
Lecture 6: Artificial Neural Networks

Dr.-Ing. Sudchai Boonto, Assistant Professor
March 18, 2018

Department of Control System and Instrument Engineering, KMUTT



Introduction



Why (Artificial) Neural Networks

• (Neuro-)Biology / (Neuro-)Physiology / Psychology:
◦ Exploit similarity to real (biological) neural networks
◦ Build models to understand nerve and brain operation by simulation.

• Computer Science/ Engineering / Economics
◦ Mimic certain cognitive capabilities of human beings.
◦ Solve learning/ adaptation, prediction, and optimization problems.

• Physics / Chemistry
◦ Use neural network models to describe physical phenomena.
◦ Special case: spin glasses (alloys of magnetic and non-magnetic
methods).

1



Why Neural Networks in AI?

Physical-Symbol System Hypothesis [Newell and Simon 1976] A physical-symbol
system has the necessary and sufficient means for general intelligent action.

Neural networks process simple signals, not symbols
So why study neural networks in Artificial Intelligence?

• Symbol-based representations work well for inference tasks, but are fairly bad
for perception tasks.

• Symbol-based expert systems tend to get slower with growing knowledge,
human experts tend to get faster.

• Neural networks allow for highly parallel information processing.
• There are several successful applications in industry and finance.

2



Biological Neuron

nucleus

axon

myelin sheath

cell body
(soma)

terminal button

synapse

dendrites

3



Biological Neuron cont.

• dendrites represent a highly branching tree of fibres that carry electrical signals
to the cell body. 103 to 104 dendrites per neuron. The input channels of a
neuron.

• soma or cell body realizes the logical functions of the neuron.
• axon (nucleus) is a single long nerve fibre attached to the soma that serves as
the output channel of the neuron.

• synapse is a point of contact between an axon of one cell and a dendrite of
another cell.

4



Artificial Neurons (Single-layer Perceptron)

f
h

w1

w2

wr

w0

... v

φ1

φ2

φr

1

∑

• the neuron is modelled as a multi-input nonlinear device with r inputs
φ1, φ2, . . . , φr , one output v and weighted interconnections wi .

• an extra input with a value fixed to 1 is provided that can be used to generate a
bias w0 .

5



Artificial Neurons cont.

The sum h of the r weighted inputs and the bias is passed through a static nonlinear
function f(h) according to

v = f(h) = f

(
r∑

i=1

wiφi + w0

)

Introducing the column vectors

w =


w1

...
wr

 , φ =


φ1

...
φr


this can be written as

v = f(wTφ+ w0)

6



Activation Functions

• The function f is called the activation function of the neuron, which can be
linear or nonlinear function.

• The activation function is used as a decision making body at the output of a
neuron. The neuron learns linear of nonlinear decision boundaries based on
the activation function. It also has a normalizing effect (maps the resulting
values in between 0 to 1 or -1 to 1 etc.) on the neuron output which prevents the
output of neurons after several layers to become very large, due to the
cascading effect.

• Several types of activation function are commonly used:
◦ step functions
◦ linear functions
◦ sigmoid functions
◦ softmax functions
◦ recified linear functions
◦ leaky ReLU functions
◦ softplus functions

7



Step Activation Function

The step function as activation function is defined by

v(h) = σ(h) =

1, h ≥ 0,

0, h < 0.

h
w1

v

φ

w01

∑

The output is

v = σ(w1φ+ w0)

8



Step Activation Function cont.

0
φ

v

1

−w0

w10
h

v

1

9



Linear Activation Function

The output of a linear activation function is equal to its input

v(h) = h

h
w1

v

φ

w01

∑

φ

v

w0

−w0

w1

h

v

1

1

10



Nonlinear Activation Function

• In theory, when an activation function is non-linear; a two-layer Neural Network
can approximate any function (given a sufficient number of units in the hidden
layer). The nonlinear activation functions are the most used activation
functions.

• The main terminologies needed to understand for nonlinear functions are:
◦ Derivative or Differential: Change in y-axis with respect to change in

x-axis.
◦ Monotonic: A function varying in such a way that it either never
decreases or never increases.

• The nonlinear activation functions are mainly divided on the basis of their
range or curves

• A function whose range is finite leads to a more stable performance with
respect to gradient-based methods.

• Smooth functions are preferred (empirical evidence) and Monolithic functions
for a single layer lead to convex error surfaces.

• Are symmetric around the origin and behave like identity functions near the
origin (f(x) = x).

11



Sigmoid (logistic) Activation Function

The logistic sigmoid activation function is

v(h) = f(h) =
1

1 + e−h

h
w1

v

φ

w01

∑

φ

v

−w0

w1

h

v

1 1

w′
1 > w1

12



Sigmoid (logistic) Activation Function

Derivative of the sigmoid function

f(h) =
(
1 + e−h

)−1

df(h)

dh
= (−1)

(
1 + e−h

)−2 d

dh

(
1 + e−h

)
=
(
1 + e−h

)−2 (
e−h

)
=

e−h(
1 + e−h

)2
Nicer form

df(h)

dh
=

e−h + 1− 1(
1 + e−h

)2
=

(
1 + e−h

)(
1 + e−h

)2 −
1(

1 + e−h
)2

=
1

1 + e−h
−

1(
1 + e−h

)2 =
1

1 + e−h

(
1−

1

1 + e−h

)
= f(h)(1− f(h))

13



Sigmoid (logistic) Activation Function cont.

• It is real value, existing between (0 to 1).
• It is especially used for models where we have to predict the probability as an
output. Since probability of anything exists only between the range of 0 and 1,
sigmoid is the right choice.

• The function is differentiable. That means, we can find the slope of the sigmoid
curve at any two points. It is non-negative value, if a number is greater than or
equal to zero. It is non-positive, if a number is less than or equal to zero.

• The function is monotonic but functions’s derivative is not.
• The logistic sigmoid function can cause a neural network to get stuck at the
training time.

14



Hyperbolic tangent (tanh) Activation Function

The Hyperbolic tangent (tanh) activation function is

v(h) = f(h) =
eh − e−h

eh + e−h

h
w1

v

φ

w01

∑

φ

v

−w0

w1

h

v

1 1

w′
1 > w1

−1−1

15



Hyperbolic tangent (tanh) Activation Function

• tanh is also like logistic sigmoid but better in term of the range of the tanh

function is from -1 to 1.
• tanh is also sigmoidal (s-shaped).
• The advantage of this activation function is that the negative inputs will be
mapped strongly negative and the zero inputs will be mapped near zero in the
tanh graph.

• The function is monotonic but functions’s derivative is not.
• The tanh function is mainly used classification between two classes.

16



ReLU (rectified linear unit) Activation Function

The ReLU (Rectified Linear Unit) activation function is

v(h) = f(h) = max(0, h)

h
w1

v

φ

w01

∑

φ

v

w0

−w0

w1

h

v

1

1

17



Variant ReLU (rectified linear unit) Activation Function

Noisy ReLUs
Rectified linear units can be extended to include Gaussian noise, making them noisy
RELus, giving

v(h) = f(h) = max(0, h+ Y ), with Y ∼ N (0, σ(h))

Leaky ReLUs
Leaky ReLUs allow a small, non-zero gradient when the unit is not active.

v(h) = f(h) =

h, h > 0

0.01h, otherwise

Parametric ReLUs take this idea further by making the coefficient of leakage into a
parametr that is learned alogn with the other neural network parameters.

v(h) = f(h) =

h h > 0

ax otherwise

Note that for a ≤ 1, this is equivalent to f(h) = max(h, ah).
18



Softplus Activation Function

This activation function is considered to be the smoother version of ReLU. The
softplus activation function is

v(h) = f(h) = ln(1 + ex)

h
w1

v

φ

w01

∑

φ

v

w0

−w0

w1

h

v

1

1

19



Softmax Activation Function

The softmax activation function is

v(h) = f(h) =
exi∑k

j=1 e
xj

, i = 0, 1, 2, . . . , k

Figure 1:
https://sefiks.com/2017/11/08/softmax-as-a-neural-networks-activation-function/

20

https://sefiks.com/2017/11/08/softmax-as-a-neural-networks-activation-function/


Softmax Activation Function

• Softmax is a generalization of logistic regression in as much as it can be applied
to continuous data (rather than classifying binary) and can contain multiple
decision boundaries.

• It handles multinomial labeling systems. It is the function you will often find at
the output layer of a classifier.

• The softmax activation function returns the probability distribution over
mutually exclusive output classes.

• If we have a multiclass modeling problem yet we care only about the best score
across these classes, we’d use softmax output layer with a function to get the
highest score of all the classes.

21



Artificial Neural Network

We can turn to networks formed by connecting single neurons.

w10

...
vs

1

f
h1

w11

wsr

v1

φ1

φ2

......
φr

ws0

w12

f
hs

w1r

The network has r inputs φ1, . . . , φr , a bias and s outputs v1, . . . , vs .

22



Artificial Neural Network cont.

The output of the summing junction of the ith neuron is

hi =
[
wi1 wi2 · · · wir

]
φ1

...
φ2

+ wi0

where wij is the gain from input j to the ith neuron. Defining the weight vector

wT
i =

[
wi1 wi2 · · · wir

]
we have


h1

...
hs

 =


wT

1

...
wT

s

φ+


w10

...
ws0


h = Wφ+ w0

23



Artificial Neural Network cont.

The vector v of network outputs is then

v =


v1
...
vs

 = f(Wφ+ w0)

A single-layer network of this form is called a perceptron network.

φ

1 w0

W

h
f

v

24



Multilayer Perceptron Network

Several perceptron layers can be connected in series to form a
multilayer perceptron (MLP)

w1
32

1

w1
11 v11φ1

φ2

w1
30

f 1h1
1

w1
12

f 1h1
2

f 1h1
3

v12

v13

1

w2
11

w2
12

w2
22

w2
20

h1
2

h2
2

y1

y2

f 2

f 2

︸ ︷︷ ︸
input

︸ ︷︷ ︸
1st layer

(hidden layer)

︸ ︷︷ ︸
2st layer

output layer)

25



Multilayer Perceptron Network cont.

At the output of the first layer we have

v1 =

v11v12
v13

 = f1(W 1φ+ w1
0)

The network output – the output of the second layer is

y =

[
y1

y2

]
= f2(W 2v1 + w2

0)

or in general

y = f2(W 2f1(W 1φ+ w1
0) + w2

0)

26



Multilayer Perceptron Network cont.

y

f 1

v1φ

1 w1
0

W 1

1 w2
0

W 2

f 2

27



Universal Approximation

• a commonly used network structure is a two-layer perceptron network with
sigmoidal activation functions in the hidden layer, and linear activation
functions in the output layer.

• An important property of such networks is their universal approximation
capability

• Any given real continuous function g : Rr → R can be approximated to any
desired accuracy by a two-layer sig-lin networks

• however on indication about the number of hidden units required for achieving
the desired accuracy.

28



Training Neural Networks

General neural network training pseudocode

function neural-network-learning( training-records ) returns network
network <- initialize weights (randomly)
start loop

for each example in training-records do
network-output = neural-network-output( network, example )
actual-output = observed outcome associated with example
update weights in network based on

{ example, network-output, actual-output }
end for

end loop when all examples correctly predicted or hit stopping conditions
return network

• The key is to distribute the blame for the error and divide it between the
contributing weights.

• With the preceptron learning algorithm, it’s easy because there is only one
weight per input to influence the output value.

• With feed-forward multilayer networks learning algorithms have a bigger
challenge. There are many weighs connecting each input to the output, so it
becomes more difficult. Each weight contributes to more than one output, so
the learning algorithm must be more clever.

29



Training Neural Networks

y

f 1

v1φ

1 w1
0

W 1

1 w2
0

W 2

f 2

The network output is denoted by ŷ and we have

ŷ = f2(W 2f1(W 2φ(k) + w1
0) + w2

0)

• Denote the collection of all the weights and bias terms of all layers of the
network as θ and θ has been initialized with random values. Denote fNN as the
overall function representing the Neural Network.

• The cost (loss) function is V (ŷ, y) or V (fNN (φ, θ), y).

30



Training Neural Networks

• Compute the gradient of this loss function and denote it by ∇V (fNN (φ, θ), y).
• Update θ using steepest descent, for example, as

θs = θs−1 − αV (fNN (φ, θ), y),

where s denotes a single step

If the cost function is

V (θ, ZN ) =
1

2N

N∑
k=p

(y(k)− ŷ(k|k − 1, θ))2 =
1

2N

N∑
k=p

ε2(k, θ),

where ZN = {y(k), φ(k); k = 1, . . . , N} represents a set of N samples of
measurement input and output data of the system.

31



Training Neural Networks

The ith element of the gradient ∇V (θ) of the cost function is

∂V (θ)

∂θi
=

1

2N

N∑
k=1

∂(y(k)− ŷ(k|θ))2

∂θi
= −

1

N

N∑
k=1

∂ŷ(k|θ)
∂θi

ε(k|θ)

where ε(k|θ) is the prediction error at time k.
Output Layer we have

ŷ(k|θ) = f2

 s1∑
j=0

w2
1jv

1
j (k)

 = f2(h2(k))

Note that the summation begins at j = 0: by defining v10(k) = 1 we can treat the bias
term w102 as an additional weight parameter. Applying the chain rule, we obtain

∂ŷ(k|θ)
∂w2

1j

=
∂f2(h2)

∂h2

∣∣∣∣
k

v1j (k)

32



Training Neural Networks

If we define the sensitivity

δ21(k) =
∂f2(h2)

∂h2

∣∣∣∣
k

of the first (and in this case only) output of layer 2 at sampling instant k , we can write

∂ŷ(k|θ)
∂w2

1j

= δ21(k)v
1
j (k)

Hidden Layer
The derivative of the predicted output with respect to the weight and bias parameters
in the hidden layer can be obtained from

ŷ(k|θ) = f2

(
σs1

j=1w
2
1jf

1

(
r∑

i=0

w1
jiφi(k)

)
+ w2

0

)

The index i points to input channels, while the index j points to neurons in the
hidden layer. Note that the inner summation begins at i = 0; we define φ0(k) = 1 so
that the bias terms of the hidden layer can be treated as additional weights. 33



Training Neural Networks

Applying the chain rule yields

∂ŷ(k|θ)
∂w1

ji

=
∂f2(h2)

∂h2

∣∣∣∣
k

∂h2

∂h1

∣∣∣∣
k

∂h1

∂w1
ji

∣∣∣∣∣
k

Observing that

∂h1

∂w1
ji

∣∣∣∣∣
k

= φi(k) and ∂h2

∂h1

∣∣∣∣
k

= w2
1j

∂f1(h1)

∂h1

∣∣∣∣
k

this can be written as

∂ŷ(k|θ)
∂w1

ji

= δ1j (k)φi(k)

where we defined the sensitivity of the jth output in the first layer at time k

δ1j (k) = δ21(k)w
2
1j

∂f1(h1)

∂h1

∣∣∣∣
k 34



Training Neural Networks

• From the computation above, we see that the derivatives in each layer are given
by the corresponding sensitivity multiplied with the input of the respective layer.

• Starting at the output layer, we can compute its sensitivity and obtain the
corresponding derivative.

• Having computed the output sensitivity, we can calculate the sensitivity of the
hidden layer; the derivatives with respect to weights in the layer.

• If we have a network with more than two layers, we can proceed in the same
manner.

• The predicted output with respect to weights in each layer are thus obtained by
backpropagating the sensitivities.

35



Training a Two-Layer Sig-Lin Perceptron Network

The update of the estimate of the ith parameter is then

θi(l + 1) = θi(l)− α
∂V

∂θi

∣∣∣∣
l

The partial derivative of V , we see that wee need the weighted average of the partial
derivatives of the predicted output over all sampling instants. The sensitivity of the
linear output layer at sampling instant k is

δ21(k) =
∂f2(h2)

∂h2

∣∣∣∣
k

= 1

and thus

∂ŷ(k|θ)
∂w2

1j

= δ21(k)v
1
j (k) = v1j (k)

36



Training a Two-Layer Sig-Lin Perceptron Network

If we have log-sig activation functions

f1(h) =
1

1 + e−h

in the hidden layer, where for simplicity we let h denote the weighted sum of inputs
h1
j at the jth hidden neuron, we obtain

∂f
(
jh)

∂h
=

∂

∂h

1

1 + e−h
=

e−h

(1 + e−h)2
=

(
1−

1

1 + e−h

)
1

1 + e−h

The sensitivity at the jth hidden neuron is therefore

δ1j (k) = w2
1j(1− v1j (k))v

1
j (k)

where w2
ij refers to elements ofW 2(l) obtained at the previous iteration step.

37



Training a Two-Layer Sig-Lin Perceptron Network

Updating the Weights
The weight matricesWm (wherem = 1) represents the hidden layer andm = 2 the
output layer) are updated at iteration step l according to

Wm(l + 1)m = Wm(l)− α∆Wm(l)

for the output layer

∆W 2(l) = −
1

N

N∑
k=1

(v1)T (k)ε(k)

Note that because v10 = 1 the bias update is equal to the negative average of
prediction errors

∆w2
0(l) = −

1

N

N∑
k=1

ε(k)

38



Training a Two-Layer Sig-Lin Perceptron Network

Then we obtain for the hidden layer update

∆W 1(l) = −
1

N

N∑
k=1

δ1(k)φT (k)ε(k)

and the bias update

∆w1
0(l) = −

1

N

N∑
k=1

δ1(k)ε(k)

39



Deriving Cost Functions using Maximum Likelihood

We will look into how loss function are derive using Maximum Likelihood:

• Binary cross entropy
• Cross entropy
• Squared error

Here a basic idea:

• Given a data set ZN = {(x1, y1), (x2, y2), . . . , (xn, yn)} where x ∈ Rn and
y ∈ {0, 1} , which is the target of interest. ( can be binary or continuous value)

• The idea behind Maximum Likelihood is to find a θ that maximizes P (ZN |θ)

40



Binary Cross Entropy

Assuming a Bernoulli distribution and given that each of the examples
{(x1, y1), (x2, y2), . . . , (xn, yn)} are independent, we have the following expression:

P (ZN |θ) =
n∏

i=1

f(xi, θ)
yi (1− f(xi, θ))

(1−yi)

We can take a logarithm operation on both sides to arrive at the following:

logP (ZN |θ) = log
n∏

i=1

f(xi, θ)
yi (1− f(xi, θ))

(1−yi)

logP (ZN |θ) =
n∑

i=1

(yi log f(xi, θ) + (1− yi) log(1− f(xi, θ)))

Then the minimum is

− logP (ZN |θ) = −
(

n∑
i=1

(yi log f(xi, θ) + (1− f(xi, θ)))

)

We can use it for the context of binary classification. 41



Cross Entropy

The cross entropy loss function is used in the context of multi-classification.

• Let us assume that y ∈ {0, 1, . . . , k}, which are the classes.
• Denote n1 , n2 , · · · , nk to be the observed counts of each of the k classes.
Observe that

∑k
i=1 ni = n

• Let us have generated a model that predicts the probability of y given x.
• The model denoted by f(x, θ), where θ represents the parameters of the model.
• Using the idea of Maximum Likelihood, we find θ that maximizes P (Z|θ)
• Assuming a Multinomial distribution and given that each of the examples

{(x1, y1), (x2, y2), . . . , (xn, yn)} are independent, we have the following
expression:

P (ZN |θ) =
n!

n1!n2! · · ·nk!

n∏
i=1

f(xi, θ)
yi

42



Cross Entropy

Take a logarithm operation on both sides to arrive at the following:

logP (ZN |θ) = logn!− log (n1!n2! · · ·n3!) +
n∑

i=1

yi log f(xi, θ)

The terms logn! and logn1!n2! · · ·nk! are not parameterized by θ and can be ignored
as we try to find a θ that maximizes P (ZN |θ). Thus we have the following

logP (ZN |θ) =
n∑

i=1

yi log f(xi, θ)

or

− logP (ZN |θ) = −
n∑

i=1

yi log f(xi, θ)

43



Summary of LossFunctions

• The binary cross entropy given by the expression

−
n∑

i=1

(yi log f(x, θ) + (1− yi) log(1− f(xi, θ)))

is recommended loss function for binary classification. This loss function
should typically be used when the Neural Network is designed to predict the
probability of the outcome. In such cases, the output layer has a single unit
with a suitable sigmoid as the activation function.

• The Cross entropy function given by the expression

−
n∑

i=1

yi log f(xi, θ)

is the recommended loss function for multi-classification. This loss function
should typically be used with the Neural Network and is designed to predict the
probability of the outcomes of each of the class.

• The squared loss function given by
∑n

i=1(y − ŷ)2 should used for regression
problems. The output layer in this case will have a single unit. 44



Python

We need to install:

• Latest Anaconda with Python 3.6

• We need to install the packages by using conda install (with admin

authorize)
◦ Scikit-learn
◦ Theano
◦ Autograd
◦ Keras
◦ PyOpenCL

• Goto Control Panel, System and Security, System
• Advanced system setting, Environment Variable
• add new system variable name
• MKL_THREADING_LAYER and the variable value GNU
• restart the system.

45



A 2-Layer Neural Network for Regression

Necessary Library

import autograd.numpy as np
import autograd.numpy.random as npr
from autograd import grad

import sklearn.metrics
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline

Generate Dataset ZN , N = 1000 where x, y ∈ R100

examples = 1000
features = 100
Z = (npr.randn(examples, features), npr.randn(examples))

46



A 2-Layer Neural Network for Regression

Specify the network: 2 layers the layer 1 has 10 nodes and the layer 2 has 1 node
W1 ∈ R100×10 ,W2 ∈ R10×1

layer1_units = 10
layer2_units = 1
w1 = npr.rand(features, layer1_units) #initial random weight
b1 = npr.rand(layer1_units) #bias of layer 1
w2 = npr.rand(layer1_units, layer2_units)
b2 = 0.0

theta = (w1, b1, w2, b2)

Define the loss function with square error

def squared_loss(y, y_hat):
return np.dot((y - y_hat), (y - y_hat))

Define the loss function with binary cross entropy

def binary_cross_entropy(y, y_hat):
return np.sum(-((y * np.log(y_hat)) + ((1-y) * np.log(1 - y_hat))))

47



A 2-Layer Neural Network for Regression

Wrapper around the Neural Network

def neural_network(x, theta):
w1, b1, w2, b2 = theta
return np.than(np.dot((np.tanh(np.dot(x, w1) + b1)), w2) + b1)

Wrapper around the objective function to be optimised

def objective(theta, idx):
return squared_loss(Z[1][idx], neural_network(Z[0][idx], theta))

48



A 2-Layer Neural Network for Regression

Update the Network

def update_theta(theta, delta, alpha):
w1, b1, w2, b2 = theta
w1_delta, b1_delta, w2_delta, b2_delta = delta
w1_new = w1 - alpha * w1_delta
b1_new = b1 - alpha * b1_delta
w2_new = w2 - alpha * w2_delta
b2_new = b2 - alpha * b2_delta
new_theta = (w1_new, b1_new, w2_new, b2_new)

return new_theta

Compute Gradient

grad_objective = grad(objective)

49



A 2-Layer Neural Network for Regression

Train the Neural Network

epochs = 10
print("RMSE before training:", sklearn.metrics.mean_squared_error(Z[1],

neural_network(Z[0], theta))
rmse = []
for i in xrange(0, epochs):

for j in xrange(0, examples):
delta = grad_objective(theta, j)
theta = update_theta(theta, delta, 0.01)
rmse.append(sklearn.metrics.mean_squared_error(Z[1], neural_network(Z[0], theta)))

print("RMSE after training:", sklearn.metrics.mean_squared_error(Z[1],
neural_network(Z[0], theta))

plt.plot(rmse)

One of the result can be

RMSE before training: 1.990198216168253
RMSE after training: 0.7514662947319568

50



A 2-Layer Neural Network for Regression

RMSE over training steps

0 2000 4000 6000 8000 10000

Steps

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
RM

SE

51



Reference

1. Aurélien, Géron, ”Hands-On Machine Learning with Scikit-Learn & TensorFlow”,

O’reilly, 2017

2. S.P.K. Spielberg, R. B. Gopaluni, P. D. Loewen, “Deep Reinforcement Learning

Approaches for Process Control”, 2017 6th International Symposium on

Advanced control of Industrial Processes (AdCONIP), May 28-31, 2017, Taipei,

Taiwan

3. Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim and

Matthias Steinbrecher, “Computational Intellignece: A Methodological

Introduction” 2nd , 2016

4. Sckit-Learn website http://scikit-learn.org/stable/index.html

5. Josh Patterson and Adam Gibson,“Deep Learning: A practitioner’s approach”,

2016

6. Nikhil Ketkar, “Deep Learning with Python: A Hands-on Introduction”, 2017

http://scikit-learn.org/stable/index.html

	Introduction
	Appendix

