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Spring-connected triple pendulum system
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The minimum set of coordinates are the three

angles θ1, θ2 and θ3

T =
1

2
ml2

(
θ̇21 + θ̇22 + θ̇23

)

The potential energy consists of two parts:

the energy due to the gravitational force and

the strain energy of the spring

Vg = mlg(1− cos θ1) +mgl(1− cos θ2)

+mgl(1− cos θ3) ≈
1

2
mgl

(
θ21 + θ22 + θ23

)
, where cos θ = 1−

θ2

2!
+

θ4

4!
− . . .

The elongations of the springs are given by

h(sin θ2 − sin θ1) ≈ h(θ2 − θ2)

h(sin θ3 − sin θ2) ≈ h(θ3 − θ2)
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Spring-connected triple pendulum system

Hence, the energy stored in the springs is

Vs =
1

2
kx2 =

1

2
kh2

[
(θ2 − θ1)

2 + (θ3 − θ2)
2
]

This gives the total potential energy as

V =
1

2
mgl

(
θ21 + θ22 + θ33

)
+

1

2
kh2

[
(θ2 − θ1)

2 + (θ3 − θ2)
2
]

There are three generalized coordinates and hence the system will be described by three

Lagrangian equations. For θ1, θ2, and θ3, the Lagrangian equation gives respectively

l2mθ̈1 +mglθ1 + kh2(θ1 − θ2) = 0,

l2mθ̈2 +mglθ2 + kh2(θ2 − θ1) + kh2(θ2 − θ3) = 0,

l2mθ̈3 +mglθ3 + kh2(θ3 − θ2) = 0
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Principle of Least Action

The principle of least action:

� mechanical system: if the system moved from q = x1 at time t1
to q = x2 at time t2, the path in between would be the one form

which the integral of the Lagrangian function is a minimum.

� electrical system: the system always change in a fashion that

minimizes the integral of the difference between the energy stored

in the inductors and the energy stored in the capacitors.

Figure: the brachistochrone problem

was posed by Johann Bernoulli

”What shape a frictionless wire

should have in order that ta bead

can slide sown it in minimum time.”

One have to minimize an integral of

a function.
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Principle of Least Action

The rule can be stated that a term , called S, would be minimized over the path where

S =

∫ t2

t1

f dt

For dynamical systems, f is the Lagrangian function L. We will find the solution for
one-dimensional systems for which L is a function of q, q̇ and t. And it is the integral

S =

∫ t2

t1

L(q, q̇, t)dt

that we have to minimize.

� if a function q of an independent variable t, the minima has the particular property
that if t is varied slightly, the variation in q is negligible. In other word dq

dt
= 0

� In general ∆q ∝ ∆t

� To vary the path, we arbitrarily draw a function η(t) and obtain a varied path as

q̃(t) = q(t) + αη(t),

where α is a variable quantity. A small α will make q̃(t) deviate slightly from q(t) and
a large α will cause a large variation.
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Principle of Least Action

(a) (b)

q

∆q = 0

∆q ∝ ∆t

t t2

q

q(t)

q̃(t)

η(t)

t1

(a) the minimal point in a family of points is obtained by varying t and
observing the resulting change in q. (b) The minimal function in a
family of functions obtained by varying α and observing the resulting
variation in S.
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Principle of Least Action

To obtain the varied path η(t1) = η(t2) = 0. and

˙̃q(t) = q̇(t) + αη̇(t)

The new S is given by

S =

∫ t2

t1

L(q̃, ˙̃q, t)dt =
∫ t2

t1

L(q + αη, q̇ + αη̇, t)dt

This function is minimized if ∂S
∂α

= 0 at α = 0

∂S

∂α
=

∫ t2

t1

∂

∂α
L(q̃, ˙̃q, t)dt =

∫ t2

t1

[
∂L
∂q̃

∂q̃

∂α
+

∂L
∂ ˙̃q

∂ ˙̃q

∂α
+

∂L
∂t

∂t

∂α

]
dt

Since t is independent of α, ∂t
∂α

= 0, then

∂S

∂α
=

∫ t2

t1

[
∂L
∂q

η(t) +
∂L
∂q̇

η̇(t)

]
dt = 0
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Principle of Least Action

Integrating the second term by parts, we get

∫ t2

t1

∂L
∂q

η(t)dt+
∂L
∂q̇

η(t)

∣∣∣∣t2
t1

−
∫ t2

t1

d

dt

∂L
∂q̇

η(t)dt = 0

The second term would always vanish. Thus the condition for minimum S becomes∫ t2

t1

η(t)

[
∂L
∂q

−
d

dt

(
∂L
∂q̇

)]
dt = 0

Since η(t) can be any arbitrary function and the integral must vanish for all ηs, the term in

bracket must be zero. Hence

d

dt

(
∂L
∂q̇

)
−

∂L
∂q

= 0

This is the Lagrangian equation for one generalized coordinate. Thus, the principle of least

action yields the same result as Newtonian or Lagrangian mechanics.
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Systems with two degrees of freedom

The system has two degrees of freedom q1 and q2 then

S =

∫ t1

t2

L(q1, q̇1, q2, q̇2, t)dt

We define two arbitrary functions η1(t) and η2(t) with the boundary conditions

η1(t1) = η1(t2) = η2(t1) = η2(t2) = 0

Then we obtain varied functions q̃1 and q̃2 with the help of a variable α as

q̃1(t) = q1(t) + αη1(t)

q̃2(t) = q2(t) + αη2(t)

At the minimum,

∂S

∂α
=

∫ t2

t1

[
∂L
∂q1

η1(t) +
∂L
∂q̇1

η̇1(t) +
∂L
∂q2

η2(t) +
∂L
∂q̇2

η̇2(t)

]
dt = 0
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Systems with two degrees of freedom

The terms involving η1 and η2 are then integrated by parts that yield∫ t2

t1

{
η1(t)

[
∂L
∂q1

−
d

dt

(
∂L
∂q̇1

)]
+ η2(t)

[
∂L
∂q2

−
d

dt

(
∂L
∂q̇2

)]}
dt = 0

Since this must hold for all arbitrary choices of the functions η1(t) and η2(t) we get two

Euler’s equations: [
d

dt

(
∂L
∂q̇1

)
−

∂L
∂q1

]
= 0[

d

dt

(
∂L
∂q̇2

)
−

∂L
∂q2

]
= 0

The law of least action yields two Lagrangian equations for q1 and q2 . Generalizing the line

of argument, one can see that for a system with n configuration coordinates, the same least

action principle is equivalent to a set of n Lagrangian equations, one for each of the

independent degrees of freedom.
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Two-link cartesian robot

q2

q1

m1

m2 f1

f2 Consider the manipulator, consisting of two links and

two prismatic joints. The masses of the two links by m1

and m2 and denote the displacement of the two

prismatic joints by q1 and q2, respectively. There are 2

generalized coordinates for the manipulator.

T =
1

2

(
(m1 +m2)q̇

2
1 +m2q̇

2
2

)
V = (m1 +m2)gq1

L =
1

2

(
m1q̇

2
1 +m2q̇

2
2

)
− (m1 +m2)gq1

d

dt

(
∂L
∂q̇1

)
−

∂L
∂q1

= (m1 +m2)q̈1 + (m1 +m2)g = 0

d

dt

(
∂L
∂q̇2

)
−

∂L
∂q2

= m2q̈2 = 0
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Lagrangian Method Applied to Electrical Circuits

� the generalized coordinates in a mechanical system are the position

variables that are consistent with the constraints.

� in electrical systems, the variables should be charge and have to be

defined depending on the circuit connection.

� the configuration coordinates qi in an electrical circuit are defined

as the charges flowing in the meshes.

� the configuration coordinates q̇i are the mesh currents.

� the equivalences between mechanical and electrical systems are:

� an inductor is equivalent to an inertial element like a mass.

� a capacitor is equivalent to a compliant element like a spring.
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Lagrangian Method Applied to Electrical Circuits

C1

L1 L2

C3C2q̇1 q̇2

The configuration of the system can be

completely defined by the q1 and q2
coordinates.

T =
1

2
L1q̇

2
1 +

1

2
L2q̇

2
2

V =
1

2C1
q21 +

1

2C2
(q1 − q2)

2 +
1

2C3
q22

Then, the Lagrangian equation for the q1 and q2 coordinates are

L1q̈1 +
q1

C1
+

1

C2
(q1 − q2) = 0

L2q̈2 +
q2

C3
−

1

C2
(q1 − q2) = 0

Note that the equations are second order differential equations.
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Systems with External Forces or Electromotive Forces

� So far we have considered only conservative systems with no

externally applied force or voltage source.

� if there are external forces or voltage sources Fi(t) present in the

system, the same general framework can be used to formulate the

differential equations.

� this can be done by adding a term to V .

V due to external force = −Fiqi

� This term, when differentiated with respect to that generalized

coordinate, will yield the external force. Therefore, the system is

still conservative, and the same Lagrangian equation can be applied.
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Systems with External Forces or Electromotive Forces

C1

E L1 L2

C3C2q̇1 q̇2

Here

T =
1

2
L1q̇

2
1 +

1

2
L2q̇

2
2 , V =

1

2C1
q21 +

1

2C3
q22 +

1

2C2
(q1 − q2)

2 − Eq1

and the Lagrangian equation will be modified to

L1q̈1 +
q1

C1
+

1

C2
(q1 − q2)− E = 0

L2q̈2 +
q2

C3
−

1

C2
(q1 − q2) = 0
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Inveted pendulumn on a cart

m1

m2

θ

l

Fx

� kinetic energy of the cart is 1
2
m1ẋ2

� the horizontal component of the kinetic energy of the bob is the kinetic energy of the
summation of horizontal and vertical velocity vectors 1

2
m2(l2θ̇2 + ẋ2 + 2lθ̇ẋ cos θ)

� the vertical component of the kinetic energy of the bob is 1
2
m2(lθ̇ sin θ)2

� the potential has two parts: one is due to the height of the bob from the level of
contact m2gl cos θ , and due to the applied force −Fx.
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Inveted pendulumn on a cart

The Lagrangian becomes

L =
1

2
m1ẋ

2 +
1

2
m2ẋ

2 +
1

2
m2l

2θ̇2 +m2lθ̇ẋ cos θ −m2gl cos θ + Fx

We obtain the partial derivatives as

∂L
∂ẋ

= m1ẋ+m2ẋ+m2lθ̇ cos θ,

∂L
∂θ̇

= m2l
2θ̇ +m2lẋ cos θ,

∂L
∂x

= F,

∂L
∂θ

= −m2lθ̇ẋ sin θ +m2gl sin θ

Finally we get the equations for x and θ as

m1ẍ+m2ẍ+m2l cos θθ̈ −m2lθ̇
2 sin θ − F = 0

lθ̈ + ẍ cos θ − g sin θ = 0
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System with Resistances or Frictions

� From Newton-Lagrange equation

d

dt

(
∂T

∂q̇i

)
−

∂T

∂qi
−Qi = 0

� Qi are dissipative elements, belong to resistances or frictions, depending on the
velocity. (think about force from friction is kẋ and a voltage across a resistor is Ri.

� As known as Rayleigh potential energy, we have

R =
∑ 1

2
Riq̇

2
i

We also consider the friction coefficient b as the resistance R of the movement.

� Then

Qi = −
∂V

∂qi︸ ︷︷ ︸
conservative

−
∂R
∂q̇i︸ ︷︷ ︸

dissipative
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System with Resistances or Frictions

� Finally we have

d

dt

(
∂T

∂q̇i

)
−

∂T

∂qi
+

∂V

∂qi
+

∂R
∂q̇i

= 0

d

dt

(
∂(T − V )

∂q̇i

)
−

∂(T − V )

∂qi
+

∂R
∂q̇i

= 0

Since ∂V/∂q̇i = 0, hence

d

dt

(
∂L
∂q̇i

)
−

∂L
∂qi

+
∂R
∂q̇i

= 0
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System with Resistances or Frictions
RLC and spring-mass system

C1

E
R L1 R L2

C3C2q̇1 q̇2

k1 k2 k3

q1 q2

F

R1 R2
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System with Resistances or Frictions
RLC and spring-mass system

T =
1

2
L1q̇

2
1 +

1

2
L2q̇

2
2 electrical domain

=
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 mechanical domain

V =
1

2C1
q21 +

1

2C2
q22 +

1

2C2
(q1 − q2)

2 − Eq1 electrical domain

=
1

2
k1q

2
1 +

1

2
k3q

2
2 +

1

2
k2(q1 − q2)

2 − Fq1 mechanical domain

R =
1

2
R1q̇

2
1 +

1

2
R2q̇

2
2

Then the dynamic equations are

L1q̈1 +
1

C1
q1 +

1

C2
(q1 − q2)− E +R1q̇1 = 0

L2q̈2 +
1

C3
q2 −

1

C2
(q1 − q2) +R2q̇2 = 0

For mechanical system: L → m, and 1/C → k.
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System with Resistances or Frictions
Spring-pendulum system

k

mg

q2

q1

Linear dissipator
coefficient R

l

m

The velocity for the spring-pendulum is the
summation of a vector lq̇2 and a vecotr q̇1
then we have

T =
1

2
ml2q̇22 +

1

2
mq̇21 −mlq̇1q̇2 sin q2

V = −mgl sin q2 −mgq1 +
1

2
kq21

The system Lagrangian is thus

L =
1

2
ml2q̇22 +

1

2
mq̇21 −

1

2
kq21

−mlq̇1q̇2 sin q2 +mgl sin q2 +mgq1

R =
1

2
Rq̇21
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System with Resistances or Frictions
Spring-pendulum system

For the coordinate q1, the Lagrange equation is

d

dt

(
∂L
∂q̇1

)
−

∂L
∂q1

+
∂R
∂q̇1

= 0

mq̈1 −mlq̈2 sin q2 −mlq̇22 cos q2 + kq1 −mg +Rq̇1 = 0

For the coordinate q2, the Lagrange equation is

d

dt

(
∂L
∂q̇2

)
−

∂L
∂q2

+
∂R
∂q̇2

= 0

ml2q̈2 −mlq̈1 sin q2 −mlq̇1q̇2 cos q2 +mlq̇1q̇2 cos q2 +mgl sin q2 = 0

lq̈2 − q̈1 sin q2 + g sin q2 = 0
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Mechanical Arm system

A mechanical arm system consists of two light rods moved in horizontal plane so that gravity
can be neglected. The arm is driven by two motors which are represented by torque sources
τ1 and τ2.

q1

q2l2

m2

l1

m1

τ1

τ2

l2q̇2l1q̇1

v2

l1q̇1

q1

q2
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Mechanical Arm system

The system moves in a horizontal plane and there are no compliant members, therefore the
system potential energy is zero. There are two force from τ1 and τ2. Then

V = −τ1q1 − τ2q2

The kinetic energy is the sum of the kinetic energies of the masses m1, m2 and

T =
1

2
m1l

2
1 q̇

2
1 +

1

2
m2

(
l21 q̇

2
1 + l22 q̇

2
2 + 2l1l2q̇1q̇2 cos q2

)
For the coordinated q1, q2, the Lagrange equation are

d

dt

(
∂L
∂q̇1

)
−

∂L
∂q1

= 0

(m1 +m2)l
2
1 q̈1 +m2l1l2q̈2 cos q2 −m2l1l2q̇

2
2 sin q2 − τ1 = 0

d

dt

(
∂L
∂q̇2

)
−

∂L
∂q2

= 0

m2l
2
2 q̈2 +m2l1l2q̈1 cos q2 − 2m2l1l2q̇1q̇2 sin q2 − τ2 = 0
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