
Lecture 5: Support Vector Machine

Dr.-Ing. Sudchai Boonto, Assistant Professor
February 24, 2018

Department of Control System and Instrument Engineering, KMUTT

Basic Idea

Linear SVM Classification

0 1 2 3 4 5

Petal length

0.0

0.5

1.0

1.5

2.0

Pe
ta

lw
id

th

Iris-Versicolor
Iris-Setosa

0 1 2 3 4 5

Petal length

0.0

0.5

1.0

1.5

2.0

on the left hand side
• the dashed line is so bad
• the other two are ok

on the right hand side
• the solid line in the plot on the right represents the decision boundary of an
SVM classifier.

• This line not only separates the two classes but alo stays as far away from the
closest training instances as possible.

• This is called large margin classification.
• The two dots on the street are called the support vectors. 1

Linear SVM Classification

0 1 2 3 4 5

Petal length

0.0

0.5

1.0

1.5

2.0

Pe
ta

lw
id

th

Impossible!

Outlier

0 1 2 3 4 5

Petal length

0.0

0.5

1.0

1.5

2.0

Outlier

• If we strictly impose that all instances be off the street and on the right side,
this is called hard margin classification.

• There are two main issues with hard margin classification. First, it only works if
the data is linearly separable, and second it is quite sensitive to outliers.

• the left hand side figure, we have one outlier. It is impossible to find a hard
margin.

• On the right hand side we have Soft margin classification.
• We allow some margin violations.

2

Linear SVM Classification

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

Petal length

1.0

1.5

2.0

2.5

Pe
ta

lw
id

th

C = 1

Iris-Virginica
Iris-Versicolor

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

Petal length

1.0

1.5

2.0

2.5

C = 100

• In Scikit-Learn’s SVM classes, we can control this balance using the C
hyperparameter.

• a smaller C value leads to a wider street but more margin violations.

3

Soft Margin Classification

Example how to use Scikit-Learn.

from sklearn.svm import SVC
from sklearn import datasets

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = iris["target"]

setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]

SVM Classifier model
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)
w = svm_clf.coef_[0]
b = svm_clf.intercept_[0]
print(w, b)

Note:

w0x0 + w1x1 + b = 0 ⇒ x1 = −
w0

w1
x0 −

b

w1

4

Mathematic Background

The linear SVM classifier model predicts the class of a new instance x by simply
computing the decision function

wT x+ b = w1x1 + w2x2 + · · ·+ wnxn + b

where

ŷ =

0 , wT x+ b < 0

1 , wT x+ b ≥ 0

Petal length

4.00
4.25

4.50
4.75

5.00
5.25

5.50
5.75

6.00

Petal
width

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

h
=
w

T
x
+
b

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Decision function h

h = 0

h = ±1

5

Mathematic Background

The optimization problem for the Hard margin linear SVM classifier objective

minimize
w,b

1

2
∥w∥2

subject to t(i)
(
wT x(i) + b

)
≥ 1, i = 1, 2, · · · ,m,

where t(i) = −1 for negative instances (if y(i) = 0) and t(i) = 1 for positive instances
(if y(i) = 1). This is from the scaling of w and b are not effected t(i) .
The optimization problem for the Soft margin linear SVM classifier objective

minimize
w,b

1

2
∥w∥2 + C

m∑
i=1

ζ(i)

subject to t(i)
(
wT x(i) + b

)
≥ 1− ζ(i), i = 1, 2, · · · ,m

ζ(i) ≥ 0, i = 1, 2, · · · ,m

6

Dual Problem

The optimization problem for the Hard margin linear SVM classifier objective

minimize
w,b

1

2
∥w∥2

subject to t(i)
(
wT x(i) + b

)
≥ 1, i = 1, 2, · · · ,m.

The constraints can be written as

gi(w) = −t(i)(wT x(i) + b) + 1 ≤ 0

The Lagrangian for the optimization problem is

L(w, b, α) =
1

2
∥w∥2 −

m∑
i=1

αi

[
t(i)(wT x(i) + b)− 1

]

Note that there are only αi but no βi Lagrange multipliers, since th eproblem has only
inequality constraints.

7

Dual Problem

To find the dual form of the problem:

∇wL(w, b, α) = w −
m∑
i=1

αit
(i)x(i) = 0 =⇒ w =

m∑
i=1

αit
(i)x(i)

∂

∂b
L(w, b, α) =

m∑
i=1

αit
(i) = 0

Substitute the results to the Lagrangian, and simplify, we get

L(w, b, α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

t(i)t(j)αiαj(x
(i))T x(j) − b

m∑
i=1

αit
(i)

All together we have

minimize
α

1

2

m∑
i=1

m∑
j=1

α(i)α(j)t(i)t(j)(x(i))T x(j) −
m∑
i=1

α(i)

subject to α(i) ≥ 0, i = 1, . . . ,m

m∑
i=1

αit
(i) = 0 8

Dual Problem

One you find the vector α̂ that minimizes the dual optimization we have

ŵ =
m∑
i=1

α̂(i)t(i)x(i)

b̂ =
1

ns

m∑
i=1

(
1− t(i)

(
ŵT x(i)

))
, α̂(i) > 0

• The dual problem is faster to solve than the primal when the number of training
instances is smaller than the number of features.

• It makes the kernel trick possible, while the primal does not.

9

Nonlinear

Nonlinear SVM Classification

−4 −2 0 2 4

x1
−4 −2 0 2 4

x1

0

4

8

12

16

x2

• the left hand side, it represents a simple dataset with just one feature x1 . This
dataset is not linearly separable, as you can see.

• By adding the second feature x2 = (x1)2 , the resulting 2D dataset is linearly
separable.

10

Moon Dataset

from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

def plot_dataset(X, y, axes):
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
plt.axis(axes)
plt.grid(True, which='both')
plt.xlabel(r"x_1", fontsize=20)
plt.ylabel(r"x_2", fontsize=20, rotation=0)

plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

It is not linear separable.
11

Polynomial Regression

from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.svm import LinearSVC

polynomial_svm_clf = Pipeline([
("poly_features", PolynomialFeatures(degree=3)),
("scaler", StandardScaler()),
("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))

])

polynomial_svm_clf.fit(X, y)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

Using Pipeline containing a PolynomialFeatures, StandardScaler, and
LinearSVC.

12

Polynomial Regression

To plot the separate line:

def plot_predictions(clf, axes):
x0s = np.linspace(axes[0], axes[1], 100)
x1s = np.linspace(axes[2], axes[3], 100)
x0, x1 = np.meshgrid(x0s, x1s)
X = np.c_[x0.ravel(), x1.ravel()]
y_pred = clf.predict(X).reshape(x0.shape)
y_decision = clf.decision_function(X).reshape(x0.shape)
plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)

plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5])

13

Polynomial Kernel

Adding polynomial features is simple to implement and can work with all sorts of
Machine Learning Algorithms.

• However at a low polynomial degree it cannot deal with very complex datasets,
• With a high polynomial degree it creates a huge number of features, making the
model too slow.

Second-degree polynomial mapping

ϕ(x) = ϕ

([
x1

x2

])
=

 x2
1√

2x1x2

x2
2


Kernel trick for a 2nd-degree polynomial mapping (vector a and b)

ϕ(a)Tϕ(b) =

 a21√
2a1a2

a22


T  b21√

2b1b2

b22

 = a21b
2
1 + 2a1b1a2b2 + a21b

2
2

14

Polynomial Kernel

a21b
2
1 + 2a1b1a2b2 + a21b

2
2 = (a1b1 + a2b2)

2 =

[[
a1

a2

]T [
b1

b2

]]2
= (aT b)2

ϕ(a)Tϕ(b) = (aT b)2

The dot product of the transformed vectors i equal to the square of the dot product of
th eoriginal vectors

ϕ(a)Tϕ(b) = (aT b)2

• If we transform all training instance with ϕ(x(i)) , the dual problem will contain
the dot product ϕ(x(i))Tϕ(x(i))

• But if ϕ is the 2nd-degree polynomial transformation as before, the we can
replace the dot product of transformed vectors simply by

(
(x(i))T x(j)

)
• So we don’t need to transform the training instances: just replace the dot
product by its square. 15

Polynomial Kernel

Kernel function of the polynomial kernel is

K(a, b) =
(
γaT b+ r

)d
where d is a degree, r is the hyperparameter coef0 controls how much the model is
influenced by high degree polynomials versus low-degree polynomials. (gamma = 1)

from sklearn.svm import SVC

poly_kernel_svm_clf = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5))

])
poly_kernel_svm_clf.fit(X, y)

16

Polynomial Kernel

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

d = 3, r = 1, C = 5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

d = 10, r = 100, C = 5

A common approach to find the right hyperparameter values is to use grid search. It is
often faster to first do a very coarse grid search, then a finer grid search around the
vest values found.

17

Gaussian Radial Basis Function

Another technique to tackle nonlinear problems is o add features computed using a
similarity function that measures how much each instance resembles a particular
landmark. For example

• Let consider the one-dimensional dataset and add two landmarks to it a
x1 = −2 and x1 = 1

• Define the similarity function to be Gaussian Radial Basis Function (RBF) with
γ = 0.3

ϕγ(x, l) = e−γ∥x−l∥2

• For example, x1 = −1 located at a distance of 1 from the first landmark, and 2

from the second landmark. Therefore its new features are
x2 = e(−0.3×12) ≈ 0.74 and x3 = e(−0.3×22) ≈ 0.30

18

Gaussian Radial Basis Function

−4 −3 −2 −1 0 1 2 3 4

x1

0.00

0.25

0.50

0.75

1.00
Si

m
ila

rit
y

x

x2 x3

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

x3 ϕ (x)

• Now it is linearly separable by using the transform method.
• It should be trad off between creating all landmarks for all features and the
speed of the computation.

• A training set withm instances and n features gets transformed into a training
set withm instances andm features (assuming you drop the original features).
If your training set is very large, you end up with an equally large number of
features.

19

Gaussian RBF Kernel

To reduce the computational time to compute all the additional feature, we can use
the kernel trick

K(a, b) = e−γ∥a−b∥2

The code for using the Gaussian RBF kernel using the SVC class:

rbf_kernel_svm_clf = Pipeline((
("scaler", Standardcaler()),
("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001))

))
rbf_kernel_svm_clf.fit(X,y)

• Increasing γ makes the bell-shape curve narrower, and as a result each
instance’s range of influence is smaller: the decision boundary ends up being
more irregular; wiggling around individual instances.

• a small γ values makes the bell-shaped curve wider, so instances have a larger
range of influence, and the decision boundary ends up smoother.

• Here the γ and C act like regularization hyperparameters: if you model is
overfitting, you should reduce them, and if it is underfitting, you should increase
them. 20

Gaussian RBF Kernel

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

γ = 0.1, C = 0.001

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

γ = 0.1, C = 1000

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

γ = 5, C = 0.001

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x1

−1.0

−0.5

0.0

0.5

1.0

1.5

x2

γ = 5, C = 1000

21

Comparison

x1

x
2

SVC with linear kernel

x1

x
2

LinearSVC (linear kernel)

x1

x
2

SVC with RBF kernel

x1

x
2

SVC with polynomial (degree 3) kernel

Note LinearSVC is much faster than SVC(kernel="linear"), but it does not
support the Kernel trick. 22

SVM Regression

The SVM can solve a regression problem as well.

from sklearn.svm import LinearSVR

svm_reg = LinearSVR(epsilon=1.5)
svm_reg.fit(X,y)

0.0 0.5 1.0 1.5 2.0

x1

3

4

5

6

7

8

9

10

11

y

ϵ

ϵ = 1.5

ŷ

0.0 0.5 1.0 1.5 2.0

x1

3

4

5

6

7

8

9

10

11
ϵ = 0.5

ŷ

• The SVM Regression tries to fit as many instances as possible on the street
while limiting margin violations (i.e., instance off the street.)

• The width of the street is controlled by a hyperparameter ε .
23

Nonlinear SVM Regression

For nonlinear problem:

from sklearn.svm import SVR

svm_poly_reg = SVR(kernel="poly", degree=2, C=100, epsilon=0.1)
svm_poly_reg.fit(X,y)

−1.0 −0.5 0.0 0.5 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

y

degree = 2, C = 100, ϵ = 0.1

ŷ

−1.0 −0.5 0.0 0.5 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0
degree = 2, C = 0.01, ϵ = 0.1

ŷ

The smaller C value, the greater regularization.
24

Reference

1. Sebatian Ruder, ”An Overview of Gradient Descent Optimization Algorithms”,

arXiv:1609.04747v2, 2017

2. Aurélien, Géron, ”Hands-On Machine Learning with Scikit-Learn & TensorFlow”,

O’reilly, 2017

3. S.P.K. Spielberg, R. B. Gopaluni, P. D. Loewen, ”Deep Reinforcement Learning

Approaches for Process Control”, 2017 6th International Symposium on

Advanced control of Industrial Processes (AdCONIP), May 28-31, 2017, Taipei,

Taiwan

4. Andrew Ng, ”Support Vector Machines”, CS229 Lecture Note

5. Sckit-Learn website http://scikit-learn.org/stable/index.html

http://scikit-learn.org/stable/index.html

	Basic Idea
	Nonlinear
	Appendix

