
Lecture 3: Training Models

Dr.-Ing. Sudchai Boonto, Assistant Professor
February 2, 2018

Department of Control System and Instrument Engineering, KMUTT

Linear Regression

Performance Learning

• the sum of squared prediction errors

V (θ, ZN) =
1

N

N∑
k=p

(y(k)− ŷ(k|k − 1, θ))2 =
1

2N

N∑
k=p

ε2(k, θ),

◦ ZN = {y(k), φ(k); k = 1, . . . , N} represents a set of N samples of
measured input and output data,

◦ y(k) is the measured output at sampling instant k,
◦ ŷ(k) the output predicted by the network, and the parameter vector

θ ∈ Rnp contains all adjustable network parameters, i.e. weights and bias
values.

1

Linear Regression model prediction

ŷ(xi) = θ0 + θ1x1 + θ2x2 + · · ·+ θnxn,

• ŷ is the predicted value
• n is the number of features.
• xi is the ith feature value
• θi the jth model parameter (including the bias term θ0 and the feature weights

θ1 , θ2 , . . ., θn)

This can be written using a vectorized form

ŷ = hθ(x) = θT x

We need to minimize defined cost function. We use normal letter for both scalar and
vector.

2

Normal Equation

Mean Square Error (MSE)

The most common used objective function is the Mean Square Error (MSE):

V (θ) =
1

2N

m∑
i=1

(ŷi − yi)
2 =

1

2N

m∑
i=1

(
θT xi − yi

)2
=

1

2N
ETE,

where E = (Xθ − y) To minimize this, we use a simple gradient

∂

∂θ
V (θ) =

∂

∂θ

1

2N
(Xθ − y)T (Xθ − y) = 0

XTXθ = XT y

θ =
(
XTX

)−1
XT y

Since the data set y is always deteriorate by noise, we have

θ̂ =
(
XTX

)−1
XT y

as approximation of the real θ. We call the equation Normal Equation. Where θ̂ is the
value of θ that minimizes the cost function and y is the vector of target value. 3

Normal Equation

Example of Python code

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

generate training data
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.rand(100,1)

X_b = np.c_[np.ones((100,1)), X] # add x0 = 1 to each instance
normal equation
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

testing model
X_new = np.array([[0], [2]])
X_new_b = np.c_[np.ones((2,1)), X_new]
y_predict = X_new_b.dot(theta_best)

4

Normal Equation

plot data
plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")
plt.show()

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x1

0

2

4

6

8

10

12

14

y

Predictions ŷ

Normal equation gets very slow when the number of features grows large.
5

Gradient Based Methods: Basic Idea

Performance Learning

The objective is to find the minimizing value

θ̂ = argmin
θ

V (θ, ZN)

In the neighborhood of a given value θ0 of the parameter vector, the performance
index can be expanded into a Taylor series

V (θ) = V (θ0) + ∇V T (θ)
∣∣∣
θ0

(θ − θ0)

+
1

2
(θ − θ0)T∇2V (θ)

∣∣∣∣
θ0

(θ − θ0) + . . .

• The gradient of V (θ) is denoted by

∇V (θ) =

[
∂V

∂θ1
· · ·

∂V

∂θ1

]T

6

Hessian

• The Hessian of the function V (θ) is denoted by

∇2V (θ) =



∂2V
∂θ21

∂2V
∂θ1∂θ2

· · · ∂2V
∂θ1∂θnp

∂2V
∂θ2∂θ1

∂2V
∂θ22

· · · ∂2V
∂θ2∂θnp

...
...

. . .
...

∂2V
∂θnp∂θ1

∂2V
∂θnp∂θ2

· · · ∂2V
∂θ2np



7

Steepest Descent

Starting from an initial guess θ(0), an iterative search for the best estimate of the
parameter vector at iteration step l generally takes the form

θ(l + 1) = θ(l) + αf(l) = θ(l) + ∆θ(l)

• f(l) ∈ Rnp is called the search direction at iteration step l

• a constant α > 0 is called the learning rate.
Directional derivative:

• the element ∂V
∂θi

of the gradient vector and ∂2V

∂θ2i
of the diagonal of the Hessian

are the first and second derivative of V along the θi axis.
• the firest and second derivatives along the direction of an arbitrary vector f –
the directional derivatives along f – are given by

fT∇V (θ)

∥f∥
and fT∇2V (θ)f

∥f∥2

respectively. 8

Directional Derivative: Example

Consider the function

V (θ) = θ21 + 9θ22 , θ0 =

[
1.5

0.5

]
, f =

[
3

−1

]

The gradient of V (θ) at θ0 is

∇V |θ0 =

[
2θ1

18θ2

]∣∣∣∣∣
θ0

=

[
3

9

]

The directional derivative along f is therefore

1

∥f∥

[
3 −1

] [3
9

]
= 0

9

Directional Derivative

θ1

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0

θ2

−1.00
−0.75

−0.50
−0.25

0.00
0.25
0.50
0.75

V
(θ
)

0.00

3.00

6.00

9.00

12.00

(a) Surface plot of V (θ)

θ1

θ
2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

0

9.4

(b) Contour plot of V (θ)

• the directional derivative along f is zero because f points in the direction of
the tangent of the level curve at θ0

• the slope has its maximum value in the direction of the gradient, and its
minimum value in the opposite direction.

10

Conditions for Minima

The objective of performance learning is to minimize the network performance index
V (θ). A point θ0 is called

• a strong minimum of V (θ) if a scalar β exists such that V (θ0) < V (θ0 +∆θ)

for all ∆θ such that β > ∥∆θ∥ > 0

• a weak minimum of V (θ) if it is not a strong minimum and if a scalar β exists
such that V (θ0) ≤ V (θ0 +∆θ) for all ∆θ such that β > ∥∆θ∥ > 0

• a global minimum of V (θ) if V (θ0) < V (θ0 +∆θ) for all ∆θ ̸= 0.

A linear approximation of V (θ) in the neighborhood of θ0 is

V (θ) = V (θ0 +∆θ) ≈ V (θ0) + ∇V (θ)T
∣∣∣
θ0

∆θ

A necessary (but not sufficient) condition for θ0 to be a strong minimum is

∇V (θ)|θ0 = 0

Points satisfying this condition are called stationary points of V (θ).

11

Conditions for Minima cont.

Whether or not a stationary point V (θ) is a minimum depends on the higher order
terms of the Taylor series expansion

V (θ0 +∆θ) = V (θ0) +
1

2
∆θT∇2V (θ)

∣∣∣∣
θ0

∆θ + · · ·

In a small neighborhood of θ0 we may neglect third and higher order terms, and a
sufficient condition for θ0 to be a strong minimum is

∇V 2(θ)
∣∣
θ0

> 0

i.e. the Hessian at θ0 is positive definite. Note that this is not a necessary condition,
since θ0 can still be a strong minimum even if the second order term in the Taylor
series is zero.

12

Quadratic Functions

A quadratic function has the form

F (x) =
1

2
xTQx+ pT x+ r

where F is scalar function of x ∈ Rn , Q = QT ∈ Rn×n and p and r are a column
vector and a scalar, respectively. We have

∇F (x) = Qx+ p and ∇2F (x) = Q

The following three quadratic functions all have a stationary point at x = 0; they
illustrate how the Hessian determines the character of the stationary point. The
Hessian of the quadratic function

F (x) =
1

2
xT

[
2 1

1 2

]
x

has eigenvalues 3 and 1 and is positive definite. Thus, the origin is a strong minimum.
The eigenvectors of the Hessian point in the direction of the principal axes of the
ellipse-shaped level curves; the second derivatives (curvature) in theses directions
are 3 and 1. 13

Quadratic Functions

θ1

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0

θ2

−1.00
−0.75

−0.50
−0.25

0.00
0.25
0.50
0.75

V
(θ
)

0.00

3.00

6.00

9.00

12.00

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

14

Quadratic Functions

The Hessian of

F (x) =
1

2
xT

[
−1 −6

−6 −1

]
x

has eigenvalues 5 and -7 and is indefinite. The stationary point θ = 0 is a minimum in
the direction of the eigenvector corresponding to eigenvalue 5, and a maximum in the
direction of the eigenvector corresponding to eigenvalue -7. Such a point is called a
saddle point.

θ1

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0

θ2

−2.0
−1.5

−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

V
(θ
)

-30.00

-17.50

-5.00

7.50

20.00

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

15

Quadratic Functions

The Hessian of

F (x) =
1

2
xT

[
1 −1

−1 1

]
x

has eigenvalues 2 and 0 and is positive semidefinite. The origin is a weak minimum.
The valley has the direction of the eigenvector corresponding to the zero eigenvalue.

θ1

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0

θ2

−2.0
−1.5

−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

V
(θ
)

0.00

2.00

4.00

6.00

8.00

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

16

Gradient descent variants

Batch gradient descent

The cost function:

V (θ) =
1

N

N∑
i−1

(
θT x(i) − y(i)

)2

The gradient descent step (negative gradient)

θ(k+1) = θ(k) − η∇θV (θ)

We need to calculate the gradients for the whole dataset to perform just one update,
batch gradient descent can be very slow and is intractable for datasets that do not fit
in memory. Batch gradient descent also does not allow us to update our model online.

∇θV (θ) =


∂

∂θ0
V (θ)

∂
∂θ1

V (θ)

...
∂

∂θn
V (θ)

 =
2

N
XT (Xθ − y)

17

Batch gradient descent

eta = 0.1 #learing rate
n_iterations = 1000
m = 100

theta = np.random.rand(2,1) # random initialization

for iteration in range(n_iterations):
gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
theta = theta - eta * gradients

0.0 0.5 1.0 1.5 2.0

x1

0

2

4

6

8

10

12

14

y

η = 0.02

0.0 0.5 1.0 1.5 2.0

x1

0

2

4

6

8

10

12

14

η = 0.1

0.0 0.5 1.0 1.5 2.0

x1

0

2

4

6

8

10

12

14

η = 0.5

18

Batch gradient descent

−6 −4 −2 0 2 4 6

θ0

−6

−4

−2

0

2

4

6

θ 1

−6 −4 −2 0 2 4 6

θ0

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

θ0

−6

−4

−2

0

2

4

6

• In the left hand side, the learning rate is too low: the algorithm will eventually
reach the solution, but it will take a long time.

• In the middle, it is the perfect learning rate.
• On the right, the learning rate is too high: the algorithm diverges, jumping all
the place and actually it is unstable.

19

Stochastic gradient descent

The Stochastic Gradient Descent (SGD) can improve the speed of the batch gradient
descent (BGD).

θ(k+1) = θ(k) − η∇θV (θ, x(i), y(i)),

where x(i) , and y(i) are each random training sample instant.
• It is must fast than the BGD. It is possible to train on huge training sets, since
only one instance needs to be in memory at iteration.

• the algorithm is much less regular than BGD: instead of gently decreasing until
it reaches the minimum, the cost function will bounce up and down, decreasing
only on average.

• Over time it will end up very close to the minimum, but one it gets there it will
continue to bounce arond, never settling down.

• The SGD can jump out of local minima from the random manner, so SGD has a
better chance of finding the global minimum than BGD.

20

Stochastic gradient descent

m = 100
n_epochs = 50
t0, t1 = 5, 50 # learning schedule hyperparameters

def learning_schedule(t):
return t0 / (t + t1)

theta = np.random.randn(2,1) # random initialization
for epoch in range(n_epochs):

for i in range(m):
random_index = np.random.randint(m) # m random index
xi = X_b[random_index:random_index+1]
yi = y[random_index:random_index+1]
gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
eta = learning_schedule(epoch * m + i)
theta = theta - eta * gradients

21

Stochastic gradient descent

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x1

0

2

4

6

8

10

12

14

y

−6 −4 −2 0 2 4 6

θ0

−6

−4

−2

0

2

4

6

θ 1

22

Mini-batch gradient descent

Mini-batch gradient descent takes the best of both worlds and performs and updata
for every mini-batch of n training examples:

θ(k+1) = θ(k) − η∇θV (θ, x(i:i+n), y(i:i+n))

• It can reduces the variance of the parameter updates, which can lead to more
stable convergence.

• The common mini-batch sizes range between 50 and 256, but can vary of
different applications.

0 1 2 3 4 5 6

θ0

−1

0

1

2

3

4

5

6

θ 1

Stochastic
Mini-batch
Batch

23

Reference

1. Sebatian Ruder, ”An Overview of Gradient Descent Optimization Algorithms”,

arXiv:1609.04747v2, 2017

2. Aurélien, Géron, ”Hands-On Machine Learning with Scikit-Learn & TensorFlow”,

O’reilly, 2017

3. S.P.K. Spielberg, R. B. Gopaluni, P. D. Loewen, ”Deep Reinforcement Learning

Approaches for Process Control”, 2017 6th International Symposium on

Advanced control of Industrial Processes (AdCONIP), May 28-31, 2017, Taipei,

Taiwan

	Linear Regression
	Normal Equation
	Gradient Based Methods: Basic Idea
	Gradient descent variants
	Appendix

