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z-Transform
The z-transform is defined by

F[z] =
∞∑

n=−∞
f[n]z−n

f[n] = 1
2πj

∮
F[z]zn−1dz

We are restricted only to the analysis of causal systems with causal
input. In the unilateral z-transform, the signals are restricted to be
causal; that is, they start at n = 0. The unilateral z-transform is defined
by

F[z] =
∞∑

n=0
f[n]z−n,

where z is complex in general.
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z-Transform
Examples

Find the z-transform of a signal γn
1[n].

F[z] =
∞∑

n=0
γn
1[n]z−n =

∞∑
n=0

γnz−n

= 1 +

(
γ

z

)
+

(
γ

z

)2
+

(
γ

z

)3
+ · · ·

From the well-known geometric progression and its sum:

1 + x + x2 + x3 + · · · =
1

1− x
, if |x| < 1

we have

F[z] = 1
1− γ

z
,

∣∣∣∣γz
∣∣∣∣ < 1

=
z

z− γ
, |z| > |γ|

F[z] exists only for |z| > |γ|. This region of |z| is called the region of convergence.
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z-Transform
Examples

Find the z-transforms of (a) δ[n], (b) 1[n], (c) cosβk1[n]
By definition

F[z] =
∞∑

n=0
f[n]z−n

= f[0] + f[1]
z

+
f[2]
z2 +

f[3]
z3 + · · ·

(a) For f[n] = δ[n], f[0] = 1, and f[2] = f[3] = f[4] = · · · = 0. Therefore

δ[n] Z←−→ 1 for all z

(b) For f[n] = 1[n], f[0] = f[1] = f[3] = · · · = 1. Therefore

F[z] = 1 +
1
z
+

1
z2 +

1
z3 + · · · =

1
1− 1

z

∣∣∣∣1
z

∣∣∣∣ < 1

=
z

z− 1
|z| > 1
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z-Transform
Examples

Therefore

1[n] Z←−→
z

z− 1
|z| > 1.

(c) Recall that cosβk =
(
ejβn + e−jβn) /2. Moreover,

e±jβk
1[n] Z←−→

z
z− e±jβ |z| > |e±jβ | = 1

Therefore

F[z] = 1
2

[
z

z− ejβ +
z

z− e−jβ

]
=

z(z− cosβ)

z2 − 2z cosβ + 1
|z| > 1
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z-Transform
Examples

Find the z-transforms of a signal shown in Figure below

n
0 1 2 3 4 5 6

1

f[n]

Here f[0] = f[1] = f[2] = f[3] = f[4] = 1 and f[5] = f[6] = · · · = 0. Therefore,

F[z] = 1 +
1
z
+

1
z2 +

1
z3 +

1
z4

=
z4 + z3 + z2 + z + 1

z4

or

F[z] =
( 1

z
)5 −

( 1
z
)0

1
z − 1

=
z

z− 1
(1− z−5)
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Inverse z-Transform
Many of the transforms F[z] of practical interest are rational functions.
Such functions can be expressed as a sum of simpler functions using
partial fraction expansion.
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Inverse z-Transform
Examples

Find the inverse z-transform of

F[z] = 8z− 19
(z− 2)(z− 3)

Expanding F[z] into partial fractions yields

F[z] = 8z− 19
(z− 2)(z− 3)

=
3

z− 2
+

5
z− 3

From z-transform Table Pair 6, we have

f[n] =
[
3(2)n−1 + 5(3)n−1]

1[n− 1]

This result is not convenient. We prefer the form that in multiplied by 1[n] rather than
1[n− 1]. We will expand F[z]/z instead of F[z]. For this case

F[z]
z

=
8z− 19

z(z− 2)(z− 3)
=

(−19/6)
z

+
(3/2)
z− 2

+
(5/3)
z− 3
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Inverse z-Transform
Examples

Multiplying both sides by z yields

F[z] = −19
6

+
3
2

(
z

z− 2

)
+

5
3

(
z

z− 3

)

From Pairs 1 and 7 in the z-transform table, it follows that

f[n] = −19
6
δ[n] +

[
3
2
(2)n +

5
3
(3)n

]
1[n]
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Inverse z-Transform
Examples

Find the inverse z-transform of

F[z] = z(2z2 − 11z + 12)
(z− 1)(z− 2)3

and

F[z]
z

=
2z2 − 11z + 12
(z− 1)(z− 2)3

=
k

z− 1
+

a0
(z− 2)3 +

a1
(z− 2)2 +

a2
(z− 2)

Using a cover up method yields

k =
2z2 − 11z + 12

(z− 2)3

∣∣∣∣
z=1

= −3

a0 =
2z2 − 11z + 12

(z− 1)

∣∣∣∣
z=2

= −2
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Inverse z-Transform
Examples

Therefore

F[z]
z

=
−3

z− 1
−

2
(z− 2)3 +

a1
(z− 2)2 +

a2
(z− 2)

By using short cuts method, we multiply both sides of the equation by z and let z→∞.
This yields

0 = −3− 0 + 0 + a2 =⇒ a2 = 3

Another unknown a1 is readily determined by letting z take any convenient value, z = 0, on
both sides. This step yields

12
8

= 3 +
1
4
+

a1
4
−

3
2
=⇒ a1 = −1

Therefore

F[z]
z

=
−3

z− 1
−

2
(z− 2)3 −

1
(z− 2)2 +

3
z− 2
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Inverse z-Transform
Examples

F[z] = −3 z
z− 1

− 2 z
(z− 2)3 −

z
(z− 2)2 + 3 z

z− 2

Now the use of Table, Pairs 7 and 10 yields

f[n] =
[
−3− 2 n(n− 1)

8
(2)n −

n
2
(2)n + 3(2)n

]
1[n]

= −
[

3 +
1
4
(n2 + n− 12)2n

]
1[n]
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Inverse z-Transform
Examples

Complex Poles

F[z] = 2z(3z + 17)
(z− 1)(z2 − 6z + 25)

Method of First-Order Factors

F[z]
z

=
2(3z + 17)

(z− 1)(z2 − 6z + 25
=

2(3z + 17)
(z− 1)(z− 3− j4)(z− 3 + j4)

We find the partial fraction of F[z]/z using the “cover up” method:

F[z]
z

=
2

z− 1
+

1.6e−j2.246

z− 3− j4
+

1.6ej2.246

z− 3 + j4

and

F[z] = 2 z
z− 1

+ (1.6e−j2.246)
z

z− 3− j4
+ (1.6ej2.246)

z
z− 3 + j4
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Inverse z-Transform
Examples

The inverse transform of the first time on the right-hand side is 21[n]. The inverse transform
of the remeaining two terms can be obtained from z-Transform Table Pair 12b by identifying
r
2 = 1.6, θ = −2.246 rad, γ = 3 + j4 = 5ej0.927, so that |γ| = 5, β = 0.927. Therefore

f[n] = [2 + 3.2(5)n cos(0.927k− 2.246)]1[n]

Method of Quadratic Factors

F[z]
z

=
2(3z + 17)

(z− 1)(z2 − 6z + 25)
=

2
z− 1

+
Az + B

z2 − 6z + 25

Multiplying both sides by z and letting z→∞, we find

0 = 2 + A =⇒ A = −2

and

2(3z + 17)
(z− 1)(z2 − 6z + 25)

=
2

z− 1
+
−2z + B

z2 − 6z + 25

Lecture 10: Discrete-Time System Analysis Using the Z-Transform J 15/38 I }



Inverse z-Transform
Examples

To find B we let z take any convenient value, say z = 0. This step yields

−34
25

= −2 +
B
25

Multiplying both sides by 25 yields

−34 = −50 + B =⇒ B = 16

Therefore

F[z]
z

=
2

z− 1
+
−2z + 16

z2 − 6z + 25

and

F[z] = 2z
z− 1

+
z(−2z + 16)
z2 − 6z + 25
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Inverse z-Transform
Examples

We now usr z-Transform table Pair 12c where we identify A = −2, B = 16, |γ| = 5, a = −3.
Therefore

r =

√
100 + 256− 192

25− 9
= 3.2, β = cos−1

(
3
5

)
= 0.927 rad

and

θ = tan−1
(
−10
−8

)
= −2.246 rad.

so that

f[n] = [2 + 3.2(5)n cos(0.927n− 2.246)]1[n]
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Some properties of the z-Transform
Right Shift (Delay)

Right Shift (Delay)
If

f[n]1[n]⇐⇒ F[z]

then
f[n− 1]1[n− 1]⇐⇒ 1

z
F[z]

and
f[n−m]1[n−m]⇐⇒

1
zm F[z]

and
f[n− 1]1[n]⇐⇒ 1

z
F[z] + f[−1]

Repeated application of this property yields

f[n− 2]1[n]⇐⇒ 1
z

[
1
z

F[z] + f[−1]
]
+ f[−2]
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Some properties of the z-Transform
Right Shift (Delay) cont.

f[n− 2]1[n] = 1
z2 F[z] + 1

z
f[−1] + f[−2]

and

f[n−m]1[n]⇐⇒ z−mF[z] + z−m
m∑

n=1
f[−n]zn

Proof:

Z {f[n−m]1[n−m]} =
∞∑

n=0
f[n−m]1[n−m]z−n

Recall that f[n−m]1[n−m] = 0 for k < m, so that the limits on the summation on the
right-hand side can be taken form n = m to ∞.
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Some properties of the z-Transform
Right-Shifty (Delay) cont.

Z {f[n−m]1[n−m]} =
∞∑

n=m
f[n−m]z−n

=

∞∑
r=0

f[r]z−(r+m) =
1

zm

∞∑
r=0

f[r]z−r =
1

zm F[z]

Z {f[n−m]1[n]} =
∞∑

n=0
f[n−m]z−n =

∞∑
r=−m

f[r]z−(r+m)

= z−m

 −1∑
r=−m

f[r]z−r +
∞∑

r=0
f[r]z−r


= z−m

m∑
n=1

f[−n]zn + z−mF[z]
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Some properties of the z-Transform
Left-Shifty (Advance)

If

f[n]1[n]⇐⇒ F[z]

then

f[n + 1]1[n]⇐⇒ zF[z]− zf[0]

Repeated application of this property yields

f[n + 2]1[n]⇐⇒z {z(F[z]− zf[0])− f[1]}
= z2F[z]− z2f[0]− zf[1]

and

f[n + m]1[n]⇐⇒ zmF[z]− zm
m−1∑
n=0

f[n]z−n
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Some properties of the z-Transform
Left-Shifty (Advance) cont.

Proof: By definition

Z {f[n + m]1[n]} =
∞∑

n=0
f[n + m]z−n

=
∞∑

r=m
f[r]z−(r−m)

= zm
∞∑

r=m
f[r]z−r

= zm
[ ∞∑

r=0
f[r]z−r −

m−1∑
r = 0f[r]z−r

]

= zmF[z]− zm
m−1∑
r=0

f[r]z−r

Lecture 10: Discrete-Time System Analysis Using the Z-Transform J 22/38 I }



Some properties of the z-Transform
Left-Shifty (Advance) cont.

Find the z-transform of the signal f[n] depicted in a Figure below.

n
0 1 2 3 4 5 6

5

f[n]

1

The signal can be expressed as a product of k and a gate pulse 1[n]− 1[n− 6]. Therefore

f[n] = n1[n]− n1[n− 6] = n1[n]− (n− 6 + 6)1[n− 6]
= n1[n]− (n− 6)1[n− 6] + 61[n− 6]

Because 1[n] Z←−→ z
z−1 and k1[n] Z←→ z

(z−1)2 ,

1[n− 6] Z←−→
1
z6

z
z− 1

=
1

z5(z− 1)
, and (n− 6)1[n− 6] Z←−→

1
z6

z
(z− 1)2 =

1
z5(z− 1)2
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Some properties of the z-Transform
Left-Shifty (Advance) cont.

Therefore

F[z] = z
(z− 1)2 −

1
z5(z− 1)2 −

6
z5(z− 1)

=
z6 − 6z + 5
z5(z− 1)2
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Some properties of the z-Transform
Convolution

The time convolution property state that if

f1[n]
Z←−→ F1[n] and f2[n]

Z←−→ F2[z],

then (time convolution)

f1[n] ∗ f2[n]
Z←−→ F1[z]F2[z]

Proof:

Z {f1[n] ∗ f2[n]} = Z

 ∞∑
m=−∞

f1[m]f2[n−m]


=

∞∑
n=−∞

z−n
∞∑

m=−∞
f1[m]f2[n−m]
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Some properties of the z-Transform
Convolution cont.

Interchanging the order of summation,

Z [f1[n] ∗ f2[n]] =
∞∑

m=−∞
f1[m]

∞∑
n=−∞

f2[n−m]z−n

=
∞∑

m=−∞
f1[m]

∞∑
r=−∞

f2[r]z−(r+m)

=
∞∑

m=−∞
f1[m]z−m

∞∑
r=−∞

f2[r]z−r

= F1[z]F2[z]
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Some properties of the z-Transform
Multiplication by γn

If

f[n]1[n] Z←−→ F[z]

then

γnf[n]1[n] Z←−→ F
[

z
γ

]
Proof:

Z {γnf[n]1[n]} =
∞∑

n=0
γnf[n]z−n =

∞∑
n=0

f[n]
(

z
γ

)−n
= F

[
z
γ

]
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Some properties of the z-Transform
Multiplication by n

If

f[n]1[n] Z←−→ F[z]

then

kf[n]1[n] Z←−→ −z d
dz

F[z]

Proof:

−z d
dz

F[z] = −z d
dz

∞∑
n=0

f[n]z−n = −z
∞∑

n=0
−nf[n]z−n−1

=
∞∑

n=0
kf[n]z−n = Z {kf[n]1[n]}
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z-Transform Solution of Linear Difference Equations

• The time-shift (left- or right-shift) property has set the stage for
solving linear difference equations with constant coefficients.

• As in the case of the Laplace transform with differential equations,
the z-transform converts difference equations into algebraic
equations which are readily solved to find the solution in the
z-domain.

• Taking the inverse z-transform of the z-domain solution yields the
desired time-domain solution.
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z-Transform Solution of Linear Difference Equations
Examples

Solve

y[n + 2]− 5y[n + 1] + 6y[n] = 3f[n + 1] + 5f[n]

if the initial conditions are y[−1] = 11
6 , y[−2] = 37

36 , and the input f[n] = (2)−n
1[n].

Since the given initial conditions are not suitable for the forward form, we transform the
equation to the delay form:

y[n]− 5y[n− 1] + 6y[n− 2] = 3f[n− 1] + 5f[n− 2].

Clearly that we consider the solution when k ≥ 0 then y[n− j] means y[n− j]1[n]. Now

y[n]1[n] Z←−→ Y[z]

y[n− 1]1[n] Z←−→
1
z

Y[z] + y[−1] = 1
z

Y[z] + 11
6

y[n− 2]1[n] Z←−→
1
z2 Y[z] + 1

z
y[−1] + y[−2] = 1

z2 Y[z] + 11
6z

+
37
36
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z-Transform Solution of Linear Difference Equations
Examples cont.

Also

f[n] = (2)−n
1[n] = (2−1)1[n] = (0.5)n

1[n] Z←−→
z

z− 0.5

f[n− 1]1[n] Z←−→
1
z

F[z] + f[−1] = 1
z

z
z− 0.5

+ 0 =
1

z− 0.5

f[n− 2]1[n] Z←−→
1
z2 F[z] + 1

z
f[−1] + f[−2] = 1

z2 F[z] + 0 + 0 =
1

z(z− 0.5)

Note that for causal input f[n],

f[−1] = f[−2] = · · · = f[−n] = 0

Hence

f[n− r]1[n] Z←−→
1
zr F[z]
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z-Transform Solution of Linear Difference Equations
Examples cont.

Taking the z-transform of the difference equation and substituting the above results, we
obtain

Y[z]− 5
[

1
z

Y[z] + 11
6

]
+ 6

[
1
z2 Y[z] + 11

6z
+

37
36

]
=

3
z− 0.5

+
5

z(z− 0.5)

or (
1− 5

z
+

6
z2

)
Y[z]−

(
3− 11

z

)
=

3
z− 0.5

+
5

z(z− 0.5)

and (
1− 5

z
+

6
z2

)
Y[z] =

(
3− 11

z

)
+

3z + 5
z(z− 0.5)

=
3z2 − 9.5z + 10.5

z(z− 0.5)
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z-Transform Solution of Linear Difference Equations
Examples cont.

Multiplication of both sides by z2 yields

(z2 − 5z + 6)Y[z] = z(3z2 − 9.5z + 10.5)
(z− 0.5)

so that

Y[z] = z(3z2 − 9.5z + 10.5)
(z− 0.5)(z2 − 5z + 6)

and

Y[z]
z

=
3z2 − 9.5z + 10.5

(z− 0.5)(z− 2)(z− 3)

=
(26/15)
z− 0.5

−
(7/3)
z− 2

+
(18/5)
z− 3

Therefore

Y[z] = 26
15

(
z

z− 0.5

)
−

7
3

(
z

z− 2

)
+

18
5

(
z

z− 3

)
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z-Transform Solution of Linear Difference Equations
Examples cont.

and

y[n] =
[

26
15

(0.5)n −
7
3
(2)n +

18
5
(3)n

]
1[n]
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z-Transform Solution of Linear Difference Equations
Zero-Input and Zero-State Components

• From the previous example, we found the total solution of the difference equation.
• It is easy to separate the solution into zero-input and zero-state components.
• We have to separate the response into terms arising from the input and terms arising

from initial conditions.

From the previous example:

(
1− 5

z
+

6
z2

)
Y[z]−

(
3− 11

z

)
︸ ︷︷ ︸

initial condition terms

=
3

z− 0.5
+

5
z(z− 0.5)︸ ︷︷ ︸

terms arising from input
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z-Transform Solution of Linear Difference Equations
Zero-Input and Zero-State Components cont.

Therefore

(
1− 5

z
+

6
z2

)
Y[z] =

(
3− 11

z

)
︸ ︷︷ ︸

initial condition terms

+
(3z + 5)

z(z− 0.5)︸ ︷︷ ︸
input terms

Multiplying both sides by z2 yields

(z2 − 5z + 6)Y[z] = z(3z− 11)︸ ︷︷ ︸
initial condition terms

+
z(3z + 5)
z− 0.5︸ ︷︷ ︸

input terms

and

Y[z] = z(3z− 11)
z2 − 5z + 6︸ ︷︷ ︸

zero-input response

+
z(3z + 5)

(z− 0.5)(z2 − 5z + 6)︸ ︷︷ ︸
zero-state response
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z-Transform Solution of Linear Difference Equations
Zero-Input and Zero-State Components cont.

We expand both terms on the right-hand side into modified partial fractions to yield

Y[z] =
[

5
(

z
z− 2

)]
︸ ︷︷ ︸

zero-input

+

[
26
15

(
z

z− 0.5

)
−

22
3

(
z

z− 2

)
+

28
5

(
z

z− 3

)]
︸ ︷︷ ︸

zero-state

and

y[n] =

5(2)n − 2(3)n︸ ︷︷ ︸
zero-input

−
22
3
(2)n +

28
5
(3)n +

26
15

(0.5)n︸ ︷︷ ︸
zero-state

1[n]
=

[
−

7
3
(2)n +

18
5
(3)n +

26
15

(0.5)n
]
1[n]
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