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State-Space System Representation

The modeling system is written in the form:

ẋ = Ax+Bu (1)

y = Cx+Du (2)

The matrices A ∈ Rn×n and B ∈ Rn×nu are properties of the system.

The output equation matrices C ∈ Rny×n and D ∈ Rny×nu are

determined by the particular choice of output variables.

� System order n and selection of a set of state variables from the

linear graph.

� Generation of a set of state equations and the system A and B

matrices.

� Determination of a suitable set of output equation and derivation

of the appropriate C and D.
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Simple RLC example
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� There are 6 possible variables : ic, vc, iL, vL, iR, vR and is

� There are 3 constitute relations:

dvC
dt

=
i

C
iC ,

iL
dt

=
1

L
vL, iR =

1

R
vR

Using a continuity equation and two compatibility equations

iC = iR − iL, vL = vC , vR = Vs − vC
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Simple RLC example

We have

dvC
dt

= − 1

RC
vC +

1

C
iL +

1

RC
Vs

diL
dt

=
1

L
vC

A =

[
−1/RC −1/C
1/L 0

]
, B =

[
1/RC

0

]
If the variables iR, vR, vL and iC are of interest as output variables:

iR = − 1

R
vC +

1

R
Vs, vR = −vC + Vs

vL = vC , iC = − 1

R
vC − iL +

1

R
Vs
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Simple RLC example

So if the output vector is defined to be

y =
[
iR vR vL iC

]T
The C and D matrices are

C =


−1/R 0
−1 0
1 0

−1/R −1

 , D =


1/R
1
0

1/R


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Linear Graph
cutset
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cutset is a set of branches in a graph, which when cut off, will divide

the graph into two disconnected pieces.
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Linear Graph
basic cutset
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Figure: three possible basic cutsets

� basic cutset is the cutset that contains only one tree branch and

several co-tree links.

� the continuity equations are corresponding to the basic cutsets are

independent.
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Linear Graph
basic loopset
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Figure: three possible basic loopsets

� basic loopset is a loop that contains only one co-tree link and

several tree branches.

� the compatibility equations are corresponding to the basic loopsets

are independent.
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Linear Graph
Identify the particular tree

A normal tree for a connected system graph is formed by the following

steps:

1. Draw the system graph nodes.

2. The tree should include all effort sources as tree branches.

3. The tree should include a maximum number of capacitors elements.

4. The tree should include a maximum possible number of resistor

elements.

5. The tree may then include the necessary number of inductor

elements to complete the tree.
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Linear Graph
Derivation of differential equations

� if the variable is a capacitor element voltage, identify the basic

cutset containing that capacitor element voltage. The differential

equation is given by the continuity equation for that basic cutset.

� if the variable is an inductor element current, identify the basic

loop containing that inductor element current. The compatibility

equation for that basic loop will yield the desired differential

equation.

Or

� Select the state variables as effort variables on capacitor energy

storage elements in the normal tree branches, and flow variables on

inductor energy storage elements in the links.
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Linear Graph
Example

−
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The continuity equation

ib − ic − id = 0

dvC1

dt
=

1

C1
(ib − id)
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Linear Graph
Example

First ib = iL, which is a state variable. And id can be expressed as

follows:

id = vd/R1

The basic loop that involves R1 (loop cafd)

vd = vc − va + vf = vC1 − E + vC2

Then

dvC1

dt
=

1

C1
(iL − vd

R1
)

=
1

C1
iL − 1

R1C1
vC1 −

1

R1C1
vC2 +

1

R1C1
E
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Linear Graph
Example
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The continuity equation gives

if + id + ie = 0

which in turn gives,

dvC2

dt
=

1

C2
(−id − ie)

=
1

C2

(
− vd
R1

− ve
R2

)
=

1

C2

[
−vC1 − E + vC2

R1
− vC2 − E

R2

]
= − 1

R1C2
vC1 −

1

C2

(
1

R1
+

1

R2

)
vC2 +

1

C2

(
1

R1
+

1

R2

)
E
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Linear Graph
Example
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The compatibility equation gives

vb + vc − va = 0

which in turn gives,

diL
dt

=
1

L
(−vc + va)

= − 1

L
vC1 +

1

L
E
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Linear Graph
Mechanical System 1
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Linear Graph
Mechanical System 1

the state variables are vm (capacitor element of the branch) and Fk1
(inductor element of

the link) and

dvm

dt
=

1

m
Fm,

dFk1

dt
= k1vk1

, Fb2 = b2vb2

vb1 =
1

b1
Fb1 , vk2

=
1

k2

dFk2

dt

There are two compatibility equations:

vk1
= vk2

− vb1 , vb2 = vm

and three continuity equations:

Fk2
= Fs(t)− Fk1

, Fb1 = Fk1
, Fm = Fs(t)− Fb2

The result is[
v̇m
Ḟk1

]
=

[
− b2

m
0

0 − k1k2
b1(k1+k2)

][
vm
Fk1

]
+

[ 1
m
0

]
Fs(t) +

[
0
k1

k1+k2

]
Ḟs(t)
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Linear Graph
Mechanical System 1

The result showing the dependence on the derivative of the input Fs(t). The output
equation for vb1 is:

vb1 =
1

b1
Fk1

or in matrix form

vb1 =
[
0 1

b1

] [ vm
Fk1

]
+

[
0
]
Fs(t)

The state variables may be transformed as ˙̃x = Ax̃+ (AE +B)u or:

[
˙̃x1
˙̃x2

]
=

[
− b2

m
0

0 − k1k2
b1(k1+k2)

][
x̃1

x̃2

]
+

 1
m

k2
1k1

b1(k1+k2)2

Fs(t)

the corresponding output vb1 = Cx̃+ (CE +D)u+ Fu̇

vb1 =
1

b1
x̃2 +

k1

b1(k1 + k2)
Fs(t)
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Linear Graph
Mechanical System (In class work)
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Linear Graph
Mechanical System (In class work)
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At a basic cutset 1:

im1 + ib1 + ik1 + ik2 = 0

dvm1

dt
= − b1

m1
vm1 −

1

m1
Fk1

− 1

m1
Fk2

At a basic cutset 2:

im2 − iFs − iFk2
= 0

dvm2

dt
=

1

m2
Fk2 +

1

m2
Fs
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Linear Graph
Mechanical System (In class work)
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At a basic loop set 1:

vk1 = vm1

dFk1

dt
= k1vm1

At a basic loop set 2:

−vm1 + vk2 + vb2 + vm2 = 0

−vm1 +
1

k2

dFk2

dt
+

1

b2
Fb2 + vm2 = 0

Fb2 = Fk2

dFk2

dt
= −k2

b2
Fk2 − k2vm2 + k2vm1
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Linear Graph
Mechanical System (In class work)

The state-space system is
v̇m1

v̇m2

Ḟk1

Ḟk2

 =


− b1

m1
0 − 1

m1
− 1

m1

0 0 0 1
m2

k1 0 0 0

k2 −k2 0 −k2
b2




vm1

vm2

Fk1

Fk2

+


0

1
m2

0

0

Fs
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Linear Graph
Mechanical System (In class work)
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The state-space variables are τk, ωJ . By continuity equation, we have

ik + ib + iJ = is ⇒ τk + τb + τJ = Ts

τk + bωb + J
dωJ

dt
= Ts ⇒ dωJ

dt
= − b

J
ωJ − 1

J
τk +

1

J
Ts

Note: ωJ = ωb
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Linear Graph
Mechanical System (In class work)

The compatibility equation in the basic loop containing τk we have

vk = vJ ⇒ ωk = ωJ

Since τk = mgl sin θ then

dτk
dt

= mgl cos θ
dθk
dt

= (mgl cos θ)ωJ

The nonlinear state-space equation is

ω̇J = − b

J
ωJ − 1

J
τk +

1

J
Ts

τ̇k = (mgl cos θ)ωJ
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Linear Graph
Fluid System (In class work)
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Linear Graph
Fluid System (In class work)

The fluid flow through an orifice is Q = C0

√
|∆P |sgn(∆P ). The tank is shaped as the

frustum of a cone, therefore has a volume which is a nonlinear functin of the height of the

fluid in the tank.

V =

∫ h

0
πr2dh =

∫ h

0
π(r1 + kCh)2dh =

∫ h

0
π
(
r21 + 2r1kCh+ k2Ch2

)
dh

=

∫ h

0
π
(
r21 + 2r1kCh+ k2Ch2

)
dh = π

(
r21h+ r1kCh2 + k2C

h3

3

)
For an open tank the pressure at the base is PC = ρgh, then

V =
πr21
ρg

PC +
πr1kC

(ρg)2
P 2
C +

πk2C
3(ρg)3

P 3
C

= Kt0PC +
Kt1

2
P 2
C +

Kt2

3
P 3
C

where

Kt0 =
πr21
ρg

, Kt1 =
2πr1kC

(ρg)2
, and

πk2C
(ρg)3
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Linear Graph
Fluid System (In class work)

There are two state-space variables, Ql and Pc. The continuity equation around node 1 is

iQs − iR1 − iC − il = 0 ⇒ Qs −QR1 −QC −Ql = 0

Since PR1 = PC and

dV

dt
= QC = C

dPC

dt
=

[
Kt0 +Kt1PC +Kt2P

2
C

] dPC

dt

QR1 = K1

√
|PR1 |sgn(PR1 ),

PR1 = PC

dPC

dt
=

[
1

Kt0 +Kt1PC +Kt2P
2
C

]
QC

=

[
1

Kt0 +Kt1PC +Kt2P
2
C

] [
Qs −K1

√
|PC |sgn(PC)−Ql

]
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Linear Graph
Fluid System (In class work)

The compatibility is Pl = PC − PR2 and Pl = Il
dQl

dt
then

IldQl

dt
= PC − PR2 , PR2 =

1

K2
2

QR2 |QR2 |, QR2 = Ql

dQl

dt
=

1

Il

[
PC − 1

K2
2

Ql|Ql|
]

The nonlinear state-space equation is

dQl

dt
=

1

Il

[
PC − 1

K2
2

Ql|Ql|
]

dPC

dt
=

[
1

Kt0 +Kt1PC +Kt2P
2
C

] [
Qs −K1

√
|PC |sgn(PC)−Ql

]
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