substituting the initial conditions y0(0) = 0 and
ẏ(0) = −5 we obtain

0 = c1 + c2

−5 = −c1 − 2c2.

Solving these two simultaneous equations in two unknowns for c1 and c2 yields

c1 = −5, c2 = 5

Therefore

y0(t) = −5e−t + 5e−2t

This is the zero-input component of y(t) for t ≥ 0.
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System Response to Internal Condition
Example: distinct roots cont.
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Figure: the plot of y0(t)
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System Response to Internal Condition
Example: repeated roots

For a system specified by

(D2 + 6D + 9)y(t) = (3D + 5)f(t)

let us determine y0(t), the zero-input component of the response if the initial conditions are
y0(0) = 3 and ẏ0(0) = −7.
Solution:
The characteristic polynomial is λ2 + 6λ+ 9 = (λ+ 3)2, and its characteristic roots are
λ1 = −3, λ2 = −3 (repeated roots). Consequently, the characteristic modes of the system
are e−3t and te−3t. The zero-input response, being a linear combination of the characteristic
modes, is given by

y0(t) = (c1 + c2t)e−3t.

The arbitrary constants c1 and c2 from the initial conditions y0(0) = 3 and ẏ(0) = −7. From,

ẏ0(t) = −3c1e−3t + c2e−3t − 3c2te−3t
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System Response to Internal Condition
Example: repeated roots cont.

Substituting the initial conditions, we obtain

3 = c1

−7 = −3c1 + c2 and c2 = 2.

Therefore

y0(t) = (3 + 2t)e−3t.

This is the zero-input component of y(t) for t ≥ 0.
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System Response to Internal Condition
Example: repeated roots cont.
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System Response to Internal Condition
Example: complex roots

Determine the zero-input response of an LTI system described by the equation:

(D2 + 4D + 40)y(t) = (D + 2)f(t)

with initial conditions y0(0) = 2 and ẏ0(0) = 16.78.
Solution:
The characteristic polynomial is λ2 + 4λ+ 40 = (λ+ 2 − j6)(λ+ 2 + j6). The characteristic
roots are −2 ± j6. The solution can be written either in the complex form or in the real form.
The complex form is

Real form method:
Since α = −2 and β = 6, the real form solution is

y0(t) = ce−2t cos(6t + θ)

where c and θ are arbitrary constants to be determined from the initial conditions y0(0) = 2
and ẏ0(0) = 16.78.
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System Response to Internal Condition
Example: complex roots cont.

Differentiation of above equation yields

ẏ0(t) = −2ce−2t cos(6t + θ)− 6ce−2t sin(6t + θ).

Setting t = 0 and then substituting initial conditions, we obtain

2 = c cos θ
16.78 = −2c cos θ − 6c sin θ.

Solution of these two simultaneous equations in two unknowns c cos θ and c sin θ yields

c cos θ = 2
c sin θ = −3.463.

Squaring and then adding the two sides of the above equations yields

c2 = (2)2 + (−3.464)2 = 16 =⇒ c = 4.
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System Response to Internal Condition
Example: complex roots cont.

Next, dividing c sin θ by c cos θ yields

tan θ =
−3.463

2

and

θ = tan−1
(
−3.483

2

)
= −

π

3

Therefore

y0(t) = 4e−2t cos(6t − π

3
).
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System Response to Internal Condition
Example: complex roots cont.

Complex form method:
From

y0(t) = c1eλ1t + c2eλ2t = c1e−(2−j6)t + c2e−(2+j6)t

= e−2t (c1ej6t + c2e−j6t) .
Using Euler’s identities e±jθ = cos θ ± j sin θ, we obtain

y0(t) = e−2t (c1(cos 6t + j sin 6t) + c2(cos 6t − j sin 6t))

= e−2t ((c1 + c2) cos 6t + j(c1 − c2) sin 6t) = e−2t (K1 cos 6t + K2 sin 6t)

Since y0(t) is real, the coefficients of K1 and K2 must be real. This can be done by:

c1 + c2 = K1 = 2a, j(c1 − c2) = K2 = −2b =⇒ c1 − c2 = j2b, a, b real constants

or

c1 = a + jb, c2 = a − jb
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System Response to Internal Condition
Example: complex roots cont.

ẏ0(t) = −2e−2t (K1 cos 6t + K2 sin 6t) + e−2t (−6K1 sin 6t + 6K2 cos 6t)

and

ẏ0(0) = −2K1 + 6K2 = 16.78, y0(0) = c1 + c2 = 2 =⇒ K1 = 2,K2 = 3.463.

Then,

y(t) = e−2t(2 cos 6t + 3.463 sin 6t)

= 4e−2t(0.5 cos 6t + 0.866 sin 6t), cos θ ≤ 1, sin θ ≤ 1

= 4e−2t(cos
π

3
cos 6t + sin

π

3
sin 6t)

= 4e−2t cos(6t − π

3
)
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System Response to Internal Condition
Example: complex roots cont.
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System Response to Internal Condition
Practical initial conditions and the meaning of 0− and 0+

• In academic examples the initial conditions y0(0) and ẏ(0) are
supplied. In practical problems, we must derive such conditions
from the physical situation.

• For example in an RLC circuit, we may be given the conditions,
such as initial capacitor voltages, and initial inductor currents, etc.
From this information, we need to derive y0(0), ẏ(0), . . . for the
desired variable as demonstrated next.

• The input is assumed to start at t = 0. Hence t = 0 is the
reference point of interest. In real life, there is y0(t) at t = 0− and
t = 0+. The two sets of conditions are generally different.
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System Response to Internal Condition
Practical initial conditions and the meaning of 0− and 0+

• We are dealing with the total response y(t), which consists of two
components; the zero-input component y0(t) (response due to the
initial conditions alone with f(t) = 0) and zero-state component
resulting from the input alone with all initial conditions zero.

• At t = 0−, the response y(t) consists solely of the zero-input
component y0(t) because the input has not started yet. Thus,
y(0−) = y0(0−), ẏ(0−) = ẏ0(0−), and so on.

• The y0(t) is the response due to initial conditions alone and does
not depend on the input f(t).

• The initial conditions on y0(t) at t = 0− and 0+ are identical.

• This is not true for the total response y(t).
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System Response to Internal Condition
RLC circuit

A voltage f(t) = 10e−3tu(t) is applied at the input of the RLC circuit shown in Fig. below.
Find the zero-input loop current y0(t) for t ≥ 0 if the initial inductor current is zero; that is,
y(0−) = 0 and the initial capacitor voltage is 5 volts; that is vC(0−) = 5.

−
+f(t)

1 H 3 Ω

1
2 F

+
vC(t)

−

(a)

y(t)

1 H 3 Ω

1
2 F

+
vC(t)

−

(b)

y0(t)

Solution:
From Figure (a), the differential equation relating y(t) to f(t) is (D2 + 3D + 2)y(t) = Df(t)
To find y0(t) we need two initial conditions y0(0) and ẏ0(0). These conditions can be
derived from the given initial conditions, y(0−) = 0 and vC(0−) = 5. Since y0(t) is the loop
current when the input terminals are shorted at t = 0, so that the input f(t) = 0 (zero-input)
as depicted in Figure (b).
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System Response to Internal Condition
RLC circuit cont.

Remember that the inductor current and the capacitor voltage cannot change instantaneously
in absence of an impulsive voltage and an impulsive current, respectively. Hence

iL(0−) = iL(0) = iL(0+) and vC(0−) = vC(0) = vC(0+)

Therefore, when the input terminals are shorted at t = 0, the inductor current is still zero
and the capacitor voltage is still 5 volts. Thus, y0(0) = 0. To determine ẏ(0), we use the
loop equation for the circuit in Figure (b). Because the voltage across the inductor is
L(dy0/dt) or ẏ0(t), this equation can be written as follows:

ẏ0(t) + 3y0(t) +
1
C

∫ t

−∞
y0(τ)dτ = 0

ÿ0(t) + 3ẏ0(t) + 2y0(t) = 0

By setting t = 0, we obtain ẏ0(0) = −5 and since (D2 + 3D + 2)y0(t) = 0, we have

y0(t) = −5e−t + 5e−2t, t ≥ 0.
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The Unit Impulse Response h(t)
The impulse function δ(t) is also used in determining the response of a
linear system to an arbitrary input f(t).

f(t)

t

∆t

We can approximate f(t) with a sum of rectangular pulses of width ∆t
and of varying heights. The approximation improves as ∆t → 0, when
the rectangular pulses become impulses. (Note : by using sampling
property)
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The Unit Impulse Response h(t)
Cont.

We can determine the system response to an arbitrary input f(t), if we
know the system response to an impulse input. The unit impulse
response of an LTIC system described by the nth-order differential
equation

Q(D)y(t) = P(D)f(t),

where Q(D) and P(D) are the polynomials. Generality, let m = n, we
have

(Dn + an−1Dn−1 + · · ·+ a1D + a0)y(t) =

(bnDn + bn−1Dn−1 + · · ·+ b1D + b0)f(t)

Lecture 3: Time-Domain Analysis of Continuous-Time Systems J 37/101 I }



The Unit Impulse Response h(t)
Cont.

System

δ(t)

t = 0 t = 0

h(t)

• an impulse input δ(t) appears momentarily at t = 0, and then it is
gone forever.

• it generates energy storages; that is, it creates nonzero initial
conditions instantaneously within the system at t = 0+.

• the impulse response h(t), therefore, must consist of the system’s
characteristic modes for t ≥ 0+ As a result

h(t) = characteristic mode terms t ≥ 0+
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The Unit Impulse Response h(t)
Characteristic modes

What happens at t = 0? At a single moment t = 0, there can at most
be an impulse, so the form of the complete response h(t) is given by

h(t) = A0δ(t) + characteristic mode terms t ≥ 0

Consider an LTIC system S specified by Q(D)y(t) = P(D)f(t) or

(Dn + an−1Dn−1 + · · ·+ a1D + a0)y(t) =
(bnDn + bn−1Dn−1 + · · ·+ b1D + b0)f(t).

When the input f(t) = δ(t) the response y(t) = h(t). Therefore, we
obtain

(Dn + an−1Dn−1 + · · ·+ a1D + a0)h(t) =
(bnDn + bn−1Dn−1 + · · ·+ b1D + b0)δ(t).

Lecture 3: Time-Domain Analysis of Continuous-Time Systems J 39/101 I }



The Unit Impulse Response h(t)
Characteristic modes cont.

Substituting h(t) with A0δ(t)+ characteristic modes, we have

A0Dnδ(t) + · · · = bnDnδ(t) + · · · .

Therefore, A0 = bn and h(t) = bnδ(t)+ characteristic modes.

To find the characteristic mode terms, let us consider a system S0
whose input f(t) and the corresponding output x(t) are related by

Q(D)x(t) = f(t).

Systems S and S0 have the same characteristic polynomial. Moreover,
S0 has P(D) = 1, that is bn = 0. Then the impulse response of S0
consists of characteristic mode terms only without an impulse at t = 0.
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The Unit Impulse Response h(t)
Characteristic modes cont.

Let yn(t) is the response of S0 to input δ(t). Therefore

Q(D)yn(t) = δ(t)
(Dn + an−1Dn−1 + · · ·+ a1D + a0)yn(t) = δ(t)

y(n)n (t) + an−1y(n−1)
n (t) + · · ·+ a1y(1)n (t) + a0yn(t) = δ(t).

The right-hand side contains a single impulse term δ(t). This is possible
only if y(n−1)

n (t) has a unit jump discontinuity at t = 0, so that
y(n)n (t) = δ(t). The lower-order terms cannot have any jump
discontinuity because this would mean the presence of the derivatives of
δ(t). Therefore, the n initial conditions on yn(t) are

y(n)n (0) = δ(t), y(n−1)
n (0) = 1

yn(0) = y(1)n (0) = · · · = y(n−2)
n (0) = 0
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The Unit Impulse Response h(t)
Characteristic modes cont.

In conclusion yn(t) is the zero-input response of the system S subject to
initial conditions above.

Since

Q(D)x(t) = f(t)
P(D)Q(D)x(t) = P(D)f(t)

y(t) = P(D)x(t),

or

h(t) = P(D)[yn(t)u(t)],

where yn(t) is an characteristic mode of S0 and we use yn(t)u(t)
because the impulse response is causal.
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The Unit Impulse Response h(t)
Characteristic modes cont.

At the end,

h(t) = bnδ(t) + P(D)[yn(t)u(t)].

In gerneral, m ≤ n, we can asserts that at t = 0, h(t) = bnδ(t).
Therefore,

h(t) = bnδ(t) + P(D)yn(t), t ≥ 0
= bnδ(t) + [P(D)yn(t)]u(t),

where bn is the coefficient of the nth-order term in P(D), and yn(t) is a
linear combination of the characteristic modes of the system subject to
the following initial conditions:

y(n−1)
n (0) = 1, and yn(0) = ẏn(0) = ÿn(0) = · · · = y(n−2)

n (0) = · · · = 0
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The Unit Impulse Response h(t)
Characteristic modes cont.

As an example, we can express this condition for various values of n (the
system order) as follow:

n = 1 : yn(0) = 1
n = 2 : yn(0) = 0 and ẏn(0) = 1
n = 3 : yn(0) = ẏn(0) = 0 and ÿn(0) = 1
n = 4 : yn(0) = ẏn(0) = ÿn(0) = 0 and

...y n(0) = 1

and so on.

If the order of P(D) is less than the order of Q(D), bn = 0, and the
impulse term bnδ(t) in h(t) is zero.
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The Unit Impulse Response h(t)
Example

Determine the unit impulse response h(t) for a system specified by the equation

(D2 + 3D + 2)y(t) = Df(t).

The system is a second-order system (n=2) having the characteristic polynomial

(λ2 + 3λ+ 2) = (λ+ 1)(λ+ 2) and λ = −1,−2.

Therefore yn(t) = c1e−t + c2e−2t and ẏn(t) = −c1e−t − 2c2e−2t.

To find the impulse response, we know that the initial conditions are

ẏn(0) = 1 and yn(0) = 0.

Setting t = 0 and substituting the initial conditions, we obtain

0 = c1 + c2

1 = −c1 − 2c2,

and c1 = 1, c2 = −1. Therefore yn(t) = e−t − e−2t.
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The Unit Impulse Response h(t)
Example cont.

From P(D) = D, so that

P(D)yn(t) = Dyn(t) = ẏn(t) = −e−t + 2e−2t.

Also in this case, bn = b2 = 0 [the second-order term is absent in P(D)]. Therefore

h(t) = bnδ(t) + [P(D)yn(t)]u(t) = (−e−t + 2e−2t)u(t).
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System Response to External Input: Zero-state Response
The zero-state response is the system response y(t) to an input f(t)
when the system is in zero state; that is, when all initial conditions are
zero.

• we use the superposition principle to derive a linear system’s
response to some arbitrary inputs f(t).

• f(t) is express in terms of impulses. f(t) is a sum of rectangular
pulses, each of width ∆τ .

∆τ

f(t)

t

f(n∆τ)

t = n∆τ
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System Response to External Input: Zero-state Response
Sum of impulses

• As ∆τ → 0, each pulse approaches an impulse having a strength
equal to the area under the pulse. For example, the shaded
rectangular pulse located at t = n∆τ will approach an impulse at
the same location with strength f(n∆τ)∆τ (area under pulse).

• This impulse can therefore be represented by
[f(n∆τ)∆τ ]δ(t − n∆τ).

• the response to above input can be described by

δ(t) =⇒ h(t)

δ(t − n∆τ) =⇒ h(t − n∆τ)

[f(n∆τ)∆τ ]δ(t − n∆τ)︸ ︷︷ ︸
input

=⇒ [f(n∆τ)∆τ ]h(t − n∆τ)︸ ︷︷ ︸
output
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System Response to External Input: Zero-state Response
Finding the system response to an arbitrary input f(t)

δ(t − n∆τ)

t

δ(t)

0

0 tn∆τ

[f(n∆τ)∆τ ]δ(t − n∆τ)
f(n∆τ)h(t − n∆τ)∆τ

0 tn∆τ

h(t)

0 t

0 t

∆y(t)
n∆τ

n∆τ

0 t

h(t − n∆τ)
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System Response to External Input: Zero-state Response
Finding the system response to an arbitrary input f(t) cont.

t

y(t)

n∆τ0

The total response y(t) is obtained by summing all such components.

lim
∆τ→0

∞∑
n=−∞

f(n∆τ)δ(t − n∆τ)∆τ =⇒ lim
∆τ→0

∞∑
n=−∞

f(n∆τ)h(t − n∆τ)∆τ∫ ∞

−∞
f(τ)δ(t − τ)dτ =⇒ y(t) =

∫ ∞

−∞
f(τ)h(t − τ)dτ
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System Response to External Input: Zero-state Response
The Convolution Integral

The convolution integral of two functions f1(t) and f2(t) is denoted
symbolically by f1(t) ∗ f2(t) and is defined as

f1(t) ∗ f2(t) ,
∫ ∞

−∞
f1(τ)f2(t − τ)dτ

Some important properties of the convolution integral are given below:

1. The Commutative Property: Convolution operation operation is
commutative; that is

f1(t) ∗ f2(t) = f2(t) ∗ f1(t)

f1(t) ∗ f2(t) =
∫ ∞

−∞
f1(τ)f2(t − τ)dτ.
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System Response to External Input: Zero-state Response
The Convolution Integral cont.

If we let x = t − τ so that τ = t − x and dτ = −dx, we obtain∫ ∞

−∞
f1(τ)f2(t − τ)dτ = −

∫ −∞

∞
f2(x)f1(t − x)dx

=

∫ ∞

−∞
f2(x)f1(t − x)dx

= f2(t) ∗ f1(t)

2. The Distributive Property:

f1(t) ∗ [f2(t) + f3(t)] =
∫ ∞

−∞
f1(τ)[f2(t − τ) + f3(t − τ)]dτ

=

∫ ∞

−∞
[f1(τ)f2(t − τ) + f1(τ)f3(t − τ)] dτ

= f1(t) ∗ f2(t) + f1(t) ∗ f3(t)
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System Response to External Input: Zero-state Response
The Convolution Integral cont.

3 The Associative Property:

f1(t) ∗ [f2(t) ∗ f3(t)] =
∫ ∞

−∞
f1(τ1)[f2 ∗ f3(t − τ1)]dτ1

=

∫ ∞

−∞
f1(τ1)

[∫ ∞

−∞
f2(τ2)f3(t − τ1 − τ2)dτ2

]
dτ1

Let λ = τ1 + τ2 and dλ = dτ2 (we consider τ1 as a contant when we integrate a
function with respect to τ2). Then

=

∫ ∞

−∞
f1(τ1)

[∫ ∞

−∞
f2(λ− τ1)f3(t − λ)dλ

]
dτ1

=

∫ ∞

−∞

[∫ ∞

−∞
f1(τ1)f2(λ− τ1)dτ1

]
︸ ︷︷ ︸

f1∗f2(λ)

f3(t − λ)dλ

= [f1(t) ∗ f2(t)] ∗ f3(t)
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System Response to External Input: Zero-state Response
The Convolution Integral cont.

4 Convolution with an Impulse:

f(t) ∗ δ(t) =
∫ ∞

−∞
f(τ)δ(t − τ)dτ.

It is obvious to see that f(t) ∗ δ(t) = f(t) (δ(t − τ) is an impulse
located at τ = t, the integral in the above equation is the value of
f(τ) at τ = t). Then

f(t − T) =

∫ ∞

−∞
f(τ)δ(t − T − τ)dτ = f(t) ∗ δ(t − T).
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System Response to External Input: Zero-state Response
The Convolution Integral cont.

5 The Shift Property:

f1(t) ∗ f2(t) =
∫ ∞

−∞
f1(τ)f2(t − τ)dτ = c(t).

Then

f1(t) ∗ f2(t − T) = f1(t) ∗ f2(t) ∗ δ(t − T) = c(t) ∗ δ(t − T)

= c(t − T)

f1(t − T) ∗ f2(t) = f1(t) ∗ δ(t − T) ∗ f2(t) = f1(t) ∗ f2(t) ∗ δ(t − T)

= c(t − T)

f1(t − T1) ∗ f2(t − T2) = f1(t) ∗ δ(t − T1) ∗ f2(t) ∗ δ(t − T2)

= f1(t) ∗ f2(t) ∗ δ(t − T1) ∗ δ(t − T2)

= c(t − T1 − T2)
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System Response to External Input: Zero-state Response
The Convolution Integral cont.

6 The Width Property: If the durations (width) of f1(t) and f2(t)
are T1 and T2 respectively, then the duration of f1(t) ∗ f2(t) is
T1 + T2.

The proof of this property follows readily from the graphical
considerations discussed later.
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System Response to External Input: Zero-state Response
Zero-State Response and Causality

The (zero-state) response y(t) of an LTIC system is

y(t) = f(t) ∗ h(t) =
∫ ∞

−∞
f(τ)h(t − τ)dτ.

In practice, most systems are causal, so that their response cannot begin
before the input starts. Furthermore, most inputs are also causal, which
means they start at t = 0.

By definition, the response of a causal system cannot begin before its
input begins. Consequently, the causal system’s response to a unit
impulse δ(t) (which is located at t = 0) cannot begin before t = 0.
Therefore, a causal system’s unit impulse response h(t) is a causal signal.
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System Response to External Input: Zero-state Response
Zero-State Response and Causality cont.
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t ≥ 0

Overlap area

τ →

τ →

f(τ) = 0

0

h(t − τ) = 0

t

t ≥ 0
f(τ) = 0

0

h(t − τ) = 0

t

• f(t) is causal, f(τ) = 0 for τ < 0. If h(t) is causal, h(t − τ) = 0 for
t − τ < 0

• Therefore, the product f(τ)h(t − τ) = 0 everywhere except over the
nonshaded interval 0 < τ < t. If t is negative, f(τ)h(t − τ) = 0 for
all τ . Then,

y(t) = f(t) ∗ h(t) =


∫ t

0
f(τ)h(t − τ)dτ , t ≥ 0

0 , t < 0
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System Response to External Input: Zero-state Response
Zero-State Response and Causality: examples

For an LTIC system with the unit impulse response h(t) = e−2tu(t), determine the response
y(t) for the input

f(t) = e−tu(t).

Here both f(t) and h(t) are causal. Hence, the system response is given by

y(t) =
∫ t

0
f(τ)h(t − τ)dτ, t ≥ 0

=

∫ t

0
e−τ e−2(t−τ)dτ, t ≥ 0

= e−2t
∫ t

0
eτdτ = e−2t eτ

∣∣∣∣t
0
, t ≥ 0

= e−2t(et − 1) = e−t − e−2t, t ≥ 0

Also, y(t) = 0 when t < 0. This result yields

y(t) = (e−t − e−2t)u(t).
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System Response to External Input: Zero-state Response
Zero-State Response and Causality: examples

Find the loop current y(t) of the RLC circuit for the input f(t) = 10e−3tu(t), when all the
initial conditions are zero. If the loop equation of the circuit is

(D2 + 3D + 2)y(t) = Df(t).

The impulse response h(t) for this system, from the previous RLC example, is

h(t) =
(
2e−2t − e−t) u(t).

The response y(t) to the input f(t) is

y(t) = f(t) ∗ h(t) = 10e−3tu(t) ∗
[
2e−2t − e−t] u(t)

= 10e−3tu(t) ∗ 2e−2tu(t)− 10e−3tu(t) ∗ e−tu(t)

= 20
[
e−3tu(t) ∗ e−2tu(t)

]
− 10

[
e−3tu(t) ∗ e−tu(t)

]
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System Response to External Input: Zero-state Response
Zero-State Response and Causality: examples

Using a pair 4 in the convolution table,

No f1(t) f2(t) f1(t) ∗ f2(t) = f2(t) ∗ f1(t)

4 eλ1tu(t) eλ2tu(t) eλ1t − eλ2t

λ1 − λ2
u(t) λ1 ̸= λ2

, yields

y(t) = 20
−3 − (−2)

[
e−3t − e−2t] u(t)− 10

−3 − (−1)
[
e−3t − e−t] u(t)

= −20
(
e−3t − e−2t) u(t) + 5

(
e−3t − e−t) u(t)

=
(
−5e−t + 20e−2t − 15e−3t) u(t)
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution

t

1

−1

f(t)

f(τ) g(τ)

τ

1

−1

2

−2

t

2

−2

g(t)

1
f(τ)

g(−τ)

−1 2

τ

τ
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution cont.
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1 f(τ)

−1 2
τ

t3

t = t3 < −3
g(t − τ)

2 + t3

f(τ)

2
τ

1

−1

t2

2 + t2

A2

2
τ

1

−1

t1

2 + t1

A1

g(t − τ)

t = t1 > 0 t = t2 < 0
g(t − τ)

t2 t1
t

−3t3

A2

A1

c(t)
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution cont.

Summary of the Graphical Procedure:

1. Keep the function f(τ) fixed.

2. Visualize the function g(τ) as a rigid wire frame, and rotate (or
invert) this frame about the vertical axis (τ = 0) to obtain g(−τ).

3. Shift the inverted frame along the τ axis by t0 seconds. The shifted
frame now represents g(t0 − τ).

4. The area under the product of f(τ) and g(t0 − τ) (the shifted
frame) is c(t0), the value of the convolution at t = t0.

5. Repeat this procedure, shifting the frame by different values
(positive and negative) to obtain c(t) for all values of t.
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

Determine graphically y(t) = f(t) ∗ h(t) for f(t) = e−tu(t) and h(t) = e−2tu(t).

t

e−2t

0

1

h(t)

t

e−t

0

1

f(t)

1

h(t − τ) f(τ)

t

1

h(−τ) f(τ)

τ

τ

t < 0

0

0

(a) (b)

(c)

(d)
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

���
���
���
���

���
���
���
���
1

h(t − τ) f(τ)

τ

t

0

0

(e)

(f)

t > 0

y(t)

t

The function h(t − τ) is now obtained by shifting h(−τ) by t. If t is positive, the shift is to
the right (delay); if t is negative, the shift is to the left (advance). When t < 0, h(−τ) does
not overlap f(τ), and the product f(τ)h(t − τ) = 0, so that

y(t) = 0, t < 0
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

Figure (e) shows the situation for t ≥ 0. Here f(τ) and h(t − τ) do overlap, but the product
is nonzero only over the interval 0 ≤ τ ≤ t (shaded interval). Therefore

y(t) =
∫ t

0
f(τ)h(t − τ)dτ, t ≥ 0.

Therefore f(τ) = e−τ and h(t − τ) = e−2(t−τ).

y(t) =
∫ t

0
e−τ e−2(t−τ)dτ

= e−2t
∫ t

0
eτdτ = e−2t eτ |t0 = e−2t(et − 1)

= e−t − e−2t, t ≥ 0.

Moreover, y(t) = 0 for t < 0, so that

y(t) = (e−t − e−2t)u(t).
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

Find f(t) ∗ g(t) for the functions f(t) and g(t) shown in Figures below. Here f(t) has a simpler
mathematic description than that of g(t), so it is preferable to invert f(t). Hence, we shall
determine c(t) = g(t) ∗ f(t).

2

−2

2e−t

−2e2t

g(t)

A

A

f(t)

0

1

t

(a) (b)

t

−2

0

(c)

g(−τ) f(τ)

τ

B

B
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

Compute c(t) for t ≥ 0:

c(t) =
∫ ∞

0
f(τ)g(t − τ)dτ

=

∫ t

0
2e−(t−τ)dτ +

∫ ∞

t
−2e2(t−τ)dτ

= 2(1 − e−t)− 1

= 1 − 2e−t, t ≥ 0.
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−2 (d)

g(t − τ)
f(τ)

τ
t

A

t ≥ 0

B

1
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

Compute c(t) for t < 0:

c(t) =
∫ ∞

0
f(τ)g(t − τ)dτ =

∫ ∞

0
g(t − τ)dτ

=

∫ ∞

0
−2e2(t−τ)dτ

= −e2t, t < 0

����������
����������
����������

����������
����������
����������

A

t < 0

B

1

−2 (e)

g(t − τ)
f(τ)

τt 0
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

Therefore

c(t) =

1 − 2e−2t , t ≥ 0

−e2t , t < 0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

c
(t
)

t
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

Find f(t) ∗ g(t) for the functions f(t) and g(t). f(t) has a simpler mathematical description
than that of g(t). Hence we shall determine g(t) ∗ f(t).

t
−1 1

f(t)

1

0

1

0 3

τ
−1 1

f(−τ) 1

0

g(τ)

g(t)

t
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

For −1 ≤ t ≤ 1:

c(t) =
∫ 1+t

0
g(τ)f(t − τ)dτ

=

∫ 1+t

0

1
3
τdτ

=
1
6
(t + 1)2, −1 ≤ t ≤ 1

τ
−1 + t 1 + t

f(t − τ) 1

0

g(τ)
−1 ≤ t ≤ 1

3
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

For 1 ≤ t ≤ 2:

c(t) =
∫ 1+t

−1+t

1
3
τdτ

=
2
3

t, 1 ≤ t ≤ 2

τ

f(t − τ)

1

g(τ)

1 ≤ t ≤ 2

3−1 + t 1 + t
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

For 2 ≤ t ≤ 4:

c(t) =
∫ 3

−1+t

1
3
τdτ

= −
1
6
(t2 − 2t − 8)

τ

f(t − τ)1

g(τ)

2 ≤ t ≤ 4

3−1 + t 1 + t0
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

For t ≥ 4:

c(t) = 0, t ≥ 4.

For t < −1:

c(t) = 0, t < −1.

τ

f(t − τ)1 g(τ)

t ≥ 4

3 −1 + t0 1 + t
τ

f(t − τ) 1 g(τ)

t < −1

3−1 + t 1 + t 0
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System Response to External Input: Zero-state Response
Graphical Understanding of Convolution: Examples

c(t) =



0 , t < −1
1
6 (t + 1)2 ,−1 ≤ t ≤ 1
2
3 t , 1 ≤ t ≤ 2
− 1

6 (t
2 − 2t − 8) , 2 ≤ t ≤ 4

0 , t ≥ 4.

−1 0 1 2 3 4
−0.5

0

0.5

1

1.5

c
(t
)

t
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Total Response
The total response of a linear system can be expressed as the sum of its
zero-input and zero-state components:

Total Response =

n∑
j=1

cjeλjt

︸ ︷︷ ︸
zero-input component

+ f(t) ∗ h(t)︸ ︷︷ ︸
zero-state component

For repeated roots, the zero-input component should be appropriately
modified.
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Total Response
zero-input and zero-state responses

−
+f(t)

1 H 3 Ω

1
2 F

+
vC(t)−

For the series RLC circuit with the input f(t) = 10e−3tu(t) and the
initial conditions y(0−) = 0, vC(0−) = 5, from the previous RLC
examples, we obtain

Total current = (−5e−t + 5e−2t)︸ ︷︷ ︸
zero-input current

+(−5e−t + 20e−2t − 15e−3t)︸ ︷︷ ︸
zero-state current

, t ≥ 0
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Total Response
Natural and Forced response

From the RLC circuit above, the characteristic modes were found to be
e−t and e−2t. The zero-input response is composed exclusively of
characteristic modes. However, the zero-state response contains also
characteristic mode terms.

• If we lump all the characteristic mode terms in the total response
together, giving us a component known as the natural response
yn(t).

• The remainder, consisting entirely of noncharacteristic mode terms,
is known as the forced response yϕ(t).

Total current = (−10e−t + 25e−2t)︸ ︷︷ ︸
natural response yn(t)

+ (−15e−3t)︸ ︷︷ ︸
forced response yϕ(t)

, t ≥ 0
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Total Response
Natural and Forced response cont.

The total system response is y(t) = yn(t) + yϕ(t).
• yn(t) is the system’s natural response (also known as the

homogeneous solution or complementary solution).
• yϕ(t) is the system’s forced response (also known as the

particular solution).
Since y(t) must satisfy the system equation,

Q(D)[yn(t) + yϕ(t)] = P(D)f(t)

or

Q(D)yn(t) + Q(D)yϕ(t) = P(D)f(t)

Lecture 3: Time-Domain Analysis of Continuous-Time Systems J 81/101 I }



Total Response
Natural and Forced response cont.

However yn(t) is composed entirely of characteristic modes. Therefore

Q(D)yn(t) = 0

so that

Q(D)yϕ(t) = P(D)f(t)

• The natural response, being a linear combination of the system’s
characteristic modes, has the same form as that of the zero-input
response; only its arbitrary constants are different.
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Total Response
Forced response: The Method of Undetermined Coefficients

• The forced response of an LTIC system, when the input f(t) is such
that it yields only a finite number of independent derivatives.

• eζt has only one independent derivative; the repeated differentiation
of eζt yields the same form as this input; that is, eζt.

• the repeated differentiation of tr yields only r independent
derivatives. For example, the input at2 + bt + c, the suitable form
for yϕ(t) in this case is, therefore

yϕ(t) = β2t2 + β1t + β0.

The undetermined coefficients β0, β1, and β2 are determined by
substituting this expression for yϕ(t)

Q(D)yϕ(t) = P(D)f(t).
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Total Response
Forced response: The Method of Undetermined Coefficients cont.

Input f(t) Forced Response
1. eζt ζ ̸= λi(i = 1, 2, · · · ,n) βeζt

2. eζt ζ = λi βteζt

3. k β

4. cos(ωt + θ) β cos(ωt + ϕ)

5. (tr + αr−1tr−1 + · · ·+ α1t + α0)eζt (βrtr + βr−1tr−1 + · · ·+ β1t
+β0)eζt

• yϕ(t) cannot have any characteristic mode terms.

• if the characteristic mode terms appearing in forced response, the
correct form of the forced response must be modified to tiyϕ(t).
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Total Response
Classical method: Examples

Solve the differential equation

(D2 + 3D + 2)y(t) = Df(t)

if the input

f(t) = t2 + 5t + 3

and the initial conditions are y(0+) = 2 and ẏ(0+) = 3.
Solution:
The characteristic polynomial of the system is

λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2).

The natural response is then a linear combination of these modes, so that

yn(t) = K1e−t + K2e−2t, t ≥ 0.

The arbitrary constants K1 and K2 must be determined from the system’s initial conditions.
Lecture 3: Time-Domain Analysis of Continuous-Time Systems J 85/101 I }



Total Response
Classical method: Examples

The forced response to the input t2 + 5t + 3, is (from the previous table)

yϕ(t) = β2t2 + β1t + β0.

yϕ(t) satisfies the system equation; that is

(D2 + 3D + 2)yϕ(t) = Df(t)

Dyϕ(t) =
d
dt

(β2t2 + β1t + β0) = 2β2t + β1

D2yϕ(t) =
d2

dt2 (β2t2 + β1t + β0) = 2β2

Df(t) = d
dt

[
t2 + 5t + 3

]
= 2t + 5.

Substituting these results yields

2β2 + 3(2β2t + β1) + 2(β2t2 + β1t + β0) = 2t + 5

2β2t2 + (2β1 + 6β2)t + (2β0 + 3β1 + 2β2) = 2t + 5
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Total Response
Classical method: Examples

Equating coefficients of similar powers of both sides of this expression yields

2β2 = 0

2β1 + 6β2 = 2

2β0 + 3β1 + 2β2 = 5.

Solving these three equations for their unknowns, we obtain β0 = 1, β1 = 1, and β2 = 0.
Therefore

yϕ(t) = t + 1, t > 0.

The total system response y(t) is the sum of the natural of forced solutions. Therefore

y(t) = yn(t) + yϕ(t) = K1e−t + K2e−2t + t + 1, t > 0

ẏ(t) = −K1e−t − 2K2e−2t + 1.
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Total Response
Classical method: Examples

Setting t = 0 and substituting y(0) = 2 and ẏ(0) = 3 in these equations, we have

2 = K1 + K2 + 1

3 = −K1 − 2K2 + 1.

The solution of these two simultaneous equations is K1 = 4 and K2 = −3. Therefore

y(t) = 4e−t − 3e−2t + t + 1, t ≥ 0.
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Total Response
Classical method: Examples

Solve the differential equation

(D2 + 3D + 2)y(t) = Df(t)

if the initial conditions are y(0+) = 2 and ẏ(0+) = 3 and the input is
(a) 10e−3t (b) 5 (c) e−2t (d) 10 cos(3t + 30◦)
From the previous example, the natural response for this case is

yn(t) = K1e−t + K2e−2t

(a) For input f(t) = 10e−3t, ζ = −3, and

yϕ(t) = βe−3t

(D2 + 3D + 2)yϕ(t) = Df(t)

9βe−3t − 9βe−3t + 2βe−3t = −30e−3t

2β = −30, β = −15

yϕ(t) = −15e−3tLecture 3: Time-Domain Analysis of Continuous-Time Systems J 89/101 I }



Total Response
Classical method: Examples

y(t) = K1e−t + K2e−2t − 15e−3t, t > 0

ẏ(t) = −K1e−t − 2K2e−2t + 45e−3t, t > 0

The initial conditions are y(0+) = 2 and ẏ(0+) = 3. Setting t = 0 in the above equations
and then substituting the initial conditions yields

K1 + K2 − 15 = 2 and − K1 − 2K2 + 45 = 3

Solution of these equations yields K1 = −8 and K2 = 25. Therefore

y(t) = −8e−t + 25e−2t − 15e−3t, t > 0
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Total Response
Classical method: Examples

For input f(t) = 5 = 5e0t, ζ = 0, and yϕ(t) = β.

(D2 + 3D + 2)yϕ(t) = Df(t)

0 + 0 + 2β = 0, β = 0

and

y(t) = K1e−t + K2e−2t, t > 0

ẏ(t) = −K1e−t − 2K2e−2t, t > 0

Setting t = 0 in the above equations and then substituting the initial conditions yields

K1 + K2 = 2 and − K1 − 2K2 = 3

Solution of this equations yields K1 = 7 and K2 = −5. Therefore
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Total Response
Classical method: Examples

(c) Here ζ = −2, which is also a characteristic root of the system. Hence yϕ(t) = βte−2t and

(D2 + 3D + 2)yϕ(t) = Df(t)

D
[
βte−2t] = β(1 − 2t)e−2t

D2 [
βte−2t] = 4β(t − 1)e−2t

De−2t = −2e−2t.

Consequently

β(4t − 4 + 3 − 6t + 2t)e−2t = −2e−2t

−βe−2t = −2e−2t

Therefore, β = 2 so that yϕ(t) = 2te−2t. The complete solution is
K1e−t + K2e−2t + 2te−2t.
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Total Response
Classical method: Examples

Then,

y(t) = K1e−t + K2e−2t + 2te−2t, t > 0

ẏ(t) = −K1e−t − 2K2e−2t + 2e−2t − 4te−2t, t > 0

Setting t = 0 in the above equations and then substituting the initial conditions yields

K1 + K2 = 2 and − K1 − 2K2 = 1

Solution of this equations yields K1 = 5 and K2 = −3. Therefore

y(t) = 5e−t − 3e−2t + 2te−2t, t > 0
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Total Response
Classical method: Examples

(d) For the input f(t) = 10 cos(3t + 30◦), the forced response is yϕ(t) = β cos(3t + ϕ) and

(D2 + 3D + 2)yϕ(t) = Df(t)

D(β cos(3t + ϕ)) = −3β sin(3t + ϕ)

D2(β cos(3t + ϕ)) = −9β cos(3t + ϕ)

D(10 cos(3t + 30◦)) = −30 sin(3t + 30◦).

Consequently

−9β cos(3t + ϕ)− 9β sin(3t + ϕ) + 2β cos(3t + ϕ) = −30 sin(3t + 30◦)

β(−7 cos(3t + ϕ)− 9 sin(3t + ϕ)) = −30 sin(3t + 30◦)

−β(C sin(θ1) cos(3t + ϕ) + C cos(θ1) sin(3t + ϕ)) = −30 sin(3t + 30◦)

C =
√

72 + 92 = 11.4018, θ1 = tan−1
(

7
9

)
= 37.9◦

β = 30/11.4018 = 2.63, ϕ+ 37.9◦ = 30◦ and ϕ = −7.9◦

yϕ(t) = 2.63 cos(3t − 7.9◦)Lecture 3: Time-Domain Analysis of Continuous-Time Systems J 94/101 I }



Total Response
Classical method: Examples

Then

y(t) = K1e−t + K2e−2t + 2.63 cos(3t − 7.9◦)

ẏ(t) = −K1e−t − 2K2e−2t − 7.89 sin(3t − 7.9◦)

Setting t = 0 in the above equations and then substituting the initial conditions yields

K1 + K2 = −0.6 and − K1 − 2K2 = 1.9

Solution of this equations yields K1 = 0.7 and K2 = −1.3. Therefore

y(t) = 0.7e−t − 1.3e−2t + 2.63 cos(3t − 7.9◦), t > 0.
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Applications
Automobile Ignition Circuit

An automobile ignition system is modeled by the circuit shown in the following figure. The
voltage source V0 represents the battery and alternator. The resistor R models the resistance
of the wiring, and the ignition coil is modeled by the inductor L. The capacitor C, known as
the condenser, is in parallel with the switch, which is known as the electronic ignition. The
switch has been closed for a long time prior to t < 0−. Determine the inductor voltage vL for
t > 0.

−
+V0

R C
+vC−

t = 0

i
+

vL

−

L Spark Plug

Ignition Coil

For V0 = 12 V, R = 4 Ω, C = 1 µF, L = 8 mH, determine the maximal inductor voltage and
the time when it is reached.
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Applications
Automobile Ignition Circuit cont.

For t < 0, the switch is closed, the capacitor behaves as an open circuit and the inductor
behaves as a short circuit as shown. Hence i(0−) = V0/R, vC(0−) = 0.

−
+V0

R

t = 0

i(0−)

+

−

vL(0−)

t ≤ 0−

−
+V0

R C
+vC− i

L

+

vL

−

t ≥ 0+

Ignition Coil

At t = 0, the switch is opened. Since the current in an inductor and the voltage across a
capacitor cannot change abruptly, one has
i(0+) = i(0−) = V0/R = 3 A, vC(0+) = vC(0−) = 0. The derivative i′(0+) is obtained
from vL(0+), which is determined by applying Kirchhoff’s Voltage Law to the mesh at
t = 0+:
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Applications
Automobile Ignition Circuit cont.

vL(0+) = L di(0+)

dt
=⇒ i′(0+) =

vL(0+)

L
= 0.

For t > 0, applying Kirchhoff’s Voltage Law to the mesh leads to

−V0 + Ri + 1
C

∫ t

−∞
idt + L di

dt
= 0

L d2i
dt2 + R di

dt
+

i
C

= 0

d2i
dt2 + 0.5 × 103 di

dt
+ 1 × 106i = 0

(D2 + 0.5 × 103D + 1 × 106)i = 0

λ2 + 0.5 × 103λ+ 1 × 106 = 0

λ = −250 ± 1.118 × 104j

Lecture 3: Time-Domain Analysis of Continuous-Time Systems J 98/101 I }



Applications
Automobile Ignition Circuit cont.

i(t) = ce−250t cos(1.118 × 104t + θ), i(0) = c cos(θ) = 3

i′(t) = −250ce−250t cos(1.118 × 104t + θ)

− 1.118 × 104ce−250t sin(1.118 × 104t + θ)

Substituting t = 0, we obtain

i′(0) = −250c cos(θ)− 1.118 × 104c sin(θ) = 0

and

−1.118 × 104c sin(θ) = 250c cos(θ),

tan(θ) =
250

−1.118 × 104 = −0.0224,

θ = −0.0224 rad, c = 3,
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Applications
Automobile Ignition Circuit cont.

Therefore, i(t) = 3e−250t cos(1.118 × 104t − 0.0224) and,

v(t) = L di
dt

= −6e−250t cos(1.118 × 104t − 0.0224)− 268.32e−250t sin(1.118 × 104t − 0.0224)

= −268.39e−250t sin(1.118 × 104t − 0.0224 + 0.0224)

= −268.39e−250t sin(1.118 × 104t)

v(t) is maximum when 1.118 × 104t = π
2 , then

t = 1.5708
1.118 × 104 = 1.405 × 10−4 sec = 140.5 µs, vmax(t) = −259 V.
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