Instruction: DO NOT copy homework from your classmates or lend it to others. Anyone who violates this regulation will be given -10 for the homework.

1. For a signal f(t) shown in Fig. 1,

Figure 1: a signal f(t) for the question 3

(a) Sketch signals $f_1(t) = f(2t-3)$ and $f_2(t) = f(2-t)$ (5 points) Solution: For $f_1(t) = f(2t-3) = f(2(t-1.5))$ we have

For $f_2(t) = f(2-t) = f(-(t-2))$ we have

2. Evaluate the following integrals: (1 point for each)

(a)
$$\int_{-\infty}^{\infty} \delta(\tau) f(t-\tau) d\tau$$

(b) $\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d\tau$
(c) $\int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt$
(d) $\int_{-\infty}^{\infty} \delta(t+3) e^{-t} dt$
(e) $\int_{-\infty}^{\infty} (t^3+4) \delta(1-t) dt$
(f) $\int_{-\infty}^{\infty} e^{x-1} \cos\left[\frac{\pi}{2}(x-5)\right] \delta(x-3) dx$

Hint: $\delta(x)$ is located at x = 0. For example, $\delta(1 - t)$ is located at 1 - t = 0, and so on.

Solution:

From the sampling property: $\int_{-\infty}^{\infty} f(t)\delta(t)dt = 0$

(a) The impulse is located at $\tau = 0$ and $f(t - \tau)$ at $\tau = 0$. Therefore

$$\int_{-\infty}^{\infty} \delta(\tau) f(t-\tau) d\tau = f(t)$$

(b) The impulse is located at $\tau = t$ and $f(\tau)$ at $\tau = t$. Therefore

$$\int_{-\infty}^{\infty} f(\tau)\delta(t-\tau)d\tau = f(t)$$

- (c) $e^{-j\omega(0)} = 1$ (d) $e^{-(-3)} = e^3$ (e) Since 1 - t = 0 when t = 1, then $(t^3 + 4)|_{t=1} = 5$ (f) $e^{x-1} \cos\left[\frac{\pi}{2}(x-5)\right]_{x=3} = e^{-2} \cos(-\pi) = -e^2$
- 3. For a signal f(t) shown in Fig. 1, Show a mathematic equation that describes the signal f(t) in terms of unit step function $\mathbb{1}(t)$. (5 points) Solution:

$$f_1(t) = 4 [\mathbb{1}(t+1) - \mathbb{1}(t-1)]$$

$$f_2(t) = (-4t+8) [\mathbb{1}(t-1) - \mathbb{1}(t-2)]$$

$$f(t) = f_1(t) + f_2(t)$$

$$= 4\mathbb{1}(t+1) + (-4t+4)\mathbb{1}(t-1) - (-4t+8)\mathbb{1}(t-2)$$

-	-	