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Outline

� The basic for the rest of the material in this course.
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Signals and Systems and Digital Technologies

� In modern world, signals of all kinds emanate from different types

of devices–radios and TVs, cell phones, global positioning systems

(GPSs), radars, and sonar etc.

� These systems allow us to communicate messages, to control

processed, and to sense or measure signals.

� The advent of the transistor, the digital computer, and the

theoretical fundamentals of digital signal processing, the trend has

been toward digital representation and processing of data, most of

which are in analog form.

� Such a tend highlights the importance of learning how to represent

signals in analog as well as in digital forms and how to model and

design systems capable of dealing with different types of signals.
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Examples of Signal Processing Applications
Communication

Signal Transmission

Figure: Signal transmission using electronic signals (from wikipedia)
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Examples of Signal Processing Applications
Control Systems

Computer-Controlled Systems

(a) (b)

Figure: Computer-controlled system
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Examples of Signal Processing Applications
Instrumentation

Figure: Wireless Instrument
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Examples of Signal Processing Applications
Image Processing

(a) (b)

(c) (d)

Figure: JPEG compression By Toytoy at English Wikipedia, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9657402

Lecture 0: Background J 7/62 I }

https://commons.wikimedia.org/w/index.php?curid=9657402


Examples of Signal Processing Applications
Power Electronics
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Examples of Signal Processing Applications
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Introduction to Signals

� Dimension and units of signals

� Classification of signals

� Continuous-Time and Discrete-Time Representation
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Mathematical Notation

� Set of natural numbers

N = {1, 2, 3, . . . , }

� Set of integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

� Set of rational numbers

Q =
{m

n
: m,n ∈ Z, n ̸= 0

}
� Set of real numbers

R = {x : −∞ < x < ∞}

The rational numbers are real number but some real numbers are not rational numbers.
We call such real numbers as irrational numbers, e.g.

√
2 = 1.4142135623 · · · ,

π = 3.1415926535 · · · . The set of this number is denoted by R/Q.
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Mathematical Notation

� Set of complex numbers

C = {α+ jβ : α, β ∈ R}

� Note that

N ⊂ Z ⊂ Q ⊂ R ⊂ C
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Dimension and units of a signal

Dimension or type of a signal u(t), e.g.,

� real-valued or scalar signal: u(t) is a real number (scalar)

� vector signal: u(t) is a vector of some dimensions

� binary signal: u(t) is either 0 or 1

we will usually encounter scalar signals.

example: a vector-valued signal

v =

v1v2
v3


might give the voltage at three places on an antenna.

physical units of a signal, e.g. V, mA, m/sec
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Classification of Signals

� an Analog signal is a signal whose amplitude can take on any

value in a continuous range

� a continuous-time signal is a signal that is specified for every

value of time t

� a discrete-time signal is a signal that is specified only discrete

values of t

� a digital signal is a signal whose amplitude can take on only a

finite number of values
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Classification of Signals
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(d) digital, discrete-time signal
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Classification of Signals
Periodic and aperiodic signals

� a periodic signal: a signal f(t) is said to be periodic if for some
positive constant T0

f(t) = f(t+ T0) for all t

� a signal is aperiodic if it is not periodic

t

f(t)

T0

Figure: a periodic signal of period T0
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Classification of Signals
Deterministic and Random Signals

� a Deterministic signal is a signal whose physical description is

known completely, either in a mathematical form or a graphical

form.

� a Random signal is a signal whose values cannot be predicted

precisely but are known only in terms of probabilistic description,

such as mean value, mean squared value, and so on.

� In this course, we deal only with deterministic signals.
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Continuous or Discrete?

� In engineering, the inputs and outputs of electrical, mechanical,

chemical, and biological processes and measured as functions of

time with amplitudes expressed in terms of voltage, current, torque,

pressure, etc.

� These functions are called analog and continuous-time signals, and

to process them with a computer they must be converted into

binary number, 0 or 1.

� A conversion is done in a way as to preserve as much as possible

the information contained in the original signal.
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Continuous of Discrete?
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Continuous or Discrete?

� In binary form, signals can be processed using algorithms (coded

procedures understood by computers and designed to obtain certain

desired information from the signals or to change them) in a

computer or in a dedicated piece of hardware.

� In analog world, we use calculus deals with functions of one or

more continuously changing variables. The concepts of derivative

and integral are developed to measure the rate of change of

functions and the areas under the graphs of these functions, or

their volumes. Differential equations are then introduced to

characterize dynamic systems.
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Continuous or Discrete?

� In discrete world, we use finite calculus to deal with sequences

number. Thus derivative and integrals are replaced by differences

and summations, while differential equations are replaced by

difference equations.

� Finite calculus makes possible the computations of calculus by

means of a combination of digital computers and numerical

methods–thus, finite calculus becomes the more concrete

mathematics. Numerical methods applied to sequences permit us

to approximate derivatives, integrals, and the solution of differential

equations.

Lecture 0: Background J 21/62 I }



Continuous-Time and Discrete-Time Representations

� the analog signal depends continuously on time.

� A discrete-time signal is a sequence of measurements typically

made at uniform times, while the analog signal depends

continuously on time.

� a discrete-time signal x[n] and the corresponding analog signal x(t)

are related by a sampling process:

x[n] = x(nTs) = x(t)|t=nTs
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Continuous-Time and Discrete-Time Representations

� the signal x[n] is obtained by sampling x(t) at time t = nTs, where

n is an integer and Ts is the sampling period or the time between

samples. This results in a sequence,

{ · · · x(−Ts) x(0) x(Ts) x(2T2) · · · }

� the sequence number can be written as

{ · · · x[−1] x[0] x[1] x[2] · · · }

according to the ordering of the samples. This process is called

sampling or discretization of an analog signal.
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Continuous-Time and Discrete-Time Representations

� By choosing a small value of Ts we could make the analog and the

discrete-time signals look very similar but this is at the expense of

memory space required to keep the numerous samples.

� If we make the value of Ts large, we improve the memory

requirements, but at the risk of losing information contained in the

original signal.
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Continuous-Time and Discrete-Time Representations
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Continuous-Time and Discrete-Time Representations

Natural discrete-time signal
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Mathematics Background for Signals and Systems

� Derivatives and Finite Differences

� Integrals and Summations

� Differential and Difference Equations

� Complex Numbers

� Function of Complex Values
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Derivatives and Finite Differences

� The derivative operator

D[x(t)] =
dx(t)

dt
= lim

h→0

x(t+ h)− x(t)

h

measure the rate of change of an analog signal x(t).

� In finite calculus the forward finite-difference operator

∆[x(nTs)] = x((n+ 1)Ts)− x(nTs)

measures the change in the signal from one sample to the next. If

we let x[n] = x(nTs), for a known Ts, the forward finite-difference

operator becomes a function of n:

∆[x[n]] = x[n+ 1]− x[n]
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Derivatives and Finite Differences

� We have

dx(t)

dt
= lim

Ts→0

∆[x(nTs)]

Ts

� If the signal does not change very fast with respect to time, the
finite-difference approximates well the derivative for relatively large
values of Ts, but if the signal changes very fast one needs very
small values of Ts.

� example: x(t) = t2 sampling x(t) with Ts, we have x[n] = n2 and
∆[x[n]] = ∆[n2] = (n+ 1)2 − n2 = 2n+ 1 (Note: x[n] = x(nTs))

Ts dx/dt|t=Tsn
∆[x[n]]/Ts error

n = 0 n = 1 n = 0 n = 1

1 2n 1 3 1 1
0.01 0.02n 0.01 0.03 0.01 0.01
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Differential and Difference Equations

� A differential equation characterizes the dynamics of a

continuous-time system, or the way the system responds to inputs

over time.

� (Very) Long time ago we use a analog computer consists of

operational amplifiers (op-amps), resisters, capacitors, voltage

sources, and relays to solve these equations.

� Analog computer have gone the way of the dinosaurs, and it is

digital computers aided by numerical methods used to solve

differential equations.

� We need integrators to determine the solution of differential

equation.
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Differential and Difference Equations
RC circuit

−
+

vi(t)

1 F i(t)

1 Ω
vi(t) 1 F

+ vc(t) −
−

+

1 Ω

vo(t)

vi(t) vc(t)

d(·)
dt

dvc(t)
dt

−

vi(t)
dvc(t)

dt ∫
(·)dt

vc(t)

−

The first order differential equation is given by

vi(t) = vc(t) +
dvc(t)

dt

with an initial voltage vc(0) across the capacitor. This equation is represented by the
left-hand side block diagram.
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Differential and Difference Equations
RC circuit

� At the steady state (t = ∞), the voltage across the capacitor is

equal to the voltage source–that is, the capacitor is acting as an

open circuit given that the source is constant.

� If we want to know the transient state of vc(t), we need to solve

the differential equation.

� Assuming that the source is switched on at time t = 0 and that the

capacitor has an initial voltage vc(0), we have

vc(t) =

∫ t

0
[vi(τ)− vc(τ)] dτ + vc(0), t ≥ 0

� This is represented by the right-hand side of the previous block

diagram.
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Differential and Difference Equations
How to Obtain Difference Equations

� By integrating

vi(t) = vc(t) +
dvc(t)

dt
,

we have

vc(t1)− vc(t0) =

∫ t1

t0

vi(τ)dτ −
∫ t1

t0

vc(τ)dτ

� If we let t1 − t0 = ∆t where ∆t→ 0, the integrals can be seen as

the area of small trapezoids of height ∆t and bases vi(t1) and

vi(t0) for the input source and vc(t1) and vc(t0) for the voltage

across the capacitor.
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Differential and Difference Equations
How to Obtain Difference Equations

vc(t0)

vc(t1)

t0 t1
∆t

t

� Using the formula for the area of a trapezoid we get an

approximation for the integrals so that

vc(t1)− vc(t0) = [vi(t1) + vi(t0)]
∆t

2
− [vc(t1) + vc(t0)]

∆t

2

vc(t1)

[
1 +

∆t

2

]
= [vi(t1) + vi(t0)]

∆t

2
+ vc(t0)

[
1− ∆t

2

]
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Differential and Difference Equations
How to Obtain Difference Equations

Assuming ∆t = T , we let t1 = nT and t0 = (n− 1)T . The above equation can be written as

vc(nT ) =
T

2 + T
[vi(nT ) + vi((n− 1)T )] +

2− T

2 + T
vc((n− 1)T ) n ≥ 1

and initial condition vc(0) = 0. This is a first-order linear difference equation with constant

coefficients approximating the differential equation characterizing the RC circuit. Letting the

input be vi(t) = 1 for t ≥ 0, we have

vc(nT ) =

0 n = 0

M +Kvc((n− 1)T ) n ≥ 1
,

where M = 2T/(2 + T ),K = (2− T )/(2 + T ). By using the recursive method, we obtain

n = 0 vc(0) = 0 n = 1 vc(T ) = M

n = 2 vc(2T ) = M +KM = M(1 +K)

n = 3 vc(3T ) = M +K(M +KM) = M(1 +K +K2)

n = 4 vc(4T ) = M +KM(1 +K +K2) = M(1 +K +K2 +K3)
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Differential and Difference Equations
How to Obtain Difference Equations

� The response increases from the zero initial condition to a constant

value, which is the effect of the dc source–the capacitor eventually

acts as an open circuit, so that the voltage across the capacitor

equals that of the input.

� Extrapolating from the above results, in the steady-state (i.e., when

nT → ∞) we have

vc(nT ) =M

∞∑
m=0

Km =
M

1−K
= 1
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Integration and smoothing
RC circuit

−
+

vi(t)

R i(t)

C
vi(t) R i(t)

−

+

C

vo(t)

The first order differential equation is given by

vo(t) = −
1

C

∫ t

−∞
i(τ)dτ

= −
1

RC

∫ t

−∞
v1(τ)dτ

Lecture 0: Background J 37/62 I }



Integration and smoothing
Smoothing property of integration

Example,

x(t) =


1, 0 ≤ t < 0.5

−1, 2.5 ≤ t < 3

0, elsewhere

y(t) =

∫ t

−∞
x(τ)dτ =


t, 0 ≤ t < 0.5

0.5, 0.5 ≤ t < 2.5

3− t, 2.5 ≤ t < 3

0, elsewhere

z(t) =

∫ t

−∞
y(τ)dτ =



0, t < 0

0.5t2, 0 ≤ t < 0.5

0.5t− 0.125, 0.5 ≤ t < 2.5

−0.5t2 + 3t− 3.25, 2.5 ≤ t < 3

1.25, t ≥ 3
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Integration and smoothing
Smoothing property of integration
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Integrals and Summations

The integration is the opposite of differentiation.

� I(t) =

∫ t

t0

x(τ)dτ The derivative of I(t) is

dI(t)

dt
= lim

h→0

I(t)− I(t− h)

h
= lim

h→0

1

h

∫ t

t−h
x(τ)dτ

≈ lim
h→0

x(t) + x(t− h)

2
= x(t)

� thus, for a continuous signal x(t),

d

dt

∫ t

t0

x(τ)dτ = x(t)

� If using the derivative operator D[·], then its inverse D−1[·] should
be the integration operator. That is D[D−1[x(t)]] = x(t).
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Integrals and Summations

Computationally, integration is implemented by sums.

� Consider, the integral of x(t) = t from 0 to 10, which we know is equal to

∫ 10

0
tdt =

t2

2

∣∣∣∣10
t=0

= 50.

This area of a triangle with a base of 10 and a height of 10.

� Approximate the signal x(t) by pulses p[n] of width Ts = 1 and height nTs = n, or

pulses of area n for n = 0, . . . , 9. The sum of the areas of the pulses is given by

9∑
n=0

p[n] =

9∑
n=0

nTs = 0 + 1 + 2 + · · ·+ 9 = 45

This approximation is very poor.
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Integrals and Summations

1 106 t

y(t) = t

y(t)

10

(a) Ts = 1

10 t

y(t) = t

y(t)

10

10
Ts

− 1

Ts

(b) Ts = 10−3
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Integrals and Summations

� To improve the approximation of the integral we use Ts = 10−3, which gives a

discretized signal nTs, for 0 ≤ nTs < 10 or 0 ≤ n ≤ (10/Ts)− 1. Then

104−1∑
n=0

p[n] =

104−1∑
n=0

n10−6 = 49.995

which is better result.

� In general for this case

(10/Ts)−1∑
n=0

p[n] =

(10/Ts)−1∑
n=0

nT 2
s =

10(10− Ts)

2

for very small values of Ts (so that 10− Ts ≈ 10) give 100/2 = 50, as desired.
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Complex Numbers

� A complex number z represents any point (a, b) in a

two-dimensional plane by z = a+ jb, where a = Re[z] is the real

part and b = Im[z] is the imaginary part.

b

−b

θ

z
r

a Real

Imaginary

z∗

a = r cos θ b = r sin θ

z = a+ jb = r cos θ + jr sin θ = r(cos θ + j sin θ)
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Complex Numbers
The Euler formula

The Euler formula states that

ejθ = cos θ + j sin θ

to prove the Euler formula, we expand ejθ, cos θ, and sin θ using a

Maclaurin series

ejθ = 1 + jθ − θ2

2!
− j

θ3

3!
+
θ4

4!
+ j

θ5

5!
− θ6

6!
− · · ·

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!
+ · · ·

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

Hence ejθ = cos θ + j sin θ and z = a+ jb = rejθ.
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Complex Numbers
A complex number can be expressed in Cartesian form a+ jb or polar

form rejθ with

a = r cos θ, b = r sin θ

and

r =
√
a2 + b2, θ = tan−1

(
b

a

)
� r is the distance of the point z from the origin.

� r is called the magnitude of z and is denoted by |z|.
� θ is called the angle of z and is denoted by ∠z.
� Then we have |z| = r, ∠z = θ and z = |z|ej∠z

1

z
=

1

rejθ
=

1

r
e−jθ =

1

|z|
e−j∠z
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Complex Numbers
Conjugate of a Complex Number

We define z∗, the conjugate of z = a+ jb, as

z∗ = a− jb = re−jθ

= |z|e−j∠z

� the sum of a complex number and its conjugate is a real number

equal to the real part of the number

z + z∗ = (a+ jb) + (a− jb) = 2a or 2Re z = z + z∗

� the subtraction of a complex number and its conjugate is a

imaginary number with the magnitude equal to the imaginary part

of the number

z − z∗ = (a+ jb)− (a− jb) = 2jb or 2j Im z = z − z∗Lecture 0: Background J 47/62 I }



Complex Numbers
Conjugate of a Complex Number

� the product of a complex number z and its conjugate is a real

number |z|2, the square of the magnitude of the number

zz∗ = (a+ jb)(a− jb) = a2 + b2 = |z|2 or |z| =
√
zz∗

� the division of a complex number z and its conjugate is

z

z∗
= ej2∠z or ∠z = −j0.5 [log(z)− log(z∗)]

� for exaple

z =
1 + j1

3 + j4
=

(1 + j1)(3− j4)

(3 + j4)(3− j4)
=

7− j

25
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Complex Numbers
the conversion of complex numbers

� the conversion of complex numbers from rectangular to polar needs

to done with care.

� z = 1 + j has a vector representing in the first quadrant of the

complex plane, and its magnitude is |z| =
√
2 while the tangent of

its angle θ is tan(θ) = 1 or θ = π/4 radians.

� z = −1 + j, the vector representing it is now in the second

quadrant with the same magnitude, but its angle is now

θ = π − tan−1(1) = 3π/4

� we find the angle with respect to the negative real axis and

subtract it from π.

� if z = −1− j, the magnitude does not change but the phase is now

θ = π + tan−1(1) = 5π/4 or −3π/4.
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Functions of a Complex Variable
Euler’s Identity

� One of the most famous equations of all times is

1 + ejπ = 1 + e−jπ = 0

due to one of the most prolific mathematicians of all times,

Leonard Euler (This guy is a Beethoven of Math world.)
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Functions of a Complex Variable
Euler’s Identity

� The Euler’s identity

ejθ = cos θ + j sin θ

� Consider the polar representation of the complex number

cos θ + j sin θ

� it has a unit magnitude since√
cos2 θ + sin2 θ = 1 = cos2 θ + sin2 θ

� the angle of this complex number is ψ = tan−1
[
sin θ
cos θ

]
= θ Thus,

the complex number cos θ+ j sin θ = 1ejθ, which is Euler’s identity.

� When θ = ±π the identity implies that e±jπ = −1, explaining the

famous Euler’s equation.
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Functions of a Complex Variable
Euler’s Identity

� Using Euler’s identity the cosine and sine can be expressed as

cos θ = Re
[
ejθ

]
=
ejθ + e−jθ

2

sin θ = Im
[
ejθ

]
=
ejθ − e−jθ

2j

� We have

ejθ = cos θ + j sin θ

e−jθ = cos θ − j sin θ
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Complex Variable
Examples

Two complex number are given by x = 5 + j74 and y = 2− j4. Calculate
(i) Re(x), Im(x),Re(y), Im(y); (ii) x+ y; (iii) x− y; (iv) xy; (v) x∗, y∗; (vi) |x|, |y|; and
(vii) x/y.
Solution:

� Re(x) = 5 , Im(x) = 7 , Re(y) = 2 and Im(y) = −4.

� Adding x and y yields

x+ y = (5 + j7) + (2− j4) = (5 + 2) + j(7− 4) = 7 + j3.

� Subtracting y from X

x− y = (5 + j7)− (2− j4) = (5− 2) + j(7− (−4)) = 3 + j11.

� Multiplication of x and y is performed as follow:

xy = (5 + j7)(2− j4) = 10 + j14− j20− j228

= (10 + 28) + j(14− 20) = 38− j6.

Multiplication is commutative, therefore xy = yx.
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Complex Variable
Examples

� The complex conjugate of the complex number x = 5 + j7 is x∗ = 5− j7. The
complex conjugate of y = 2− j4 is y∗ = 2 + j4.

� |x| =
√
52 + 72 =

√
74, |y| =

√
22 + (−4)2 =

√
20

� Dividing x by y yields

x

y
=

5 + j7

2− j4
=

5 + j7

2− j4
·
2 + j4

2 + j4

=
(5)(2)− (7)(4)

22 + 42
+ j

(7)(2) + (5)(4)

22 + 42
= −

18

20
+ j

34

20
.

� Consider a complex number x = 2 + j4. We have

r =
√

22 + 42 =
√
20 and θ = tan−1(4/2) = 0.35π radians.

The polar representation of x = 2 + j4 is x =
√
20ej0.35π .

� Consider a complex number in the polar format x = 4ejπ/3. We have

a = rx = 4 cos(
π

3
) = 2, b = ry = 4 sin(

π

3
) = 2

√
3 ⇒ x = 4ejπ/3 = 2 + j2

√
3.
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Complex Variable
Examples

For z1 = 2ejπ/4 and z2 = 8ejπ/3, find (i) 2z1 − z2, (ii)
1
z1

, (iii) z1
z22

, (iv) 3
√
z2.

� We have to convert z1 and z2 to rectangular (Cartesian) form:

z1 = 2ejπ/4 = 2
(
cos

π

4
+ j sin

π

4

)
=

√
2 + j

√
2

z2 = 8ejπ/3 = 8
(
cos

π

3
+ j sin

π

3

)
= 4 + j4

√
3

Therefore (i)

2z1 − z2 = 2(
√
2 + j

√
2)− (4 + j4

√
3) = (2

√
2− 4) + j(2

√
2− 4

√
3)

= −1.17− j4.1

� (ii)

1

z1
=

1

2ejπ/4
=

1

2
e−jπ/4
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Complex Variable
Examples

� (iii)

z1

z22
=

2ejπ/4

(8ejπ/3)2
=

2ejπ/4

64ej2π/3
=

1

32
ej(

π
4
− 2π

3
) =

1

32
e−j 5π

12

� (iv)

3
√
z2 = z

1/3
2 =

(
8ejπ/3

)1/3
= 2ejπ/9
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Complex Variable
MATLAB

Express the following numbers in polar form (a)2 + j3, (b)− 2 + j1.

� (a)

[rad,mag] = cart2pol(2,3)

rad = 0.9828

mag = 3.6056

deg = rad*(180/pi)

deg = 56.31

therefore z = 2 + j3 = 3.6056ej56.31
◦
.

� (b)

[angle,mag] = cart2pol(-2,1)

rad = 2.6779

mag = 2.2361

deg = rad*(180/pi)

deg = 153.4349

therefore z = −2 + j1 = 2.2361ej153.4349
◦
.
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Complex Variable
SciLab

Express the following numbers in polar form (a)2 + j3, (b)− 2 + j1.

� (a)

z = 2 + %i*3

rad = atan(imag(z)/real(z))

mag = sqrt(real(z)^2+imag(z)^2)

deg = rad*(180/pi)

deg = 56.31

therefore z = 2 + j3 = 3.6056ej56.31
◦
.

� (b)

z = -2 + %i

rad = atan(imag(z)/real(z))

mag = sqrt(real(z)^2 + imag(z)^2)

deg = rad*(180/pi)

deg = 153.4349

therefore z = −2 + j1 = 2.2361ej153.4349
◦
.
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Complex Variable
MATLAB vs SciLab

Represent 4e−j 3π
4 in rectangular form.

� MATLAB

[zreal,zimag] = pol2cart(-2*pi/4,4)

zreal = -2.8284

zimag = -2.8284

� SciLab

z = 4*(cos(3*%pi/4) + %i*sin(3*%pi/4))

Therefore

4e−j 3π
4 = −2.8284− j2.8284
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Complex Variable
Examples

Consider F (ω), a complex function of a real variable ω:

F (ω) =
2 + jω

3 + j4ω

(a) Express F (ω) in rectangular form, and find its real and imaginary parts. (b) Express
F (ω) in polar form, and find its magnitude |F (ω)| and angle ∠F (ω).

(a)

F (ω) =
(2 + jω)(3− j4ω)

(3 + j4ω)(3− j4ω)
=

(6 + 4ω2)− j5ω

9 + 16ω2
=

6 + 4ω2

9 + 16ω2
− j

5ω

9 + 16ω2

Clearly the real and imaginary parts Fr(ω) and Fi(ω) are given by

Fr(ω) =
6 + 4ω2

9 + 16ω2
, Fi(ω) =

−5ω

9 + 16ω2

(b)

F (ω) =
2 + jω

3 + j4ω
=

√
4 + ω2ej tan−1(ω

2 )

√
9 + 16ω2ej tan−1( 4ω

3 )
=

√
4 + ω2

9 + 16ω2
ej[tan

−1(ω
2 )−tan−1( 4ω

3 )]
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Complex Variable
Examples

This is the polar representation of F (ω). Observe that

|F (ω)| =

√
4 + ω2

9 + 16ω2

∠F (ω) = tan−1
(ω

2

)
− tan−1

(
4ω

3

)
Determine z1z2 and z1/z2 if z1 = 3 + j4 and z2 = 2 + j3 in rectangular form

z1 = 3+j*4; z2 = 2+j*3; % for SciLab use z1 = 3+%i*4; z2 = 2+%i*3

z1z2 = z1*z2

z1z2 = -6.000+17.0000i

z1_over_z2 = z1/z2

z1_over_z2 = 1.3486-0.0769i

Therefore

(3 + j4)(2 + j3) = −6 + j17 and (3 + j4)/(2 + j3) = 1.3486− 0.0769
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