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Outline

� Measuring the size of a signal

� Some useful signal operations

� Some useful signal models

� Even and Odd functions

� function plot with MATLAB
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Measuring the size of a signal

Size of a signal u is measured in many ways but we consider only three
of them:

� energy (integral-absolute square):

Ef =

∫ ∞

−∞
|u(t)|2dt

� power (mean-square):

Pf = lim
T→∞

1

T

∫ T
2

−T
2

|u(t)|2dt

� root-mean-square (RMS):

rms =

(
lim
T→∞

1

T

∫ T
2

−T
2

|u(t)|2dt

)1/2
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Energy and Power signal

u(t) 1Ω

� the total energy is E =

∫ ∞

−∞
|u(t)|2dt

� the average power is P = lim
T→∞

1

T

∫ T
2

−T
2

|u(t)|2dt

� if u(t) = a A for t ≥ 0

� E = ∞ (the energy signal is not exist.)

� P = a2
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Energy and Power signal
cont.

� x(t) is an energy signal if its energy is finite. A necessary condition

for the energy to be finite is that the signal amplitude approach to

zero as |t| → ∞.

� x(t) is a power signal if its power is finite and nonzero.

� Since the average power is the averaging over an infinitely large

interval, a signal with finite energy has zero power, and a

signal with finite power has infinite energy.

� if x(t) is not satisfied both above conditions, it is not an energy

signal or a power signal.
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Energy and Power signal
cont.

x(t)

t

x(t)

t

(a)

(b)

Figure: (a) a signal with finite energy (b) a signal with finite power.

Lecture 1: Continuous-Time Signals J 6/85 I }



Energy and Power signal
examples

x(t)

t

2e−t/2

−1 0 2 4

The signal amplitude approaches to 0 as |t| → ∞. Its energy is given by

E =

∫ ∞

−∞
x2(t)dt =

∫ 0

−1
(2)2dt+

∫ ∞

0
4e−tdt = 4 + 4 = 8

If we change 2e−t/2 to a more general Ae−αt, then the energy signal is

E = 4 +

∫ ∞

0
A2e−2αtdt = 4−

A2

2α
e−2αt

∣∣∣∣∞
0

= 4 +
A2

2α

The power signal of the first term is obvious zero and the second term is given by

P = lim
T→∞

1

T

∫ T
2

0
A2e−2αtdt = lim

T→∞
−

1

T

A2

2α
e−2αt

∣∣∣∣
T
2

0

= 0
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Energy and Power signal
examples

x(t)

t

A

−A

T0

T1

τ

It is obvious that the energy signal does not exist (infinite energy since x(t) ̸→ 0 as |t| → ∞)
Consider the power signal

P = lim
T→∞

1

T

∫ T
2

−T
2

x2(t)dt =
1

T0

∫ T0

0
A2dt

=
1

T0

[
A2t

∣∣τ
0
+ A2t

∣∣T1+τ

T1

]
=

1

T0

[
A2τ +A2(T1 + τ)−A2T1

]
=

2

T0
A2τ
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Energy and Power signal
examples

Determine the power and the rms value of f(t) = C cos(ω0t+ θ)

This is a periodic signal with period T0 = 2π/ω0. It does not converge to 0 when t → ∞.
Because it is a periodic signal, we can compute its power by averagin its energy over one
period T0.

P = lim
T→∞

1

T

∫ T
2

−T
2

C2 cos2(ω0t+ θ)dt

Since cos2(ω0t+ θ) = 1− sin2(ω0t+ θ) = 1 + cos(2ω0t+ 2θ)− cos2(ω0t+ θ) or
cos2(ω0t+ θ) = 1

2
(1 + cos(2ω0t+ 2θ)), then

P = lim
T→∞

C2

2T

∫ T
2

−T
2

[1 + cos(2ω0t+ 2θ)]dt

= lim
T→∞

C2

2T

∫ T
2

−T
2

dt+ lim
T→∞

C2

2T

∫ T
2

−T
2

cos(2ω0t+ 2θ)dt

=
C2

2

Hence, the rms values is C/
√
2
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Energy and Power signal
examples

Determine the power and the rms value of

f(t) = C1 cos(ω1t+ θ1) + C2 cos(ω2t+ θ2)(ω1 ̸= ω2)

P = lim
T→∞

1

T

∫ T
2

−T
2

[C1 cos(ω1t+ θ1) + C2 cos(ω2t+ θ2)]
2 dt

= lim
T→∞

1

T

∫ T
2

−T
2

C2
1 cos2(ω1t+ θ1)dt+ lim

T→∞

1

T

∫ T
2

−T
2

C2
2 cos2(ω2t+ θ2)dt

+ lim
T→∞

2C1C2

T

∫ T
2

−T
2

cos(ω1t+ θ1) cos(ω2t+ θ2)dt

The first and second integrals on the right-hand side are the powers of the two sinusoids,
which are C2

1/2 and C2
2/2 as found in the previous example. The third term is zero if

ω1 ̸= ω2, and we have

P =
C2

1

2
+

C2
2

2
and the rms value is

√
(C2

1 + C2
2 )/2
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Energy and Power signal
examples

This result can be extended to a sum of any number of sinusoids with distinct frequencies. If

f(t) =
∞∑

n=1

Cn cos(ωnt+ θn)

where none of the two sinusoids have identical frequencies, then

P =
1

2

∞∑
n=1

C2
n

Note: This is ture only if ω1 ̸= ω2. If ω1 = ω2, the integrand of the third term contains a
constant cos(θ1 − θ2), and the third term → 2C1C2 cos(θ1 − θ2) as T → ∞.
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Time Shifting

T

T

t
0

ϕ1(t) = f(t− T )

(b)

t
0

ϕ2 = f(t+ T )

(c)

t
0

f(t)

(a)

� f(t) in Fig. (b) is the same signal like

(a) but delayed by T seconds

� f(t) in Fig. (c) is the same signal like

(b) but advanced by T seconds

� Whatever happens in f(t) in at some

instant t also happens in ϕ1(t) T

seconds later and happens in ϕ2(t) T

seconds before.

� we have

delay:

ϕ1(t+ T ) = f(t) or ϕ1(t) = f(t− T )

advance:

ϕ2(t− T ) = f(t) or ϕ2(t) = f(t+ T )

Lecture 1: Continuous-Time Signals J 12/85 I }



Time Shifting
example

e−2t

e−2(t−1)

1

1

t
0

f(t− 1)

(b)

t
0

f(t+ T )

(c)

t
0

f(t)

(a)

1

1

1

e−2(t+1)

-1

(a) signal f(t) (b) f(t) delayed by 1 second (c) f(t) advanced by 1 second
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Time Shifting
example

An exponential function f(t) = e−2t shown in the previous Fig. is delayed by 1

second. Sketch and mathematically describe the delayed function. Repeat the

problem if f(t) is advanced by 1 second. The function f(t) can be described

mathematically as

f(t) =

{
e−2t t ≥ 0

0 t < 0

Let fd(t) represent the function f(t) delayed by 1 second. Replace t with t− 1, thus

fd(t) = f(t− 1) =

{
e−2(t−1) t− 1 ≥ 0 or t ≥ 1

0 t− 1 < 0 or t < 1

Let fa(t) represent the function f(t) advanced by 1 second. Replace t with t+ 1,

thus

fa(t) = f(t+ 1) =

{
e−2(t+1) t+ 1 ≥ 0 or t ≥ −1

0 t+ 1 < 0 or t < −1
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Time Scaling

0T1 T2

t

ϕ1(t) = f(at)

(b)

t

ϕ2(t) = f( ta)

(c)

t

f(t)

(a)

0T1

a
T2

a

0aT1 aT2

Time scaling a signal.

� The compression or expansion of a signal in

time is known as time scaling.

� f(t) in Fig. (b) is f(t) compressed in time by

a factor of a.

� f(t) in Fig. (c) is f(t) expanded in time by a

factor of a.

� Whatever happens in f(t) at some instant t

also happens to ϕ(t) at the instant t/a or at

� we have

compress:

ϕ(
t

a
) = f(t) or ϕ(t) = f(at)

expand:

ϕ(at) = f(t) or ϕ(t) = f(
t

a
)
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Time Scaling
example

t

f(3t)

t

f( t2)

(c)

t

f(t)

(a)2e−t/2

0 1

2

-0.5

2e−3t/2

0 3

2

-3

2e−t/4

0 3

2

-1.5

(b)

(a) signal f(t) (b) signal f(3t) (c) signal f( t
2
)

Lecture 1: Continuous-Time Signals J 16/85 I }



Time Scaling
example

A signal f(t) shown in the Fig. Sketch and describe mathematically this isgnal

time-compressed by factor 3. Repeat the problem for the same signal

time-expanded by factor 2. The signal f(t) can be described as

f(t) =


2 −1.5 ≤ t < 0

2e−t/2 0 ≤ t < 3

0 otherwise

Let fc(t) is a time-compressed of f(t) by factor 3. Replace t with 3t, we have

fc(t) = f(3t) =


2 −1.5 ≤ 3t < 0 or − 0.5 ≤ t < 0

2e−3t/2 0 ≤ 3t < 3 or 0 ≤ t < 1

0 otherwise
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Time Scaling
example

Let fe(t) is a time-expanded by factor 2. Replace t with t/2, we have

fe(t) = f(
t

2
) =


2 −1.5 ≤ t

2
< 0 or − 3 ≤ t < 0

2e−t/4 0 ≤ t
2
< 3 or 0 ≤ t < 6

0 otherwise
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Time inversion

t

ϕ(t) = f(−t)

-5

−1

0

2

t

f(t)

-2

−1

0 5

2

2

Time inversion (reflection) of a signal.

The inversion or folding [the reflection of f(t)

about the vertical axis] given us the signal ϕ(t).

Observe that whatever happens in f(t) at the

instant t also happens in ϕ(t) at the time instant

−t. Therefore

ϕ(−t) = f(t)

and

ϕ(t) = f(−t)

note: the mirror image of f(t) about the

horizontal axis is −f(t).
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Time inversion
example

t

ϕ(t) = f(−t)

t

f(t)

−1

e−t/2

531

et/2

−5 −3

The instants -1 and -5 in f(t) are mapped into instants 1 and 5 in f(−t). Because

f(t) = et/2, we have f(−t) = e−t/2. The signal f(−t) is depicted above.

f(t) =

et/2 −1 ≥ t > −5

0 otherwise
and f(−t) =

e−t/2 −1 ≥ −t > −5 or 1 ≤ t < 5

0 otherwise
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Combined operations

The most general operation involving all the three operations is

f(at− b), which is realized in two possible sequences of

operation:

� Time-shift f(t) by b to obtain f(t− b). Then time-scale the

shifted signal f(t− b) by a (that is, replace t with at) to

obtain f(at− b).

� Time-scale f(t) by a to obtain f(at). Then time-shift f(at)

by b
a (that is replace t with (t− b

a) to obtain

f [a(t− b
a)] = f(at− b)). In either case, if a is negative,

time scaling involves time inversion.
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Combined operations
examples

Consider a signal

x(t) =

1− t, 0 < t ≤ 1

0, otherwise.

If we substitute t with 2t+ 3, we have

x(2t+ 3) =

1− (2t+ 3), 0 < 2t+ 3 ≤ 1

0, otherwise.

=

−2t− 2, , − 3
2
< t ≤ −1

0, otherwise.

−4 −2 0 2 4

0

0.5

1

t

x
(t
)

(a)

−4 −2 0 2 4

0

0.5

1

t

x
(2
t
+
3)

(b)
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Combined operations
examples

If we substitute t with −2t+ 3, we

have

x(−2t+ 3) =

1− (−2t+ 3), 0 < −2t+ 3 ≤ 1

0, otherwise.

=

2t− 2, , 3
2
< t ≤ 2

0, otherwise.

Similarly,

x(2t− 3) =

−2t+ 4, 3
2
< t ≤ 2

0, otherwise.

−4 −2 0 2 4

0

0.5

1

t

x
(−

2t
+
3)

(c)

−4 −2 0 2 4

0

0.5

1

t

x
(2
t
−

3)

(d)
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Some Useful Signal Models
Unit step function u(t)

A unit step function u(t) is defined by

u(t) =

1 t ≥ 0

0 t < 0

1
u(t)

t
0
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Unit step function u(t)

� We can force a signal to start at t = 0 by multiplying the signal

with u(t) (the signal has a value of zero for t < 0).

� For example, the signal e−at represents an everlasting exponential

that starts at t = −∞. the causal form of this exponential shown

in Fig. can be describe as e−atu(t).

1

e−atu(t)

t
0
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Unit step function u(t)

� The unit step function can be used to specify a function with

different mathematical descriptions over different intervals.

t
0 32

2

� a mathematic description of above signal is inconvenient.

� we can describe a signal by using unit step signals.
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Unit step function u(t)
example

t
0 42

1

t
0

4

2

1

−1

� the unit step function u(t)

delayed by T seconds is

u(t− T )

� from the lower Fig., it is clear

that

f(t) = u(t− 2)− u(t− 4)
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Unit step function u(t)
example

2

t
2 3

f(t)

Describe the signal in Fig. by using unit step signals.
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Unit step function u(t)
example

1

1

2

t
2 3

−2(t− 3) 2

t
2 3

f2(t)

2

t
2 3

t
2

t
2 3

f1(t)

� f1(t) can be obtained by multiplying the ramp t by the gate pulse u(t)− u(t− 2), then

f1(t) = t[u(t)− u(t− 2)]

� f2(t) can be obtained by multiplying another ramp by the gate pulse

u(t− 2)− u(t− 3), then f2(t) = −2(t− 3)[u(t− 2)− u(t− 3)]

f(t) = f1(t) + f2(t) = t[u(t)− u(t− 2)]− 2(t− 3)[u(t− 2)− u(t− 3)]

= tu(t)− 3(t− 2)u(t− 2) + 2(t− 3)u(t− 3)
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Unit step function u(t)
example

t

f(t)

2e−t/2

0 3

2

-1.5

Describe the signal in Fig. by a single expression valid for all t. (Recall in previous example,

we use 3 equations to describe the signal.)

� Over the interval from -1.5 to 0, the signal can be described by a constant 2, and over

the interval from 0 to 3, it can be described by 2e−t/2. Therefore

f(t) = 2[u(t+ 1.5)− u(t)]︸ ︷︷ ︸
f1(t)

+2e−t/2[u(t)− u(t− 3)]︸ ︷︷ ︸
f2(t)

= 2u(t+ 1.5)− 2(1− e−t/2)u(t)− 2e−t/2u(t− 3)
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The Unit Impulse Function δ(t)

Figure: P. A. M. Dirac

(Dirac’s) delta function or impulse δ is an idealization of a signal that

� it is very large near t = 0 and very small away from t = 0, hence δ(t) = 0, t ̸= 0

� it has integral 1 or

∫ ∞

−∞
δ(t)dt = 1
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The Unit Impulse Function δ(t)

δ(t)

t
0

t

1

ϵ

− ϵ

2

ϵ

2

A unit impulse and its approximation.

α

t
0

αe−αt

α → ∞

ϵ t

1

ϵ

−ϵ t

1

ϵ
√
2π

e−t2/2ϵ2

−ϵ0 0

ϵ → ∞

Other possible approximations to a unit impulse.
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The Unit Impulse Function δ(t)
on plots δ is shown as a solid arrow:

0

f(t) = δ(t)

t

0
t

-1

f(t) = t+ 1 + δ(t)
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The Unit Impulse Function δ(t)
Physical interpretation

Impulse functions are used to model physical signals

� functions that act over short time intervals

� functions whose effect depends on integral of signal

example:

� hammer blow, or bat hitting ball, at t = 2

� force f acts on mass m between t = 1.999 sec and t = 2.001 sec

�

∫ 2.001

1.999
f(t)dt = I (mechanical impulse, N·sec)

� blow induces change in velocity of

v(2.001)− v(1.999) =
1

m

∫ 2.001

1.999
f(τ)dτ = I/m

for applications we can model force as an impulse at t = 2, with
magnitude I.

Lecture 1: Continuous-Time Signals J 34/85 I }



The Unit Impulse Function δ(t)
Physical interpretation example

Rapid charging of capacitor

−
+

−
1 V

+

t = 0

1 F
+

v(t)
−

assuming v(0) = 0, what is v(t), i(t) for t > 0

� i(t) is very large, for a very short time

� a unit charge is transferred to the capacitor ’almost instantaneously’

� v(t) increases to v(t) = 1 ’almost instantaneously’

to calculate i, v, we need a more detailed model.
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The Unit Impulse Function δ(t)
Physical interpretation example

Include small resistance

−
+

−
1 V

+ i(t)

1 F
+

v(t)
−

i(t) =
dv(t)

dt
=

1− v(t)

R
, v(0) = 0

R

i(t) =
e−t/R

R

1

R

R

v(t) = 1− e−t/R

1

t t

v(t) i(t)

as R → 0, i approaches an impulse, v approaches a unit step
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The Unit Impulse Function δ(t)
Physical interpretation example

Assume the current delivered by the source is limited:

if v(t) ≤ 1, the source acts as a current source i(t) = Imax

Imax

i(t)

1 F
+

v(t)
−

i(t) =
dv(t)

dt
= Imax, v(0) = 0 (open circuit when v(t) = 1)

Imax

1/Imax

v(t)

1

t t
1/Imax

i(t)

as Imax → ∞, i approaches an impulse, v approaches a unit step.
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The Unit Impulse Function δ(t)
Physical interpretation example

in conclusion,

� large current i acts over very short time between t = 0 and ϵ

� total charge transfer is

∫ ϵ

0
i(t)dt = 1

� resulting change in v(t) is v(ϵ)− v(0) = 1

� can approximate i as impulse at t = 0 with magnitude 1

modeling current as impulse

� obscures details of current signal

� obscures details of voltage change during the rapid charging

� preserves total change in charge, voltage

� is reasonable model for time scales ≫ ϵ
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The Unit Impulse Function δ(t)
Multiplication of a Function by an Impulse

Let us consider what happens when we multiply the unit impulse δ(t) by

a function ϕ(t) that is known to be continuous at t = 0.

ϕ(t)δ(t) = ϕ(0)δ(t),

where ϕ(t) at t = 0 is ϕ(0).

Similarly, if ϕ(t) is multiplied by an impulse δ(t− T ) (impulse located at

t = T ) then

ϕ(t)δ(t− T ) = ϕ(T )δ(t− T )

provided ϕ(t) is continuous at t = T .Lecture 1: Continuous-Time Signals J 39/85 I }



The Unit Impulse Function δ(t)
Sampling Property of the Unit Impulse Function

By the multiplication property, it follows that∫ ∞

−∞
ϕ(t)δ(t)dt = ϕ(0)

∫ ∞

−∞
δ(t)dt = ϕ(0)

provided ϕ(t) is continuous at t = 0.

� the area under the product of a function with an impulse δ(t) to

the value of the function at the instant where the unit impulse is

located.

� This property is known as the sampling or sifting property of the

unit impulse.

� If ϕ(t) continuous at t = T we have

∫ ∞

−∞
ϕ(t)δ(t− T )dt = ϕ(T )
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The Unit Impulse Function δ(t)
Sampling Property of the Unit Impulse Function example.

example:∫ 3

−2
f(t) (2 + δ(t+ 1)− 3δ(t− 1) + 2δ(t+ 3)) dt

= 2

∫ 3

−2
f(t)dt+

∫ 3

−2
f(t)δ(t+ 1)dt− 3

∫ 3

−2
f(t)δ(t− 1)dt

+ 2

∫ 3

−2
f(t)δ(t+ 3))dt

= 2

∫ 3

−2
f(t)dt+ f(−1)− 3f(1) + 0
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The Unit Impulse Function δ(t)
Unit impulse as a generalized function

The definition of the unit impulse function given before is not

mathematically rigorous:

� it is not a real function (Dirac’s δ is what is called a distribution)

� it does not define a unique function: for example, it can be shown

that δ(t) + δ̇(t) also satisfies the definition.

� some innocent looking expressions don’t make any sense at all

(e.g., δ2(t) or δ(t2))

A genrealized function is defined by its effect on other functions

instead of by its value at every instant of time. This approach the

impulse function is defined by the smpling property.
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The Unit Impulse Function δ(t)
Integrals of impulsive functions

Integral of a function with impulses has jump at each impulse, equal to

the magnitude of impulse.

example: x(t) = 1 + δ(t− 1)− 2δ(t− 2); define f(t) =

∫ t

0
x(τ)dτ

t

u(t)

t = 1 t = 2

2

1

f(t) = t for t < 1 (f(1) and f(2) are undefined),

f(t) = t+ 1 for 1 < t < 2, f(t) = t− 1 for t > 2
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The Unit Impulse Function δ(t)
Derivatives of discontinuous functions

We now present an interesting application of the generalized function

definition of an impulse:

� derivative of unit step function is δ(t)

� derivative of discontinuous functions f(t) of the previous page

1

2

3

1 2 3
t

f(t)

we have
df(t)

dt
= 1 + δ(t− 1)− 2δ(t− 2)
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The Unit Impulse Function δ(t)
Derivatives of discontinuous functions

Because the unit step function u(t) is discontinuous at t = 0, its

derivative du/dt does not exist at t = 0 in the ordinary sense. We will

shown that this derivative does exist in the generalized sense, and it is

δ(t). ∫ ∞

−∞

du

dt
ϕ(t)dt = u(t)ϕ(t)

∣∣∣∞
−∞

−
∫ ∞

−∞
u(t)ϕ̇(t)dt

= ϕ(∞)− 0−
∫ ∞

0
ϕ̇(t)dt

= ϕ(∞)− ϕ(t)|∞0
= ϕ(0)

This result shows that du/dt satisfies the sampling property of δ(t).

Therefore it is an impulse δ(t) in the generalized sense.
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The Unit Impulse Function δ(t)
Derivatives of discontinuous functions

That is

du

dt
= δ(t)

Consequently

∫ t

−∞
δ(τ)dτ = u(t)

The area from −∞ to t under the limiting form of δ(t) is zero if t < 0 and unity if t ≥ 0.

Consequently

∫ t

−∞
δ(τ)dτ =

0 t < 0

1 t ≥ 0
= u(t)
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The Unit Impulse Function δ(t)
Derivatives of impulse functions

Integration by parts suggests we define∫ ∞

−∞
δ̇(t)f(t)dt = δ(t)f(t)

∣∣∣∞
−∞

−
∫ ∞

−∞
δ(t)ḟ(t)dt = −ḟ(0)

provided a < 0, b > 0, and ḟ(t) continuous at t = 0

� δ̇(t) is called doublet

� δ̇(t), δ̈(t), etc. are called higher-order impulses

� similar rules for higher-order impulses:∫ ∞

−∞
δ(k)(t)f(t)dt = (−1)kf (k)(0)

if f (k) continuous at t = 0.
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The Unit Impulse Function δ(t)
Derivatives of impulse functions

Interpretation of doublet δ̇(t): take two impulses with magnitude

±1/ϵ, a distance ϵ apart, and let ϵ → 0

1/ϵ

t = 0

1/ϵ

t = ϵ

∫ ∞

−∞
f(t)

(
δ(t)

ϵ
− δ(t− ϵ)

ϵ

)
dt =

f(0)− f(ϵ)

ϵ

converges to −ḟ(0) if ϵ → 0.
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Derivatives of impulse functions
Examples

Determine the value of ∫ ∞

−∞
sin t δ′(2t− π)dt

Let τ = 2t− π we have t = (τ + π)/2 and dt = dτ/2. Hence,∫ ∞

−∞
sin tδ′(2t− π)dt =

∫ ∞

−∞
sin

(
τ + π

2

)
δ′(τ)

dτ

2

=
1

2
(−1)

d

dτ
sin

(
τ + π

2

)∣∣∣∣
τ=0

= −1

4
cos

π

2
= 0
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The Unit Impulse Function δ(t)
Scaling property

The scaling property of the delta function is

δ(at+ b) =
1

|a|
δ

(
t+

b

a

)

We need to show that

∫ ∞

−∞
f(t)δ(at+ b)dt =

∫ ∞

−∞
f(t)

1

|a|
δ

(
1 +

b

a

)
dt

Consider the left hand side of the above equation: Let τ = at+ b, then t = (τ − b)/a and

dt = dτ/a

(If a > 0) we have dt = dτ/|a| and

∫ ∞

−∞
f(t)δ(at+ b)dt =

∫ ∞

−∞
f

(
τ − b

a

)
δ(τ)

1

|a|
dτ

=
1

|a|
f

(
τ − b

a

)∣∣∣∣
τ=0

=
1

|a|
f

(
−

b

a

)
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The Unit Impulse Function δ(t)
Scaling property

(If a < 0) we have dt = −dτ/|a| and (note that τ = ∓∞ when t = ±∞) then

∫ ∞

−∞
f(t)δ(at+ b)dt =

∫ −∞

∞
f

(
τ − b

a

)
δ(τ)

(
−

1

|a|

)
dτ

=

∫ ∞

−∞
f

(
τ − b

a

)
δ(τ)

1

|a|
dτ

=
1

|a|
f

(
−

b

a

)

From sifting property we obtain,

∫ ∞

−∞
f(t)

1

|a|
δ

(
t+

b

a

)
dt =

1

|a|
f

(
−

b

a

)

Since f(t) is a arbitrary function, then

δ(at+ b) =
1

|a|
δ

(
t−

b

a

)
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The Unit Impulse Function δ(t)
Scaling property examples

�

∫ ∞

−∞
e−tδ(2t+ 3)dt =

∫ ∞

−∞
e−t 1

|2|
δ

(
t+

3

2

)
dt

=
1

2
e−t

∣∣∣∣
t=− 3

2

=
1

2
e3/2

�

∫ ∞

−∞
e−tδ(−2t+ 3)dt =

∫ ∞

−∞
e−t 1

| − 2|
δ

(
t−

3

2

)
dt

=
1

| − 2|
e−t

∣∣∣∣
t= 3

2

=
1

2
e−3/2
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The Exponential Function est

Let s be a complex number s = σ + jω.

est = e(σ+jω)t = eσtejωt

= eσt(cosωt+ j sinωt)

If s∗ = σ − jω (the conjugate of s), then

es
∗t = e(σ−jω)t = eσte−jωt

= eσt(cosωt− j sinωt)

and

eσt cosωt =
1

2
(est + es

∗t)
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The Exponential Function est

The function est encompasses a large class of functions:

� A constant k = ke0t (s = 0)

� A monotonic exponential eσt (ω = 0, s = σ)

� For signals whose complex frequencies lie on the real axis (σ-axis,

where ω = 0). these signals are monotonically increasing or

decreasing exponentials.The case s = 0 (σ = ω = 0) corresponds

to a constant (dc) signal because e0t = 1.

σ > 0

σ = ω = 0

σ < 0

t

eσt
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The Exponential Function est

� For signals whose frequencies lie on the imaginary axis (jω axis

where σ = 0), eσt = 1.

� These signals are conventional sinusoids with constant amplitude.

t

σ = 0

� a constant amplitude sinusoid cos(ωt+ θ) can be expressed as a

sum of exponentials ejωt and e−jωt

Lecture 1: Continuous-Time Signals J 55/85 I }



The Exponential Function est

� An exponentially varying sinusoid eσt cos(ωt) (s = σt± jω)

� Let σ > 0 and ω > 0, then an exponentially growing sinusoid

eat cos(ωt) can be expressed as

f(t) =
1

2
(e(σ+jω)t + e(σ−jω)t)

with complex frequencies σ + jω and σ − jω.

� Let σ > 0 and ω > 0, then an exponentially decaying sinusoid

e−at cos(ωt+ θ) can be expressed as

f(t) =
1

2
(e(−σ+jω)t + e(−σ−jω)t)

with complex frequencies −σ + jω and −σ − jω.
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The Exponential Function est

t

σ < 0

t

σ > 0

eσt

eσt

(a)

(b)

Figure: (a) decaying sinusoid (b) growing sinusoid
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Periodic and aperiodic signals

A continuous-time signal x(t) is said to be periodic if it satisfies the
following property:

x(t) = x(t+ T0) ∃T0 > 0 and ∀t.

The smallest positive value of T0 that satisfies the periodicity condition
is referred to as the fundamental period of x(t). A signal that is not
periodic is called an aperiodic or non-periodic signal.

−5 0 5

−1

−0.5

0

0.5

1

time[sce]

y
(t
)

periodic

−5 0 5

−1

−0.5

0

0.5

1

time[sce]

y
(t
)

aperiodic
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Periodic and aperiodic signals

� The reciprocal of the fundamental period of a signal is called the

fundamental frequency. The fundamental frequency is expressed as

follows

f0 =
1

T0
, for CT signals ,

where T0 is the fundamental periods of the continuous-time signal.

� The frequency of a signal provides useful information regarding how

fast the signal changes its amplitude.

� the unit of frequency is cycles per second (c/s) or hertz (Hz).

� we also use radians per second as a unit of frequency. Since there

are 2π radians (or 360◦) is one cycle, a frequency of f0 hertz is

equivalent to 2πf0 radians per second.
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Periodic and aperiodic signals

� If radians per second is used as a unit of frequency, the frequency is

referred to as the angular frequency and is given by

ω0 =
2π

T0
, for CT signals.

� A familiar example of a periodic signal is a sinusoidal function

represented mathematically by the following expression:

x(t) = A sin(ω0t+ θ).

� the sinusoidal signal x(t) has a fundamental period T0 = 2π/ω0.

� Substituting t by t+ T0 in the sinusoidal function, yields

x(t+ T0) = A sin(ω0t+ ω0T0 + θ).
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Periodic and aperiodic signals

� Since

x(t) = A sin(ω0t+ θ) = A sin(ω0t+ 2mπ + θ),

for m = 0,±1,±2, . . ..

� the above two expressions are equal iff ω0T0 = 2mπ. Selecting

m = 1, the fundamental period is given by T0 = 2π/ω0.
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Periodic and aperiodic signals
Example

(i) CT sine wave: x1(t) = sin(4πt) is a periodic signal with period

T1 = 2π/4π = 1/2;

(ii) CT cosine wave: x2(t) = cos(3πt) is a periodic signal with period

T2 = 2π/3π = 2/3;

(iii) CT tangent wave: x3(t) = tan(10t) is a periodic signal with period

T3 = π/5;

(iv) CT complex exponential: x4(t) = ej(2t+7) is a periodic signal with

period T4 = 2π/2 = π;

(v) CT sin wave of limited duration: x6(t) =

{
sin 4πt −2 ≤ t ≤ 2

0 otherwise
is

an aperiodic signal;

(vi) CT linear relationship: x7(t) = 2t+ 5 is an aperiodic signal;
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Periodic and aperiodic signals
Linear Combination of Two Signals

� A signal g(t) is a linear combination of two periodic signals, x1(t)

with fundamental period T1 and x2(t) with fundamental period T2

as follows:

g(t) = ax1(t) + bx2(t)

is periodic iff

T1

T2
=

m

n
= rational number .

The funcdamental period of g(t) is given by nT1 = mT2 provided

that the values of m and n are chosen such that the greatest

common divisor (gcd) between m and n is 1.
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Periodic and aperiodic signals
Linear Combination of Two Signals

Determine if the following signals are periodic. If yes, determine the fundamental period

g1(t) = 3 sin(4πt) + 7 cos(3πt)

Signals sin(4πt) and cos(3πt) are both periodic signals with fundamental periods 1/2 and

2/3 second, respectively. The ratio of the two fundamental periods yields T1
T2

=
1/2
2/3

= 3
4

which is a rational number. Hence, the linear combination g1(t) is a periodic signal.

−4 −3 −2 −1 0 1 2 3 4

−10

−8

−6

−4

−2

0
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4
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8

10

time[sec]

g1(t) = 3 sin(4πt) + 7 cos(3πt)
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Periodic and aperiodic signals
Linear Combination of Two Signals

Determine if the following signals are periodic. If yes, determine the fundamental period

g2(t) = 3 sin(4πt) + 7 cos(10t)

Signals sin(4πt) and cos(10t) are both periodic signals with fundamental periods 1/2 and

π/5 second, respectively. The ratio of the two fundamental periods yields T1
T2

=
1/2
π/5

= 5
2π

which is not a rational number. Hence, the linear combination g2(t) is a periodic signal.
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g2(t) = 3 sin(4πt) + 7 cos(10t)
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Even and Odd Functions

A function fe(t) is said to be an even function of t if

fe(t) = fe(−t)

and a function fo(t) is said to be and odd function of t if

fo(t) = −fo(−t)

� an even function fe(t) has the same value at the instants t and −t

for all values of t. Clearly, it is symmetrical about the vertical axis.

� for an odd function fo(t), the value at the instant t is the negative

of its values at the instant −t. Therefore, fo(t) is anti-symmetrical

about the vertical axis.
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Even and Odd Functions

a0−a
t

fe(t)

fo(t)

−a
a0

(a)

(b)

Figure: (a) even function (b) odd function
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Even and Odd Functions
Some Properties of Even and Odd Functions

Even and odd functions have the following property:

� even function × odd function = odd function

� odd function × odd function = even function

� even function × even function = even function

Area

� fe(t) is symmetrical about the vertical axis, it follows that∫ a

−a
fe(t)dt = 2

∫ a

0
fe(t)dt

and it is clear that ∫ a

−a
fo(t)dt = 0
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Even and Odd Functions
Even and Odd Components of a Signal

Every signal f(t) can be expressed as a sum of even and odd

components because

f(t) =
1

2
[f(t) + f(−t)]︸ ︷︷ ︸
even function

+
1

2
[f(t)− f(−t)]︸ ︷︷ ︸
odd function

Consider the function f(t) = e−atu(t)

f(t) = fe(t) + fo(t)

fe(t) =
1

2

[
e−atu(t) + eatu(−t)

]
fo(t) =

1

2

[
e−atu(t)− eatu(−t)

]
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Even and Odd Functions
Even and Odd Components of a Signal

t
0

1
2

1
2e

−at

fe(t)

1
2e

at

t
0

1

e−at

f (t)

t
0

1
2

1
2e

−at

fo(t)

−1
2e

at
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Even and Odd Functions
Even and Odd Components of a Signal example

Find the even and odd components of ejt

ejt = fe(t) + fo(t)

where

fe(t) =
1

2

[
ejt + e−jt

]
= cos t

and

fo(t) =
1

2

[
ejt − e−jt

]
= j sin t
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Even and Odd Functions
Even and Odd Components of a Signal example

Consider the signal

x(t) =

2 cos(4t) t > 0

0 otherwise

Find its even and odd decomposition. What would happen if x(0) = 2 instead of 0–that is,

when we define the sinusoid at t = 0? Explain.

Solution:

The signal x(t) is neither even nor odd given that its values for t ≤ 0 are zero. For its

even-odd decomposition, the even component is given by

xe(t) = 0.5[x(t) + x(−t)] =


cos(4t) t > 0

cos(4t) t < 0

0 t = 0
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Even and Odd Functions
Even and Odd Components of a Signal example

and the odd component is given by

x0(t)0.5[x(t)− x(−t)] =


cos(4t) t > 0

− cos(4t) t < 0

0 t = 0

which when added together become the given signal. If x(0) = 2, we have

xe(t) = 0.5[x(t) + x(−t)] =


cos(4t) t > 0

cos(4t) t < 0

2 t = 0

while the odd component is the same. The even component has a discontinuity at t = 0.
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Unit Step Function with MATLAB

function y = ustep(t,ad)

% generation of unit step

% t : time

% ad : advance (positive),

% delay (negative)

% USE y = ustep(t,ad)

N = length(t); y = zeros(1,N);

for i = 1:N,

if t(i) >= -ad, y(i) = 1;

end

end

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

time [sec]
u
(t
−
3
)

Figure: Using commands t=0:5, y =

ustep(t,-3) and stairs(t,y)
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Unit Step Function with Scilab

To use Scilab function, you need to load it

first with exec("ustep.sce").

function y = ustep(t,ad)

// generation of unit step

// t : time

// ad : advance (positive)

// delay (negative)

// USE y = ustep(t,ad)

N = length(t); y = zeros(1,N);

for i = 1:N,

if t(i) >= -ad, y(i) = 1;

end

end

endfunction

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

time [sec]
u
(t
−
3
)

Figure: Using commands t=0:5, y =

ustep(t,-3) and plot2d2(t,y)
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Ramp Function with MATLAB

function y = ramp(t,m,ad)

% generation of ramp

% t : time

% ad : advance (positive), delay (negative)

% USE y = ramp(t,m,ad)

N = length(t);

y = zeros(1,N);

for i = 1:N,

if t(i) >= -ad,

y(i) = m*(t(i)+ad);

end

end

0 2 4 6 8 10
0

2

4

6

8

10

12

14

time [sec]
2
∗
r
(t
−

3
)

Figure: Using commands t=0:10, y =

ramp(t,2,-3) and plot(t,y)
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Ramp Function with Scilab

function y = ramp(t,m,ad)

// generation of ramp

// t : time

// ad : advance (positive), delay (negative)

// USE y = ramp(t,m,ad)

N = length(t);

y = zeros(1,N);

for i = 1:N,

if t(i) >= -ad,

y(i) = m*(t(i)+ad);

end

end

endfunction

0 2 4 6 8 10
0

2

4

6

8

10

12

14

time [sec]
2
∗
r
(t
−

3
)

Figure: Using commands t=0:10, y =

ramp(t,2,-3) and plot(t,y)
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Even/Odd Function with MATLAB

function [ye,yo] = evenodd(t,y)

% even/odd decomposition

% t : time

% y : analog signal

% ye, yo: even and odd components

% USE [ye,yo] = evenodd(t,y)

yr = fliplr(y);

ye = 0.5*(y+yr);

yo = 0.5*(y-yr);
0 2 4 6 8 10

−0.5

0

0.5

1

time [sec]
y
(t
)

 

 

even
odd
e−2t

Figure: Using commands t =

0:0.1:10, y= exp(-2*t),
[ye,yo]=evenodd(t,y)
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Even/Odd Function with Scilab

function [ye,yo] = evenodd(t,y)

// even/odd decomposition

// t : time

// y : analog signal

// ye, yo: even and odd components

// USE [ye,yo] = evenodd(t,y)

yr = mtlb_fliplr(y);

ye = 0.5*(y+yr);

yo = 0.5*(y-yr);
0 2 4 6 8 10

−0.5

0

0.5

1

time [sec]
y
(t
)

 

 

even
odd
e−2t

Figure: Using commands t =

0:0.1:10, y= exp(-2*t),
[ye,yo]=evenodd(t,y)
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Functions with MATLAB
Example

Use MATLAB to generate the following analog signals.

(a) For the damped sinusoid signal x(t) = e−t cos(2πt) obtain a script to generate x(t)

and its envelope.

% damped sinusoid

t = -2:0.01:4;

x = exp(-t).*cos(2*pi*t);

y = exp(-t);

plot(t,x,’b-’,’linewidth’,2);

grid

hold on

plot(t,y,’--k’,’linewidth’,2);

hold on

plot(t,-y,’--k’,’linewidth’,2);

axis([-2 4 -8 8]);

hold off
−2 −1 0 1 2 3 4
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Functions with Scilab
Example

Use Scilab to generate the following analog signals.

(a) For the damped sinusoid signal x(t) = e−t cos(2πt) obtain a script to generate x(t)

and its envelope.

// damped sinusoid

t = -2:0.01:4;

// using %pi instead of pi

x = exp(-t).*cos(2*%pi*t);

y = exp(-t);

plot(t,x,’b-’,’linewidth’,2);

xgrid

mtlb_hold on

plot(t,y,’--k’,’linewidth’,2);

hold on

plot(t,-y,’--k’,’linewidth’,2);

mtlb_axis([-2 4 -8 8]);

mtlb_hold off −2 −1 0 1 2 3 4
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Functions with MATLAB
Example

(b) For a rough approximation of a periodic pulse generated by adding three cosines of

frequencies multiples of Ω0 = pi/10–that is x(t) = 1 + 1.5 cos(2Ω0t)− 0.6 cos(4Ω0t)

write a script to generate x1(t).

% weigthed cosines approximating a pulse

t = -10:0.01:10;

x = 1 + 1.5*cos(2*pi*t/10)...

-.6*cos(4*pi*t/10);

plot(t,x,’linewidth’,2);

grid;
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Functions with Scilab
Example

(b) For a rough approximation of a periodic pulse generated by adding three cosines of

frequencies multiples of Ω0 = pi/10–that is x(t) = 1 + 1.5 cos(2Ω0t)− 0.6 cos(4Ω0t)

write a script to generate x1(t).

% weigthed cosines approximating a pulse

t = -10:0.01:10;

x = 1 + 1.5*cos(2*%pi*t/10)...

-.6*cos(4*%pi*t/10);

plot(t,x,’linewidth’,2);

xgrid;
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Functions with MATLAB
Example

Write a script and the necessary function to generate a signal,

y(t) = 3(t+ 3)− 6(t+ 1) + 3t− 3u(t− 3).

% ex 1.16

clear all; clf;

Ts = 0.01; t = -5:Ts:5;

% ramp with support [-5,5]

% slope of 3 and advanced

% with respect to the origin by 3

y1 = ramp(t,3,3);

y2 = ramp(t,-6,1);

y3 = ramp(t,3,0)

% unit-step function with support

% [-5,5] delayed by 3

y4 = -3*ustep(t,-3);

y = y1 + y2 + y3 + y4;

plot(t,y,’linewidth’,2); axis([-5,5,-1,7]);

grid;
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