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Basic Idea



Linear SVM Classification
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on the left hand side
• the dashed line is so bad
• the other two are ok

on the right hand side
• the solid line in the plot on the right represents the decision boundary of an
SVM classifier.

• This line not only separates the two classes but alo stays as far away from the
closest training instances as possible.

• This is called large margin classification.
• The two dots on the street are called the support vectors. 1



Linear SVM Classification
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• If we strictly impose that all instances be off the street and on the right side,
this is called hard margin classification.

• There are two main issues with hard margin classification. First, it only works if
the data is linearly separable, and second it is quite sensitive to outliers.

• the left hand side figure, we have one outlier. It is impossible to find a hard
margin.

• On the right hand side we have Soft margin classification.
• We allow some margin violations.
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Linear SVM Classification
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• In Scikit-Learn’s SVM classes, we can control this balance using the C
hyperparameter.

• a smaller C value leads to a wider street but more margin violations.
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Soft Margin Classification

Example how to use Scikit-Learn.

from sklearn.svm import SVC
from sklearn import datasets

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = iris["target"]

setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]

# SVM Classifier model
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)
w = svm_clf.coef_[0]
b = svm_clf.intercept_[0]
print(w, b)

Note:

w0x0 + w1x1 + b = 0 ⇒ x1 = −
w0

w1
x0 −

b

w1
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Mathematic Background

The linear SVM classifier model predicts the class of a new instance x by simply
computing the decision function

wT x+ b = w1x1 + w2x2 + · · ·+ wnxn + b

where

ŷ =

0 , wT x+ b < 0

1 , wT x+ b ≥ 0

Petal length

4.00
4.25

4.50
4.75

5.00
5.25

5.50
5.75

6.00

Petal
width

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

h
=
w

T
x
+
b

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Decision function h

h = 0

h = ±1

5



Mathematic Background

The optimization problem for the Hard margin linear SVM classifier objective

minimize
w,b

1

2
∥w∥2

subject to t(i)
(
wT x(i) + b

)
≥ 1, i = 1, 2, · · · ,m,

where t(i) = −1 for negative instances (if y(i) = 0) and t(i) = 1 for positive instances
(if y(i) = 1). This is from the scaling of w and b are not effected t(i) .
The optimization problem for the Soft margin linear SVM classifier objective

minimize
w,b

1

2
∥w∥2 + C

m∑
i=1

ζ(i)

subject to t(i)
(
wT x(i) + b

)
≥ 1− ζ(i), i = 1, 2, · · · ,m

ζ(i) ≥ 0, i = 1, 2, · · · ,m
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Dual Problem

The optimization problem for the Hard margin linear SVM classifier objective

minimize
w,b

1

2
∥w∥2

subject to t(i)
(
wT x(i) + b

)
≥ 1, i = 1, 2, · · · ,m.

The constraints can be written as

gi(w) = −t(i)(wT x(i) + b) + 1 ≤ 0

The Lagrangian for the optimization problem is

L(w, b, α) =
1

2
∥w∥2 −

m∑
i=1

αi

[
t(i)(wT x(i) + b)− 1

]

Note that there are only αi but no βi Lagrange multipliers, since th eproblem has only
inequality constraints.
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Dual Problem

To find the dual form of the problem:

∇wL(w, b, α) = w −
m∑
i=1

αit
(i)x(i) = 0 =⇒ w =

m∑
i=1

αit
(i)x(i)

∂

∂b
L(w, b, α) =

m∑
i=1

αit
(i) = 0

Substitute the results to the Lagrangian, and simplify, we get

L(w, b, α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

t(i)t(j)αiαj(x
(i))T x(j) − b

m∑
i=1

αit
(i)

All together we have

minimize
α

1

2

m∑
i=1

m∑
j=1

α(i)α(j)t(i)t(j)(x(i))T x(j) −
m∑
i=1

α(i)

subject to α(i) ≥ 0, i = 1, . . . ,m

m∑
i=1

αit
(i) = 0 8



Dual Problem

One you find the vector α̂ that minimizes the dual optimization we have

ŵ =
m∑
i=1

α̂(i)t(i)x(i)

b̂ =
1

ns

m∑
i=1

(
1− t(i)

(
ŵT x(i)

))
, α̂(i) > 0

• The dual problem is faster to solve than the primal when the number of training
instances is smaller than the number of features.

• It makes the kernel trick possible, while the primal does not.
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Nonlinear



Nonlinear SVM Classification
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• the left hand side, it represents a simple dataset with just one feature x1 . This
dataset is not linearly separable, as you can see.

• By adding the second feature x2 = (x1)2 , the resulting 2D dataset is linearly
separable.
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Moon Dataset

from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

def plot_dataset(X, y, axes):
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
plt.axis(axes)
plt.grid(True, which='both')
plt.xlabel(r"$x_1$", fontsize=20)
plt.ylabel(r"$x_2$", fontsize=20, rotation=0)

plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
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It is not linear separable.
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Polynomial Regression

from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.svm import LinearSVC

polynomial_svm_clf = Pipeline([
("poly_features", PolynomialFeatures(degree=3)),
("scaler", StandardScaler()),
("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))

])

polynomial_svm_clf.fit(X, y)
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Using Pipeline containing a PolynomialFeatures, StandardScaler, and
LinearSVC.
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Polynomial Regression

To plot the separate line:

def plot_predictions(clf, axes):
x0s = np.linspace(axes[0], axes[1], 100)
x1s = np.linspace(axes[2], axes[3], 100)
x0, x1 = np.meshgrid(x0s, x1s)
X = np.c_[x0.ravel(), x1.ravel()]
y_pred = clf.predict(X).reshape(x0.shape)
y_decision = clf.decision_function(X).reshape(x0.shape)
plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)

plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5])
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Polynomial Kernel

Adding polynomial features is simple to implement and can work with all sorts of
Machine Learning Algorithms.

• However at a low polynomial degree it cannot deal with very complex datasets,
• With a high polynomial degree it creates a huge number of features, making the
model too slow.

Second-degree polynomial mapping

ϕ(x) = ϕ

([
x1

x2

])
=

 x2
1√

2x1x2

x2
2


Kernel trick for a 2nd-degree polynomial mapping (vector a and b)

ϕ(a)Tϕ(b) =

 a21√
2a1a2

a22


T  b21√

2b1b2

b22

 = a21b
2
1 + 2a1b1a2b2 + a21b

2
2
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Polynomial Kernel

a21b
2
1 + 2a1b1a2b2 + a21b

2
2 = (a1b1 + a2b2)

2 =

[[
a1

a2

]T [
b1

b2

]]2
= (aT b)2

ϕ(a)Tϕ(b) = (aT b)2

The dot product of the transformed vectors i equal to the square of the dot product of
th eoriginal vectors

ϕ(a)Tϕ(b) = (aT b)2

• If we transform all training instance with ϕ(x(i)) , the dual problem will contain
the dot product ϕ(x(i))Tϕ(x(i))

• But if ϕ is the 2nd-degree polynomial transformation as before, the we can
replace the dot product of transformed vectors simply by

(
(x(i))T x(j)

)
• So we don’t need to transform the training instances: just replace the dot
product by its square. 15



Polynomial Kernel

Kernel function of the polynomial kernel is

K(a, b) =
(
γaT b+ r

)d
where d is a degree, r is the hyperparameter coef0 controls how much the model is
influenced by high degree polynomials versus low-degree polynomials. (gamma = 1)

from sklearn.svm import SVC

poly_kernel_svm_clf = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5))

])
poly_kernel_svm_clf.fit(X, y)
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Polynomial Kernel
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d = 3, r = 1, C = 5
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d = 10, r = 100, C = 5

A common approach to find the right hyperparameter values is to use grid search. It is
often faster to first do a very coarse grid search, then a finer grid search around the
vest values found.
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Gaussian Radial Basis Function

Another technique to tackle nonlinear problems is o add features computed using a
similarity function that measures how much each instance resembles a particular
landmark. For example

• Let consider the one-dimensional dataset and add two landmarks to it a
x1 = −2 and x1 = 1

• Define the similarity function to be Gaussian Radial Basis Function (RBF) with
γ = 0.3

ϕγ(x, l) = e−γ∥x−l∥2

• For example, x1 = −1 located at a distance of 1 from the first landmark, and 2

from the second landmark. Therefore its new features are
x2 = e(−0.3×12) ≈ 0.74 and x3 = e(−0.3×22) ≈ 0.30
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Gaussian Radial Basis Function
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• Now it is linearly separable by using the transform method.
• It should be trad off between creating all landmarks for all features and the
speed of the computation.

• A training set withm instances and n features gets transformed into a training
set withm instances andm features ( assuming you drop the original features).
If your training set is very large, you end up with an equally large number of
features.
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Gaussian RBF Kernel

To reduce the computational time to compute all the additional feature, we can use
the kernel trick

K(a, b) = e−γ∥a−b∥2

The code for using the Gaussian RBF kernel using the SVC class:

rbf_kernel_svm_clf = Pipeline((
("scaler", Standardcaler()),
("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001))

))
rbf_kernel_svm_clf.fit(X,y)

• Increasing γ makes the bell-shape curve narrower, and as a result each
instance’s range of influence is smaller: the decision boundary ends up being
more irregular; wiggling around individual instances.

• a small γ values makes the bell-shaped curve wider, so instances have a larger
range of influence, and the decision boundary ends up smoother.

• Here the γ and C act like regularization hyperparameters: if you model is
overfitting, you should reduce them, and if it is underfitting, you should increase
them. 20



Gaussian RBF Kernel
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γ = 0.1, C = 1000
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γ = 5, C = 1000
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Comparison
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Note LinearSVC is much faster than SVC(kernel="linear"), but it does not
support the Kernel trick. 22



SVM Regression

The SVM can solve a regression problem as well.

from sklearn.svm import LinearSVR

svm_reg = LinearSVR(epsilon=1.5)
svm_reg.fit(X,y)
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ŷ

0.0 0.5 1.0 1.5 2.0

x1

3

4

5

6

7

8

9

10

11
ϵ = 0.5

ŷ

• The SVM Regression tries to fit as many instances as possible on the street
while limiting margin violations (i.e., instance off the street.)

• The width of the street is controlled by a hyperparameter ε .
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Nonlinear SVM Regression

For nonlinear problem:

from sklearn.svm import SVR

svm_poly_reg = SVR(kernel="poly", degree=2, C=100, epsilon=0.1)
svm_poly_reg.fit(X,y)
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The smaller C value, the greater regularization.
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