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First-order Equations for the Lagrangian Method

The second-order differential equation can be expressed in the from of

two first-order equations by defining an additional variable. Define the

additional variables as the generalized momenta, given by

pi =
∂L
∂q̇i

Since
d

dt

(
∂L
∂q̇i

)
= ṗi

The Lagrangian equation

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
+

∂R
∂q̇i

= 0

ṗi −
∂L
∂qi

+
∂R
∂q̇i

= 0

These are first-order equations. The desirable form of the first-order

equations is such that the derivative quantities (q̇i and ṗi) may be

eqpressed as function of the fundamental variables.
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First-order Equations for the Lagrangian Method
Spring Pendulum

Recall the Lagrangian of the spring pendulum system is given by

L =
1

2
mṙ2 +

1

2
m(a+ r)2θ̇2 −

1

2
k
(
r +

mg

k

)2
+mg(a+ r) cos θ −mga.

Here the generalized coordinates are q1 = r and q2 = θ. Then

L =
1

2
mq̇21 +

1

2
m(a+ q1)

2q̇22 −
1

2
k
(
q1 +

mg

k

)2
+mg(a+ q1) cos q2 −mga

Hence, the generalized momenta are

p1 =
∂L
∂q̇1

= mq̇1, p2 =
∂L
∂q̇2

= m(a+ q1)
2q̇2.

Putting the derivative quantities, we have

q̇1 =
p1

m
,

q̇2 =
p2

m(a+ q1)2
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First-order Equations for the Lagrangian Method
Spring Pendulum

The first equation is obtained from

ṗ1 −
∂L
∂q1

= 0

ṗ1 −mq̇22(a+ q1) + k
(
q1 +

mg

k

)
−mg cos q2 = 0

Substituting q̇2, we get

ṗ1 =
p22

m(a+ q1)3
− k

(
q1 +

mg

k

)
+mg cos q2

The equation in the second coordinate is obtained from

ṗ2 −
∂L
∂q2

= 0

ṗ2 = −mg(a+ q1) sin q2

Thus we get four first-order equations of q̇1, q̇2, ṗ1 and ṗ2. To get the linear state-space

form, we need to linearize the equations.
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First-order Equations for the Lagrangian Method
RLC Circuit

Consider a RLC circuit

−
+

E

C L2

RL1q̇1 q̇2

We have

T =
1

2
L1(q̇1 − q̇2)

2 +
1

2
L2q̇

2
2

V =
1

2C
q21 − q1E, R =

1

2
Rq̇22

L =
1

2
L1(q̇1 − q̇2)

2 +
1

2
L2q̇

2
2 −

1

2C
q21 + q1E
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First-order Equations for the Lagrangian Method
RLC Circuit

The Lagrangian equations become

L1(q̈1 − q̈2) +
1

C
q1 − E = 0

−L1(q̈1 − q̈2) + L2q̈2 +Rq̇2 = 0

The conjugate momenta are

p1 =
∂L
∂q̇1

= L1(q̇1 − q̇2), p2 =
∂L
∂q̇2

= −L1(q̇1 − q̇2) + L2q̇2

These provide the equations for q̇1 and q̇2 as

q̇1 =

(
1

L1
+

1

L2

)
p1 +

1

L2
p2, q̇2 =

1

L2
p1 +

1

L2
p2.

In terms of p1 and p2, the Lagrangian equations become

ṗ1 = −
1

C
q1 + E, ṗ2 = −Rq̇2 = −

R

L2
(p1 + p2).
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The Hamiltonian Formalism

� To derive the system equations directly in the first order, can be done by using

Hamiltonian method. Instead of the Lagrangian function L = T − V , we shall use the

total energy function and denote it by H. Hence

H = T + V

Note that the potential V is dependent only on the generalized coordinates and not on

the generalized velocities. Hence

∂V

∂q̇i
= 0, and therefore ,

∂L
∂q̇i

=
∂(T − V )

∂q̇i
=

∂T

∂q̇i

� the kinetic energy is a homogeneous function of degree 2 in the generalized velocities.

� To see this consider

T (kq̇1, kq̇2) = k2T (q̇1, q̇2)
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The Hamiltonian Formalism

� Differentiate both sides of the equation, to get

q̇1
∂T

∂kq̇1
+ q̇2

∂T

∂kq̇2
= 2kT (q̇1, q̇2)

Since k is arbitrary, this equation would be valid for k = 1. Hence

q̇1
∂T

∂q̇1
+ q̇2

∂T

∂q̇2
= 2T (q̇1, q̇2)

For higher dimensional system, we have

∑
i

q̇i
∂T

∂q̇i
= 2T

∑
i

q̇i
∂L
∂q̇i

= 2T

The total energy function H can be written as

H = T + V = 2T − (T − V ) = 2T − L
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The Hamiltonian Formalism

� or

H =
∑
i

q̇i
∂L
∂q̇i

− L =
∑
i

q̇ipi − L.

The function in the right-hand side is called the Hamiltonian function (denote by H) in

classical mechanics.

� The Hamiltonian function is the total energy (i.e. H = H) for systems which the

above functional forms of T and V hold. H is a function of pi, q̇i, and t. Moreover,

from the previous discussion, we have expressed T as a function of q̇i, it will be

necessary to substitute q̇i in terms of pi or q̇i. This can be written explicitly as q̇(p, q).

� After H(pi, qi, t) is obtained, the equations of motion in terms of H can be obtained

by taking the taking the differential of H as

dH =
∑
i

∂H

∂pi
dpi +

∑
i

∂H

∂qi
dqi +

∂H

∂t
dt
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The Hamiltonian Formalism

� From

∂H(q, p)

∂p
=

∂(pq̇(p, q))

∂p
−

∂L(q, q̇(p, q))
∂p

=

(
q̇ + p

∂q̇

∂p

)
−

L(q, q̇)
∂q̇

∂q̇(p, q)

∂p
=

(
q̇ + p

∂q̇

∂p

)
− p

∂q̇

∂p
= q̇

∂H(q, p)

∂q
=

∂(pq̇(p, q))

∂q
−

∂L(q, ṗ(p, q))
∂q

= p
∂q̇

∂q
−

∂L(q, q̇)
∂q

−
∂L(q, q̇)

∂q̇

∂q̇(p, q)

∂q
= p

∂q̇

∂q
−

∂L(q, q̇)
∂q

− p
∂q̇

∂q

= −
∂L(q, q̇)

∂q

� Then, we can also write dH as

dH =
∑
i

q̇idpi −
∑
i

∂L
∂qi

dqi −
∂L
∂t

dt

=
∑
i

q̇idpi +
∑
i

(
−ṗi −

∂R
∂q̇i

)
dqi −

∂L
∂t

dt
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The Hamiltonian Formalism

� Finally we have the relations (Comparing dH in page 9 and in page 10)

∂H

∂pi
= q̇i

∂H

∂qi
= −ṗi −

∂R
∂q̇i

,

∂H

∂t
= −

∂L
∂t

� the first two equations, expressed in the first-order form, are called the Hamiltonian

equations of motion.

� the last equation is not a differential equation and hence is not needed to represent the

dynamics.

� the dynamical systems where these equations hold are called Hamiltonian systems.
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Hamiltonian method
RLC Circuit

Consider a RLC circuit

−
+

E

C L2

RL1q̇1 q̇2

H = T + V =
1

2
L1(q̇1 − q̇2)

2 +
1

2
L2q̇

2
2 +

1

2C
q21 − q1E

=
1

2
L1

(
1

L1
p1

)2

+
1

2
L2

(
1

2
(p1 + p2)

)2

+
1

2C
q21 − q1E

=
1

2L1
p21 +

1

2L2
(p1 + p2)

2 +
1

2C
q21 − q1E

INC 693, 481 Dynamics System and Modelling: , Lagrangian Method III J 12/24 I }



Hamiltonian method
RLC Circuit

Hence, the Hamiltonian equations are

q̇1 =
∂H

∂p1
=

1

L1
p1 +

1

L2
(p1 + p2),

q̇2 =
∂H

∂p2
=

1

L2
(p1 + p2),

ṗ1 = −
∂H

∂q1
−

∂R
∂q̇1

= −
1

C
q1 + E,

ṗ2 = −
∂H

∂q1
−

∂R
∂q̇2

= −Rq̇2 = −
R

L2
(p1 + p2)
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Hamiltonian method
RLC Circuit2

−
+

q1 − q3

E

q1L q1 − q2 R1

q1 − q2 + q3

R2C1

q2

q3C2

L =
1

2
Lq̇21 −

1

2C1
q22 −

1

2C2
q23 + E(q1 + q3),

R =
1

2
R1 (q̇1 − q̇2)

2 +
1

2
R2 (q̇1 − q̇2 + q̇3)

2

This gives

p1 = L1q̇1, p2 = 0, p3 = 0
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Hamiltonian method
RLC Circuit2

Thus, H can be written as

H =
1

2L1
p21 +

1

2C1
q22 +

1

2C2
q23 − E(q1 + q3).

The first set of Hamiltonian equations give q̇1 = ∂H/∂p1 = p1/L1.

Since p2 = p3 = 0 ∂H/∂p2 and ∂H/∂p3 are undefined, and ṗ2 = ṗ3 = 0.

The second set of Hamiltonian equations give

ṗ1 = E −R1 (q̇1 − q̇2)−R2(q̇1 − q̇2 + q̇3) ,

ṗ2 = −
q2

C1
+R1 (q̇1 − q̇2) +R2 (q̇1 − q̇2 + q̇3) = 0,

ṗ3 = −
q3

C2
+ E −R2 (q̇1 − q̇2 + q̇3) = 0.
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Hamiltonian method
RLC Circuit2

Algebraic manipulation of these three equations yield

ṗ1 = E −
q2

C1
,

q̇2 = −
q2

R1C1
−

q3

R1C2
+

p1

L1
+

E

R1
,

q̇3 =
q2

R2C1
−

R1 +R2

R1R2

(
q2

C1
+

q3

C2
− E

)

These three are the first-order differential equations of the system.
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Hamiltonian method
Separately excited DC motor and mechanical load system with a flexible shaft.

−
+

E

q1 La Ra

q2

k

q3

l1

Const.

I1, R1

R2

� q1: the charge flowing in the armature circuit

� q2: the angle of the rotor

� q3: the angle of the load wheel

There are two sub-systems: the electrical circuit and the mechanical part.

� These two sub-systems interact through the torque F exerted by the electrical side one

the mechanical side.

Eb = Kϕq̇2,

� The back emf Eb exerted by the mechanical side on the electrical side.

F = Kϕq̇1
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Hamiltonian method
Separately excited DC motor and mechanical load system with a flexible shaft.

The electrical sub-system:

Te =
1

2
Laq̇

2
1 , Ve = −(E − Eb)q1

Re =
1

2
Raq̇

2
1

p1 =
∂Le

∂q̇1
=

∂Te

∂q̇1
= Laq̇1

The Hamiltonian He of the electrical sub-system in terms of q1 and p1 as

He =
1

2La
p21 − Eq1 + Ebq1

This gives the first-order equations as

q̇1 =
∂He

∂p1
=

p1

La

ṗ1 =
∂He

∂q1
−

∂Re

∂q̇1
= E − Eb −Raq̇1 = E − Eb −

Ra

La
p1
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Hamiltonian method
Separately excited DC motor and mechanical load system with a flexible shaft.

The mechanical sub-system:

Tm =
1

2
I1q̇

2
2 +

1

2
I2q̇

2
3 , Vm =

1

2
k(q2 − q3)

2 − Fq2

Rm =
1

2
R1q̇

2
2 +

1

2
R2q̇

2
3

The generalized momenta, p2 and p3 are given by

p2 =
∂Tm

∂q̇2
= I1q̇2, p3 =

∂Tm

∂q̇3
= I2q̇3

The Hamiltonian function of the mechanical system is

Hm =
1

2I1
p22 +

1

2I2
p23 +

1

2
k(q2 − q3)

2 − Fq2.
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Hamiltonian method
Separately excited DC motor and mechanical load system with a flexible shaft.

The first-order equations for the mechanical sub-system:

q̇2 =
∂Hm

∂p2
=

p2

I1

q̇3 =
∂Hm

∂p3
=

p3

I2

ṗ2 = −
∂Hm

∂q2
−

∂Rm

∂q̇2
= −k(q2 − q3) + F −R1q̇2 = −k(q2 − q3) + F −

R1

I1
p2

ṗ3 = −
∂Hm

∂q3
−

∂Rm

∂q̇3
= k(q2 − q3)−R2q̇3 = k(q2 − q3)−

R2

I2
p3.

The interaction between the mechanical and electrical sub-system:

ṗ1 = E −Kϕ
p2

I1
−

Ra

La
p1

ṗ2 = −k(q2 − q3) +Kϕ
p1

La
−

R1

I1
p2.
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Lagrangian method
Separately excited DC motor and mechanical load system with a flexible shaft.

The total kinetic energy without separating the sub-system is

T =
1

2
Laq̇

2
1 +

1

2
I1q̇

2
2 +

1

2
I2q̇

2
3

The total potential energy is

V = −(E − Eb)q1 +
1

2
k(q2 − q3)

2 − Fq2

= −(E −Kϕq̇2)q1 +
1

2
k(q2 − q3)

2 −Kϕq̇1q2,

The total Rayleigh function is

R =
1

2
Raq̇

2
1 +

1

2
R1q̇

2
2 +

1

2
R2q̇

2
3
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Lagrangian method
Separately excited DC motor and mechanical load system with a flexible shaft.

Since ∂L
∂q̇i

̸= ∂T
∂q̇1

, we have to use

d

dt

(
∂T

∂q̇i

)
−

∂L
∂qi

+
∂R
∂q̇i

= 0

We get the second-order equations as

Laq̈1 − (E −Kϕq̇2) +Raq̇10

I1q̈2 −Kϕq̇1 + k(q2 − q3) +R1q̇2 = 0

I2q̈3 − k(q2 − q3) +R2q̇3 = 0

The expression forthe generalized momenta will be

pi =
∂T

∂q̇i

which gives

p1 = Laq̇1, p2 = I1q̇2, p3 = I2q̇3.
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Lagrangian method
Separately excited DC motor and mechanical load system with a flexible shaft.

The first-order equations are obtained from

ṗi =
∂L
∂qi

−
∂R
∂q̇i

as

ṗ1 = E −Kϕq̇2 −Raq̇1

= E −Kϕ
p2

I1
−Ra

p1

La

ṗ2 = Kϕq̇1 − k(q2 − q3)−R1q̇2

= Kϕ
p1

La
− k(q2 − q3)−R1

p2

I1

ṗ3 = k(q2 − q3)−R2q̇3

= k(q2 − q3)−R2
p3

I2
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