
Lecture 4: Training Models II

Dr.-Ing. Sudchai Boonto, Assistant Professor
February 9, 2018

Department of Control System and Instrument Engineering, KMUTT

Polynomial Regression

Using Batch Gradient Descent

Preparing data:

m = 100
X = np.linspace(-3, 3, 100)
X = np.c_[X]
y = 2 + X + 0.5 * X**2 + np.random.randn(m,1)

−3 −2 −1 0 1 2 3
x

0

2

4

6

8

10

y
(x
)

1

Using Batch Gradient Descent

Using normal Batch Gradient Descent:

θ(k+1) = θk − η∇θV (θ),

where V (θ) is a cost function (MSE).

N_train = 80
X_b = np.c_[np.ones((N_train, 1)), x_train, x_train**2]

eta = 0.07
n_iterations = 200
m = N_train
theta = np.random.randn(3,1)

for iteration in range(n_iterations):
gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y_train)
theta = theta - eta * gradients

η is a learning rate. It should be small enough. The necessary condition is
η < 2/(λmax(H(V (θ)))).

2

Using Batch Gradient Descent

−3 −2 −1 0 1 2 3
x

0

2

4

6

8

10

y
(x
)

ŷ(x) = θ0 + θ1x+ θ2x
2

ŷ(x)

y(x)

3

Using Batch Gradient Descent

0 25 50 75 100 125 150 175 200
x

−1

0

1

2

3

4
Pa

ra
m

et
er

s
θ0

θ1

θ2

θ0 = 1.8632, θ1 = 1.1067, θ2 = 0.5116 4

Using Scikit-Learn

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

m = 100
X = np.linspace(-3,3, 100)
X = np.c_[X]
y = 2 + X + 0.5 * X**2 + np.random.randn(m,1)
N_train = 80
x_train = X[0:80]
y_train = y[0:80]

poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(x_train)

lin_reg = LinearRegression()
lin_reg.fit(X_poly,y_train)
lin_reg.intercept_, lin_reg.coef_

θ0 = 2.0072, θ1 = 0.9621, θ2 = 0.4638

5

Learning Curves

x

y
=

2
+
x
+
0.
5x

2

Degree 1
MSE = 7.98e-02(+/- 8.88e-02)

Model
True function
Samples

x

y
=

2
+
x
+
0.
5x

2

Degree 4
MSE = 2.02e-02(+/- 2.49e-02)

Model
True function
Samples

x

y
=

2
+
x
+
0.
5x

2

Degree 15
MSE = 1.55e+05(+/- 4.13e+05)

Model
True function
Samples

x

y
=

2
+
x
+
0.
5x

2

Degree 20
MSE = 1.75e+09(+/- 5.21e+09)

Model
True function
Samples

• High-degree Polynomial Regression model is severely overfitting the training
data

• Linear model is underfitting the training data, the quadratic model is perfect fit.

6

Learning Curves

• Learning curves: these are plots of the model’s performance on the training set
and the validation set as a function of the training set size.

from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

def plot_learning_curves(model, X, y):
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 20 percent
train_errors, val_errors = [], []
for m in range(1, len(X_train)):

model.fit(X_train[:m], y_train[:m])
y_train_predict = model.predict(X_train[:m])
y_val_predict = model.predict(X_val)
train_errors.append(mean_squared_error(y_train_predict,

y_train[:m]))
val_errors.append(mean_squared_error(y_val_predict, y_val))

plt.plot(np.sqrt(train_errors), "r-+", linewidth=2, label="train")
plt.plot(np.sqrt(val_errors), "b-", linewidth=3, label="val")

lin_reg = LinearRegression()
plot_learning_curves(lin_reg, X, y)

7

Learning Curves

0 10 20 30 40 50 60 70 80

Training set size

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

Traiing set
Validation set

• From the learning curves of linear model show it is an underfitting model. Both
curves have reached a plateau at quite high value.

8

Learning Curves

0 10 20 30 40 50 60 70 80

Training set size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

Traiing set
Validation set

• The error on the training data is much lower than with the Linear Regression
model.

• If there is a gap between the curves. This means that the model performs
significantly better on the training data than on the validation data, which is the
hallmark of an overfitting model. If we have larger training set, the two curves
would continue to get closer.

9

Tradeoff

The Bias/Variance Tradeoff

Bias This part of generalization error is due to wrong assumptions, such
as assuming that the data is linear when it is actually quadratic. A
high-bias model is most likely to underfit the training data.

Variance This part is due to the model’s excessive sensitivity to small
variations in the training data. A model with many degrees of
freedom (such as a high-degree polynomial model) is likely to have
high variance, and thus to overfit the training data.

Irreducible error This part is due to the noisiness of the data itself. The only way to
reduce this part of the error is to clean up the data (e.g. fix the data
sources, such as broken sensors, or detect and remove outliners).

Increasing a model’s complexity will typically increase its variance and reduce its bias.
Conversely, reducing a model’s complexity increases its bias and reduces its variance.
This is why it is called a tradeoff.

10

Regularization

Regularized Linear Models

For linear model (linear-in-parameters model), regularization is typically achieved by
constraining the weights of the model. Here we consider:

• Ridge Regression (Tikhonov Regularization)
• Lasso Regression
• Elastic Net

11

Ridge Regression (Tikhonov Regularization)

The Ridge Regression addresses some of the problem of Ordinary Least Squares is
defined by imposing a penalty on the size of coefficients. The ridge coefficients
minimize a penalized residual sum of squares

min
θ

V (θ) = ∥θT x− y∥2 + α∥θ∥2 = θT (XTX + αI)θ − 2yTXθ + yT y

The analytic solution is

θ̂ = (XTX + αI)−1XT y

Here, α ≥ 0 is a complexity parameter that controls the amount of shrinkage: the
larger the value of α, the greater the amount of shrinkage and thus the coefficients
become more robust to colinearity.

from sklear.linear_model import Ridge
ridge_reg = Ridge(alpha=1, solvers"cholesky")
ridge_reg.fit(X,y)
ridge_reg.predict([[1.5]])

you will get array([[1.55071465]])
12

Ridge Regression (Tikhonov Regularization)

from sklear.linear_model import Ridge
ridge_reg = Ridge(alpha=1, solvers"cholesky")
ridge_reg.fit(X,y)
ridge_reg.predict([[1.5]])

you will get array([[1.55071465]])

−1.0 −0.5 0.0 0.5 1.0

x1

0

1

2

3

4

5

6

7

y

α = 0

α = 10

α = 100

−1.0 −0.5 0.0 0.5 1.0

x1

0

1

2

3

4

5

6

7

α = 0

α = 10

α = 100

The left hand side is underfit. 13

Ridge Regression (Tikhonov Regularization)

10−1010−910−810−710−610−510−410−310−2

alpha

−100

0

100

200

we
igh

ts
Ridge coefficients as a function of the regularization

When alpha is very large, the regularization effect dominates the squared loss
function and the coefficients tend to zero. At the end of the path, as alpha tends
toward zero and the solution tends towards the ordinary least squares, coefficients
exhibit big oscillations. In practise it is necessary to tune alpha in such a way that a
balance is maintained between both.

14

Lasso Regression

Least Absolute Shrinkage and Selection Operator Regression: it is just like Ridge
Regression, it adds a regularization term to the cost function, but it uses the l1 norm
of the weight vector instead of half the square of the l2 norm

min
θ

V (θ) = ∥θT x− y∥2 + α∥θ∥1

−1.0 −0.5 0.0 0.5 1.0

x1

0

1

2

3

4

5

6

7

y

α = 0

α = 0.1

α = 1

−1.0 −0.5 0.0 0.5 1.0

x1

0

1

2

3

4

5

6

7

α = 0

α = 1e− 07

α = 1

15

Lasso Regression

• An important characteristic of Lasso Regression is that it tends to completely
eliminate the weights of the least important features (i.e., set them to zero)

• In the previous picture the dashed line in the right plot (with α = 10−7 looks
quadratic, almost linear: all the wights for the high-degree polynomial features
are equal to zero.

• Lasso Regression automatically performs feature selection and outputs a
sparse model (ie., with few nonzero feature weights).

16

Lasso Regression

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

θ2

ℓ1 penalty

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Lasso

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

θ1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

θ2

ℓ2 penalty

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

θ1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Ridge

17

Elastic Net

Elastic Net is a middle ground between Ridge Regression and Lasso Regression. The
regularization term is a simple mix of both Ridge and Lasso’s regularization terms,
and you can control the mix ratio r. When r = 0, Elastic Net is equivalent to Ridge
Regression, and when r = 1 it is equivalent to Lasso Regression

min
θ

V (θ) = ∥θT x− y∥2 + rα∥θ∥1 +
1− r

2
α∥θ∥

• You should use one of the regularization, at least.
• Ridge is a good default. If you want only a few features, you should go to Lasso
or Elastic Net.

• Elastic Net is in general better than Lasso, since Lasso may behave erratically
when the number of features is greater than the number of traning instances or
when several features are strongly correlated.

18

Elastic Net

from sklearn.linear_model import ElasticNet
from sklearn.datasets import make_regression

X, y = make_regression(n_features=2, random_state=0)
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X,y)
print(elastic_net.coef_)
print(elastic_net.intercept_)
print(elastic_net.predict([[0, 0]]))

19

Early Stopping

• A very different way to regularize iterative learning algorithms such as Gradient
Descent is to stop training as soon as the validation error reaches a minimum.

• the technique is called early stopping

0 100 200 300 400 500

Epoch

1.0

1.5

2.0

2.5

3.0

3.5

RM
SE Best model

Validation set
Training set

20

Logistic Regression

Logistic Regression

Logistic Regression or Logit Regression is commonly used to estimate the probability
that an instance belongs to a particular class. If the estimated probability is greater
than 50%, then the model predicts that the instance belongs to that class (called the
positive class, labeled 1), or else it predicts that it does not (ie. it belongs to the
negative class, labeled 0). This makes it a binary classifier

21

Estimating Probabilities

The output of logistic is the output of the closed-form formula:

p̂ = hθ(x) = σ
(
θT x

)
σ(t) =

1

1 + e−t

The Logistic Regression model prediction is

ŷ =

0, if p̂ < 0.5

1, if p̂ ≥ 0.5

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

t

0.00

0.25

0.50

0.75

1.00

σ(t) =
1

1 + e−t

22

Training and Cost Function

For a single training instance x the cost function is

c(θ) =

− log(p̂), if y = 1

− log(1− p̂), if y = 0

• the − log(t) grows very large when t approaches 0
• the cost will be large if the model estimates a probability close to 0 for a
positive instance, and it will also be very large if the model estimates a
probability close to 1 for a negative instance.

• the − log(t) is close to 0 when t is close to 1, so the cost will be close to 0 if the
estimated probability is close to 0 for a negative instance or close to 1 for a
positive instance.

23

Training and Cost Function

the cost function over the whole training set is simply the average cost over all
training instances. It can be written in a single expression, called the log loss.

V (θ) = −
1

m

m∑
i=1

[
y(i) log(p̂(i)) + (1− y(i)) log(1− p̂(i))

]

• There is no closed-form equation to compute the value of θ
• It is a convex function, so Gradient Descent (or any other optimization
algorithm) is guaranteed to find the global minimum.

The partial derivatives of the cost function with regards to the jth model parameter θj
is given by

∂

∂θj
V (θ) =

1

m

m∑
i=1

(
σ(θT x(i))− y(i)

)
x
(i)
j

We can train the model by using the Gradient based optimization.

24

Softmax Regression

The Logistic Regression model can be generalized to support multipleclasses directly,
whithout having to train an combine multiple binary classifiers. This is called Softmax
Regression or Multinominal Logistic Regression. The idea is very simple:

• when given an instance x, the Softmax Regression model first computes a score
sk(x) for each class k.

• estimates the probability of each class by applying the softmax function to the
scores

• The equation to compute sk(x) is

sk(x) =
(
θ(k)

)T
x

The each class has its own dedicated parameter vector θ(k) . All these vectors are
typically stored as rows in a parameter matrix Θ.

25

Softmax Regression

• Once you have computed the score of every class for the instance x, you can
estimate the probability p̂k that the instance belongs to class k by running the
scores through the softmax function:

p̂k = σ(s(x))k =
esk(x)∑K

j=1 e
(sj(x))

,

◦ K is the number of classes
◦ s(x) is a vector containing the scores of each class for the instance x
◦ σ(s(x))k is the estimated probability that the instance x belongs to class

k given the scores of each class for that instance.
• The softmax Regression classifier predicts the class with the highest estimated
probability

ŷ = argmax
k

σ(s(x))k = argmax
k

sk(x) = argmax
k

((
θ(k)

)T
x

)

The argmax operator returns the value of a variable that maximizes a function.
Here it returns the value of k that maximizes the estimated probability σ(s(x))k .

26

Softmax Regression: Training

The objective is to have a model that estimates a high probability for the target class
(and consequently a low probability for the other classes).

• Minimizing the cost function, which is called Cross Entropy

V (θ) = −
1

m

m∑
i=1

K∑
k=1

y
(i)
k log

(
p̂
(i)
k

)

y
(i)
k is equal to 1 if the target class for the ith instance is k otherwise, it is equal
to 0

• The gradient vector of this cost function with regards to θ(k) is given by

∇θ(k)V (θ) =
1

m

m∑
i=1

(
p̂
(i)
k − y

(i)
k

)
x(i)

We can use Gradient based optimization to find the parameter matrix Θ that
minimize the cost function.

27

Reference

1. Sebatian Ruder, ”An Overview of Gradient Descent Optimization Algorithms”,

arXiv:1609.04747v2, 2017

2. Aurélien, Géron, ”Hands-On Machine Learning with Scikit-Learn & TensorFlow”,

O’reilly, 2017

3. S.P.K. Spielberg, R. B. Gopaluni, P. D. Loewen, ”Deep Reinforcement Learning

Approaches for Process Control”, 2017 6th International Symposium on

Advanced control of Industrial Processes (AdCONIP), May 28-31, 2017, Taipei,

Taiwan

	Polynomial Regression
	Regularization
	Logistic Regression
	Appendix

