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Systems

Definition:

� A system transforms input signals into output signals (or

response)

� A system is a function mapping input signals into output signals.

We concentrate on systems with one input and one output signal, i.e.,

single-input, single-output (SISO) systems.

notation:

� y = Su or y = S(u) means the system S acts on input signal u to

produce output signal y

� y = Su does not, in general, mean multiplication.
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System examples

RC circuit

f(t)

R

C
+
vC(t)−

+

y(t)

−

Figure: An example of a simple electrical system

The output voltage y(t) is given by

y(t) = Rf(t) +
1

C

∫ t

−∞
f(τ)dτ
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System examples

second-order RC circuit

−
+u

R1 v1

C1

R2

C2

+
y
−

� current into C2 is C2
dy

dt
=

v1 − y

R2

� current input C1 is C1
dv1
dt

=
u− v1
R1

− v1 − y

R2

� using v1 = y(t) +R2C2
dy

dt
in the 2nd equation yields:

(R1C1R2C2)
d2y

dt2
+ (R1C1 +R1C2 +R2C2)

dy

dt
+ y = u
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System examples
Mass-Spring-Damper

m

k
b

y

u

(can represent suspension system, building during earthquake,...)

� u(t) is displacement of base; y(t) is displacement of mass

� spring force is k(u− y); damping force is b
d

dt
(u− y)

� Newton’s equation is m
d2y

dt2
= b

d

dt
(u− y) + k(u− y) or

m
d2y

dt2
+ b

dy

dt
+ ky = b

du

dt
+ ku
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System examples
a discrete-time system

Gate
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Reference 
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Thermistor

Figure: Discrete-time temperature control in an air-flow system
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System examples
a discrete-time system

� Fn is the population of a predator (foxes), and Rn is the population

of its prey (rabbits), where a and b are adapting parameters.

� r is the growth rate of the rabbit and c is the death rate of the fox.

� F0 and R0 are the initial population of each animal

Rn = rRn−1(1−Rn−1)− aRn−1Fn−1

Fn = Fn−1 + bRn−1Fn−1 − cFn−1
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Classification of Systems

� Linear and Nonlinear systems

� Constant-parameter and time-varying-parameter systems

� Instantaneous (memoryless) and dynamic (with memory) systems;

� Causal and noncausal systems

� Lumped-parameter and distributed-parameter systems

� Continuous-time and discrete-time systems

� Analog and Digital systems
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Classification of Systems
Linear and Nonlinear Systems

a system F is linear if the following two properties hold:

1. homogeneity: if u is any signal and a is any scalar,

F (au) = aF (u)

2. superposition: if u1 and u2 are any two signals,

F (u1 + u2) = Fu1 + Fu2
in words, linearity means:

� scaling before or after the system is the same.

� summing before or after the system is the same.

A nonlinear system is a system which is not satisfied the homogeneity

and superposition.
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Classification of Systems
Time-Invariant and Time-Varying Parameter Systems

� Systems whose parameters do not change with time are

time-invariant systems

� If the coefficients of the system are functions of time, then the

system is a linear time-varying system.

L
di(t)

dt
+R(t)i(t) = f(t)

R(t) is a coefficient of above system and it is a function of time, then

the system is a linear time-varying system.
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Continuous-Time Linear Time-Invariant Systems
example

Show that the system described by the equation

dy

dt
+ 3y(t) = f(t)

is linear

Let the system response to the inputs f1(t) and f2(t) by y1(t) and y2(t), respectively. Then

dy1

dt
+ 3y1(t) = f1(t)

dy2

dt
+ 3y2(t) = f2(t)

Multiplying the first equation by k1, the second with k2, and adding them yields

d

dt
[k1y1(t) + k2y2(t)] + 3[k1y1(t) + k2y2(t)] = k1f1(t) + k2f2(t)

Therefor, when the input is k1f1(t) + k2f2(t), the system response is k1y1(t) + k2y2(t).
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Continuous-Time Linear Time-Invariant Systems
differential equation form

From the previous example, we can readily generalize the result to show

that a system described by a differential equation of the form

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a0y = bm

dmu

dtm
+ · · ·+ b1

du

dt
+ b0u

is a linear system. The coefficients ai and bi in this equation can be

constants or functions of time.
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Continuous-Time Linear Time-Invariant Systems
example

Consider a system that have an input-output relationship as

y(t) = u(0) +

∫ t

0
u(τ)dτ

If we feed arbitrary inputs u1(t) and u2(t) to the system, we have

y1(t) = u1(0) +

∫ t

0
u1(τ)dτ, y2(t) = u2(0) +

∫ t

0
u2(τ)dτ.

If we feed an input u(t) = a1u1(t) + a2u2(t) to the system, we have the output as

y(t) = (a1u1(0) + a2u2(0)) +

∫ t

0
(a1u1(τ) + a2u2(τ))dτ

= a1y1(t) + a2y2(t)

Then the system is a linear system.
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Continuous-Time Linear Time-Invariant Systems
RL circuit example

−
+

u(t)

R1 a

y(t)

LR2

By using the Kirchoff’s current law at node a

va(t)− u(t)

R1
+

va(t)

R2
+ y(t) = 0

va(t) = L
dy(t)

dt

we have

dy(t)

dt
+

R1R2

L(R1 +R2)
y(t) =

R2

L(R1 +R2)
u(t)

The last equation is in the linear differential equation form. Then, the system is linear.

Moreover, since all coefficients of the equation are constant, the system is time-invariant.
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Classification of Systems
Causal and Noncausal Systems

� a causal (also known as a physical or non-anticipative) system is

a system which the output at any instant t0 depends only on the

value of the input u(t) for t ≤ t0.

� in other words, the value of the output at the present instant

depends only on the past and present values of the input u(t)

� a noncausal (or anticipative) system is a system that violates the

condition of causality.

For example if we apply an input starting at t = 0 to a noncausal

system, the output would begin even before t = 0. For example

y(t) = f(t− 2) + f(t+ 2)
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Classification of Systems
Lumped-Parameter and Distributed-Parameter Systems

� a lumped-parameter system is a system where each component of

the system is regarded as being lumped at one point in space.

therefore, in lumped-parameter models, signals can be assumed to

be functions of time t alone. For example, electronic circuits , etc.

the system equations require only one independent variable and

therefore are ordinary differential equations.

� a distributed-parameter system is a system where the system

dimensions cannot be assumed to be small compared to the

wavelengths of the signals such as transmission lines, waveguides,

antennas, and microwave tubes, etc. The signals of this system are

functions of space as well as of time, leading to mathematical

models consisting of partial differential equations.
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Classification of Systems

� Continuous-time system is a system whose inputs and outputs

are continuous-time signals.

� Discrete-time system is a system whose inputs and outputs are

discrete-time signals.

� If a continuous-time signal is sampled, the resulting signal is a

discrete-time signal. We can process a continuous-time signal by

processing its samples with a discrete-time system.

� Analog system is a system whose inputs and outputs are analog.

� Digital system is a system whose inputs and outputs are digital.
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Block diagrams

systems often denoted by block diagram:

u
S

y

� lines with arrow denote signals

� boxes denotes systems: arrows show inputs and outputs

� special symbols for some systems

Lecture 2: Systems J 19/29 I }



Block diagrams

scaling system: y(t) = au(t)

� called an amplifier if |a| > 1

� called an attenuator if |a| < 1

� called inverting if a < 0

� a is called the gain or scaling factor

Usually, denoted by triangle or rectangle in block diagram:

au y u a
y
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Block diagrams
Continuous-time system

differentiator: y(t) =
du

dt
commonly used notations for differentiator:

u d

dt

y u s
y

integrator: y(t) =

∫ t

a
u(τ)dτ (a is often 0 or −∞)

commonly used notations for integrator:

u
∫

y u 1

s

y

y(0)
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Block diagrams
Discrete-time system

forward-shift: y[k] = znu[k] = u[k + n]

u[k] zn y[k] = u[k + n]

backward-shift: y[k] = z−nu[k] = u[k − n]

u[k] z−n y[k] = u[k − n]
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Example with multiple inputs

� summing system: y(t) = u1(t) + u2(t)

u1 y

u2

� difference system: y(t) = u1(t)− u2(t)

u1 y

u2

−

� multiplier system: y(t) = u1(t)u2(t)

u1 × y

u2
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Interconnections of systems

we can interconnect systems to form new systems, e.g.,

� cascade (or series): y = G(Fu) = GFu

u
F G

y

(note the block diagrams and algebra are reversed)

� sum (or parralled): y = Fu+Gu

u

F

y

G
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Interconnections of systems
cont.

� Feedback: y = F (u−Gy)

u
F

y

G

−

� the minus sign is for a negative feedback while the plus sign is for a

positive feedback.
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Block Diagram
example

A circuit shown below has three state equations:

−
+

va(t)

R1 i1(t)

L1

+ v1(t) −
L2

− v2(t) + i2(t) − +

vb(t)

ic(t)R2

+
v3(t)

−
C

i3(t)

v1(t) = va(t)−R1i1(t)− v3(t)

v3(t) = −v2(t)− vb(t) +R2(ic(t)− i2(t))

v2(t) = −R2i2(t)− v3(t)− vb(t) +R2ic(t)

i3(t) = i1(t) + i2(t)
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Block Diagram
example

Since

v1(t) = L1
di1(t)

dt
,

v2(t) = L2
di2(t)

dt
,

i3(t) = C
dv3(t)

dt
,

we obtain the dynamic equation in state form :

di1(t)

dt
= −

R1

L1
i1(t)−

1

L1
v3(t) +

1

L1
va(t) (1)

di2(t)

dt
= −

R2

L2
i2(t)−

1

L2
v3(t)−

1

L2
vb(t) +

R2

L2
ic(t) (2)

dv3(t)

dt
=

1

C
i1(t) +

1

C
i2(t) (3)
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Block Diagram
example

Note that our required outputs are i1(t), i2(t), and v3(t).

∫
i1(0)

i1(t)

∫
i2(0)

i2(t)

∫
v3(0)

v3(t)

1

C

1

L2

1

L1

dv3

dt

R2

R1

di2

dt

−

di1

dt

−

1

L1

1

L2

R2

L2

−

va

vb

ic
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