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First-order Equations for the Lagrangian Method

The second-order differential equation can be expressed in the from of
two first-order equations by defining an additional variable. Define the
additional variables as the generalized momenta, given by

-*% Since i % =P
b= 04 it \og )

The Lagrangian equation

¢ (08) 0E o
dt \ 9gi Jdqi 04
oL OR

pi_c’Tquraqi:O

These are first-order equations. The desirable form of the first-order
equations is such that the derivative quantities (¢; and p;) may be
eqpressed as function of the fundamental variables.
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First-order Equations for the Lagrangian Method

Spring Pendulum

Recall the Lagrangian of the spring pendulum system is given by

1 1 . 1 2
L= 5rm'~2 + Em(a +7)%62% — §k (r + %) + mg(a + r) cos § — mga.

Here the generalized coordinates are g1 = r and g2 = 6. Then

1 . 1 . 1 mgH 2
L= 5mqf + Em(a +q1)%d5 — Ek (‘II + 79) +mg(a + q1) cos g2 — mga

Hence, the generalized momenta are

oL . oL 9.
p1 = —— =mqi, p2 = — =m(a+q1)7qo.
941 042

Putting the derivative quantities, we have

. p1

q = —,
m

G2 = P2
m(a + q1)?
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First-order Equations for the Lagrangian Method

Spring Pendulum

The first equation is obtained from

. . m.
p1 —md3(a+q1) +k <Q1 + %) —mgcosqz =0

Substituting g2, we get

2
. D5 ( mg)
=——=—k + — ) + mgcos
p1 m(a q1)3 q1 k& g q2

The equation in the second coordinate is obtained from

oL
p2—— =0
9q2
p2 = —mg(a + q1) sin g2

Thus we get four first-order equations of ¢1, g2, p1 and p2. To get the linear state-space
form, we need to linearize the equations.
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First-order Equations for the Lagrangian Method

RLC Circuit

Consider a RLC circuit

e} Lo

We have

1 . . 1.
T= §L1(tI1 — @)%+ 5qu§

1

2 -2

= - E‘7 R = -R
20(11 q1 3 92

1 1 1
L=>Li(¢1—¢2)?+ =Lag? — —¢? E
2 1(41 — ¢2)" + gl2d2 — 5aat +q1
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First-order Equations for the Lagrangian Method

RLC Circuit

The Lagrangian equations become

L 1
L1(d1 — o) + on —-E=0

—L1(G1 — G2) + L2G2 + R4z = 0
The conjugate momenta are

oL . . oL . . .
= A =Li1(¢1 — 42), p2=-— = —L1(41 — G2) + L2¢o
1

p1
942

These provide the equations for ¢; and ¢2 as

. ( 1 " 1 ) n 1 . 1 n
q =\ — —— | P1 - P2, q2 = 7—P1 - P2
L1 Lo Lo 2 2

In terms of p; and p2, the Lagrangian equations become

1 R
o1 ’ o pa )
p1= CQ1+E p2 = —Rg2 = I (p1 + p2)

2
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The Hamiltonian Formalism

® To derive the system equations directly in the first order, can be done by using
Hamiltonian method. Instead of the Lagrangian function £L =T — V/, we shall use the
total energy function and denote it by . Hence

H=T+V

Note that the potential V' is dependent only on the generalized coordinates and not on
the generalized velocities. Hence

a‘_/ =0, and therefore , 8? = M = 8?“
8¢; 94; 94; 94q;

® the kinetic energy is a homogeneous function of degree 2 in the generalized velocities.

® To see this consider

T(kd, kgz) = k*T (41, d2)
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The Hamiltonian Formalism

® Differentiate both sides of the equation, to get

. oT ny oT
T okgy P Ok

= 2kT(¢1, 42)

Since k is arbitrary, this equation would be valid for £ = 1. Hence

. oT . oT ..
41— + 42— =2T(41,42)
¢ 942

For higher dimensional system, we have

Zqig—T =T
: i

k3

> 2‘.6 =27
- qi

k3

The total energy function H can be written as

H=T+V=2T—(T—-V)=2T-L
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The Hamiltonian Formalism

M= b~ L= Y £
3 K3

The function in the right-hand side is called the Hamiltonian function (denote by H) in
classical mechanics.

® The Hamiltonian function is the total energy (i.e. H = H) for systems which the
above functional forms of T" and V hold. H is a function of p;, ¢;, and t. Moreover,
from the previous discussion, we have expressed T' as a function of ¢;, it will be
necessary to substitute ¢; in terms of p; or ¢;. This can be written explicitly as ¢(p, q).

® After H(pi,q;,t) is obtained, the equations of motion in terms of H can be obtained
by taking the taking the differential of H as

Z— I+Z dql+—dt
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The Hamiltonian Formalism

® From

9H(q,p) _ O(pi(p.9)) _ 9L(a,4(p,9))

dp dp Op
94\  L(q,9) 94(p,a) _ ( 64) oq .
(q+p8p) 4 o = q+p8p Pop 4
OH(q,p) _ O(pi(p,q)) _ 9L(a,h(p,9))
9q dq 9q
_ 94 0L(a,9) 9L(q,9) Odlp,q) _ 94 9L(g,d4) 94
dq dq g dq dq dq 0q
_ _9L(g,9)
dq

® Then, we can also write dH as

oL oL
dH = Zqidpi - —dg — —dt
y g 8qi ot

quzdmeZ( )dql %—fdt
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The Hamiltonian Formalism

® Finally we have the relations (Comparing dH in page 9 and in page 10)

oH
5101'_%

oH . OR
9q; _7pi7311¢7
oH o
ot ot

® the first two equations, expressed in the first-order form, are called the Hamiltonian
equations of motion.

® the last equation is not a differential equation and hence is not needed to represent the
dynamics.

® the dynamical systems where these equations hold are called Hamiltonian systems.
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Hamiltonian method

RLC Circuit

Consider a RLC circuit

Lo

O (0 3o 3

1
T+V= §L1(111 — @)’ + - L2q2 + =

-=Q

T
I

-qFE
20 a1

1L<1 >2+1L(( + ))2+1 2 E
5 1 I p1 B 2 p1 +p2 20611 q1
1

— — ¢ - qE
2L p1+ (p1+pz) +2cql @
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Hamiltonian method

RLC Circuit

Hence, the Hamiltonian equations are

5 —ai—i +i( + )
q1 = o1 = L1p1 Lo b1 +p2),
. OH 1( +p2)
qQ2 = — = —P1T1vP2)
Op2 Lo

o e _ 1
= Ten - oh ,

oOH OR R
by = — ot I Ry = ——%
P2 o0 00 G2 i (p1 +p2)
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Hamiltonian method

RLC Circuit2

q3

L
=&

fO'e'G\ Q@ qlfqz&}\
@ —a3 7@
E t =C éRz
q1—q2+qs3
1 1 1
L=-Li - ——q - —q+ E(q +q3),
sl — 55 2 T 5% (g1 +g3)

1 . . 1 . . .
R = §R1 (g1 — qz)2 + §R2 (g1 — g2 + ‘13)2
This gives

p1 = L1q1, p2 =0, p3 =0
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Hamiltonian method

RLC Circuit2

Thus, H can be written as
1
71’1 + 7(12 + =93 — E(q1 + g3)-

The first set of Hamiltonian equations give g1 = 0H/0p1 = p1/L1.

Since p2 = p3 = 0 OH/Op2 and OH/Ops are undefined, and p2 = p3 = 0.
The second set of Hamiltonian equations give

p1=FE — R1 (41 — ¢2) — R2(g1 — g2 + g3),

1'72=—gf2+31(41—42)+R2(¢?1—q'2+43)=07
1

P3=—£+E—R2(d1—dz+d3)=0~

Ch
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Hamiltonian method

RLC Circuit2

Algebraic manipulation of these three equations yield

. q2
1 =E- 2
p Cl b
. q2 q3 p1 E
q2 = -

"RiCi RiC: L Ry

. Ry + R (q2 q3 )
i3 = ST (2, B g
RQCl R1R2 Cl C2

These three are the first-order differential equations of the system.
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Hamiltonian method

Separately excited DC motor and mechanical load system with a flexible shaft.

® ¢;: the charge flowing in the armature circuit
® go: the angle of the rotor

® g3: the angle of the load wheel

There are two sub-systems: the electrical circuit and the mechanical part.

® These two sub-systems interact through the torque F' exerted by the electrical side one
the mechanical side.
Ey, = K¢ga,

® The back emf E} exerted by the mechanical side on the electrical side.

F=Ko¢q
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Hamiltonian method

Separately excited DC motor and mechanical load system with a flexible shaft.

The electrical sub-system:

Te = ELaq%y Ve = _(E - Eb)Ql
1
Re = 5 Radi
_OLe _OT. _, .
p1 = 8(]1 = Bql = Laq1

The Hamiltonian H, of the electrical sub-system in terms of ¢; and p; as

i — Eq1 + Epq

e

~ 2L,

This gives the first-order equations as

@ = OH. _ p1
8291 Lg
. OH. ORe . Ra
p1 = - =E—-Ey,—Ragi =E—-Ep— —p1
9q1 941 “ Lo
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Hamiltonian method

Separately excited DC motor and mechanical load system with a flexible shaft.

The mechanical sub-system:

1 1

Tm = thz + 12q3, Vin = ik(qQ —q3)* — Fgo
1

Rm = iquS + 5R2¢i§

The generalized momenta, p2 and p3 are given by

0Tm . OTm .
p2 = —— = liq2, p3 = —— = I2q3
942 943

The Hamiltonian function of the mechanical system is

1 1
H, — — k — — Fqo.
m= o 3+ o P+ ~k(g2 — g3)* q2
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Hamiltonian method

Separately excited DC motor and mechanical load system with a flexible shaft.

The first-order equations for the mechanical sub-system:

. aHm p2
4o = = ==
2 Op2 I
q aHm p3
3 = =5
Op3 I
. OH,, ORm . R
P2 = — — T — k(ge—q3)+ F — Rido = —k(q2 — q3) + F — —pa
9q2 042 I
. OHy,  OR . R
p3=— — =" = k(g2 — 43) — Rads = k(a2 — as) — —ps.
Jq3 943 I

The interaction between the mechanical and electrical sub-system:

. p2 Ra
—E_KoP2 _ e
p1 ¢I1 .7
. 1 R
P2 = —k(g2 — g3) + Koot — “ps.
Lg I
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Lagrangian method

Separately excited DC motor and mechanical load system with a flexible shaft.

The total kinetic energy without separating the sub-system is

1 1 1
T = =LaG? + =11G% + = I243
g Ladt + gi1d2 + 54243

The total potential energy is

1
V=—(E-E)q + ik(qz —g3)* - Fgo
. 1 .
= —(E - K¢g2)q1 + 5k(Q2 —g3)> — Kédiqa,
The total Rayleigh function is
1 . 1 X 1 X
R = §Raq% + ZRig3 + §R2q§

2
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Lagrangian method

Separately excited DC motor and mechanical load system with a flexible shaft.

H oL orT
ince 2= # 2, we have to use
S 9q; # 941"’

d (8T) oL OR
+57 =0

dt \ 9¢; 9q;  04q;
We get the second-order equations as

Lafil - (E - K¢q2) + Raljlo
Iiga — Kégr + k(g2 — g3) + R1g2 = 0
Ings — k(g2 — q3) + R2g3 =0

The expression forthe generalized momenta will be

_or
pe= 0¢;
which gives
p1 = Lada, p2 = 14z, p3 = I243.
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Lagrangian method

Separately excited DC motor and mechanical load system with a flexible shaft.
The first-order equations are obtained from

oL R
T 9q; 94

Di
as

p1=FE— Kégz — Raa

p2 b1
=E—K¢-2 — Rg—-
¢I1 a -

P2 = Kédi — k(g2 — g3) — Rigo

p1 D2
=Kol —k(gp —q3) - R 2
¢La (g2 — 93) 1

p3 = k(g2 — q3) — Rags

= k(g2 — q3) — szi3
I
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