INC 693, 481 Dynamics System and Modelling: Unified System Representation

Dr.-Ing. Sudchai Boonto Assistant Professor

Department of Control System and Instrumentation Engineering King Mongkut's Unniversity of Technology Thonburi Thailand

Outline

- Kinematic variables
- Kinetic variables
- Work, power and energy
- System Component
 - Ideal inductors
 - Ideal capacitors
 - Constraint elements
 - Source elements

Generalized Variables and System Elements

The aims of system models:

- to obtain a description of the dynamic behavior of a system in terms of some physically significant variables in mathematic form.
- in electrical systems are voltage and current
- in mechanical systems are force and velocity
- in fluid systems are pressure and volumetric flow rate
- A suitable unifying concept is energy :
 - A physical system can be thought of as operating upon a pair of variables whose product is power.

Generalized Variables and System Elements

- energy can be considered as begin injected into a system via an energy port
- energy port applied to read out the system response.

System Variables

In each engineering discipline (i.e., mechanical, electrical, fluid and thermal) the state of the system is defined using a pair of *kinematic* variable and a pair of *kinetic* variables.

- the kinematic variables is used to describe the motion of objects without considering the course of motion-external force. They are displacement q(t) and flow f(t).
- the kinetic variables is used to describe the motion of objects with considering the course of motion only. They are momentum p(t) and effort e(t).

Kinematic Variables

The kinematic variables: displacement q(t) and flow f(t)

$$f(t) = \frac{dq(t)}{dt}$$
 and $q(t) = \int f(t)dt$

• Mechanical Translation: displacement is a linear displacement x(t) and flow is a linear velocity v(t), and

$$v(t) = \frac{dx(t)}{dt}$$
 and $x(t) = \int v(t)dt$

• Mechanical Rotation: displacement is a angular displacement $\theta(t)$ and flow is a angular velocity $\omega(t)$, and

$$\omega(t) = \frac{d\theta(t)}{dt}$$
 and $\theta(t) = \int \omega(t)dt$

Kinematic Variables

• Electrical: the displacement is corresponding to the charge q(t) and the flow variable is the current i(t) , thus

$$i(t) = rac{dq(t)}{dt}$$
 and $q(t) = \int i(t)dt$

• Fluid: the displacement is a volume variable V(t) and the flow variable is the volumetric flow rate Q(t), thus

$$Q(t) = \frac{dV(t)}{dt}$$
 and $V(t) = \int Q(t)dt$

• Thermal: the displacement is the entropy S(t) and the flow variable is the entropy flow rate $\dot{S}(t)$, then

$$\dot{S} = rac{dS(t)}{dt}$$
 and $S(t) = \int \dot{S}(t)dt$

Kinetic Variables

The kinetic variables: momentum p(t) and effort e(t)

$$e(t) = rac{dp(t)}{dt}$$
 and $p(t) = \int e(t)dt$

• Mechanical Translation: the momentum variable is the linear momentum p(t) and the effort variable is the force F(t), then we have the Newton's second law of motion

$$F(t) = \frac{dp(t)}{dt} = \frac{dmv(t)}{dt} = ma(t)$$

• Mechanical Rotation: the momentum variable is the angular momentum H(t) and the effort variable is the torque $\tau(t)$, and we have the Euler's equation of motion

$$\tau(t) = \frac{dH(t)}{dt}$$

Kinetic Variables

• Electrical: the momentum variable is the flux linkage $\lambda(t)$ and the effort variable is the voltage v(t), thus we have the Faraday's law

$$v(t) = \frac{d\lambda(t)}{dt}$$

• Fluid: the momentum is the pressure momentum variable $\Gamma(t)$ and the effort variable is the pressure P(t), thus

$$P(t) = \frac{d\Gamma(t)}{dt}$$

• Thermal: There is no momentum for this system.

Work, power and energy

The *increment in work* done by the effort in displacing the element an amount dq(t) is

$$\delta \mathcal{W}(t) = e(t)dq(t)$$

e(t) is the effort in the direction of the displacement q(t)

$$\delta \mathcal{W}(t) = e(t)dq(t) = \frac{dp(t)}{dt}dq(t)$$
$$= \frac{dq(t)}{dt}dp(t) = f(t)dp(t)$$

the $\delta W(t)$ can also be described as the increment in work done by the flow f(t) in changing the momentum an amount dp(t)

Work, power and energy

The *power* is the rate at which work is performed and given by

$$\mathcal{P}(t) = \frac{d\mathcal{W}(t)}{dt} = e(t)\frac{q(t)}{dt} = f(t)\frac{dp(t)}{dt} = e(t)f(t)$$

Discipline	Work		Power
	edq	fdp	ef
Mechanical Translation	Fdx	vdp	Fv
Mechanical Rotation	au d heta	ωdH	$ au\omega$
Electrical	vdq	$id\lambda$	vi
Fluid	PdV	$Qd\Gamma$	PQ
Thermal	TdS	_	$T\dot{S}$

Work, power and energy

Energy is the capacity to do work, and is defined as is the time integral of the power.

$$\mathcal{E}(t) = \int e(t)f(t)dt = \int_{C_q} e(t)dq(t) = \int_{C_p} f(t)dp(t)$$

• \int_{C_q} is the integral along the displacement path C_q • \int_{C_q} is the integral along the momentum path C_p The system components are classified as one of the following:

- Energy storage components which are represented by ideal *inductors*, and the ideal *capacitors*
- Energy dissipation components which are represented by ideal *resistors*
- Energy transforming components which are represented by constraint elements
- Energy sources which provide energy to the systems.

Ideal Inductors

Ideal Inductor is an energy storage components whose behavior is determined by expressions that relate the momentum p(t) and flow variables f(t).

- the constitutive relation $p(t) = \phi_L(f(t))$
- the constitutive relation need not to be linear but $\phi_L(0)=0$ and $\phi_L^{-1}(t)$ is exists.
- the flow can be determined in terms of the momentum, $f(t)=\phi_L^{-1}(p). \label{eq:f}$

Ideal Inductor: Translational Mass

The momentum p of the mass m is linearly related to the object's velocity v:

p = mv

The quantity \boldsymbol{p} , the momentum, is defined by

$$p = \int_{t_0}^t F dt + p(t_0)$$
 or $F = \frac{dp}{dt}$

The stored energy T(p) (kinetic energy) and the co-energy $T^*(v)$ are equal:

$$T = \frac{p^2}{2m} = T^* = \frac{1}{2}mv^2$$

Ideal Inductor: Rotational Mass

The angular momentum H of the mass moment of inertia of the rotor I is linearly related to the angular velocity ω :

$$H=I\omega$$

The quantity ${\cal H}$, the angular momentum, is defined by

$$H = \int_{t_0}^t \tau dt + H(t_0) \quad \text{ or } \quad \tau = \frac{dH}{dt}$$

The stored energy T(H) (kinetic energy) and the co-energy $T^*(\omega)$ are equal:

$$T(H)=\frac{H^2}{2I}=T^*(\omega)=\frac{1}{2}\omega^2 I$$

INC 693, 481 Dynamics System and Modelling: , Unified System Representation

◄ 16/42 ▶ ⊚

Ideal Inductor: Electrical Inductance

The *flux linkages* λ is the total magnetic flux linked by the electrical circuit.

$$\lambda = \phi_L(i), \qquad v = \frac{d\lambda}{dt},$$

Energies stored in an inductive field are

$$T(\lambda) = \int_0^\lambda i d\lambda \qquad T^*(i) = \int_0^i \lambda di$$

For linear inductor ($\lambda = Li$)

$$T(\lambda) = \frac{1}{2L}\lambda^2 = T^*(i) = \frac{1}{2}Li^2$$

< 17/42 ▶ ⊙

$$\lambda = \phi_L(i)$$

$$T^*(i)$$

$$T(\lambda)$$

$$\lambda$$
(b)

ⁱ **▲**

(a)

Ideal Inductor: Fluid

The *fluid inertia* I_f represents the ideal inductor

$$\Gamma = I_f Q_f$$

where Γ is the pressure momentum, I_f is the fluid inertia and Q is the volume flow rate.

$$P_{12} = P_1 - P_2 = rac{d\Gamma}{dt}$$
 and $T(\Gamma) = \int_0^\Gamma Q d\Gamma$

The stored energy $T(\Gamma)$ and the co-energy $T^{\ast}(Q)$ are

$$T(\Gamma) = \frac{1}{2I_f}\Gamma^2 = T^*(Q) = \frac{1}{2}I_fQ^2$$

INC 693, 481 Dynamics System and Modelling: , Unified System Representation

◄ 18/42 ▶ ⊚

Ideal Capacitors

Ideal Capacitor is an energy storage components whose behavior is determined by expressions that relate the displacement q(t) and effort variables e(t).

- the constitutive relation $q(t) = \phi_C(e(t))$
- the constitutive relation need not to be linear but $\phi(0)=0$ and $\phi_C^{-1}(t)$ is exists.
- the effort can be determined in terms of the displacement, $e(t)=\phi_C^{-1}(q). \label{eq:eff}$

Ideal Capacitor: Translational Spring

F $V^{*}(F)$ F = kx V(x) F = kx (b)

For a linear spring, the relationship between the applied force f(t) and the deflection x(t) of the spring is given by Hooke's law

$$F(t) = k(x_2 - x_1) = kx,$$

where F(t) is the force applied to the spring, k is the spring stiffness.

The stored energy (potential energy) V(x) and the co-energy $V^{*}(F)$

$$V(x) = \int_0^x F(t) dx = \frac{1}{2}kx^2 = V^*(F) = \frac{F^2}{2k}$$

◄ 20/42 ▶ ⊚

Ideal Capacitor: Rotational Spring

(a)

the torsional spring is a capacitor element. The relationship between the applied torque $\tau(t)$ and the net angular deflection $\theta(t)$

$$\tau(t) = k_{\theta}(\theta_2 - \theta_1) = k_{\theta}\theta,$$

where $\tau(t)$ is the torque applied to the spring, k_{θ} is the torsional spring stiffness.

The stored energy (potential energy) $V(\theta)$ and the co-energy $V^*(\tau)$

$$V(\theta) = \int_0^x \tau(t)d\theta = \frac{1}{2}k_\theta\theta^2 = V^*(\tau) = \frac{\tau^2}{2k_\theta}$$

◀ 21/42 ▶ ⊚

Ideal Capacitor: Fluid

V(V

(b)

P

 $V^*(P)$

Tank is a capacitor elements in fluid systems. Linear fluid capacitors satisfies the equation

$$P = \frac{V}{C_f}$$

where P is the pressure, V is the volume of the fluid and C_f is the fluid capacitance.

$$V(V) = \int_0^V P dV = \frac{V^2}{2C_f} = V^*(P) = \frac{C_f P^2}{2}$$

INC 693, 481 Dynamics System and Modelling: , Unified System Representation

► V

 $V = C_f P$

◄ 22/42 ▶ ⊚

Ideal Capacitor: Electrical Capacitance

the amount of charge q is determined by the voltage across the conductor.

$$q = \phi(v), \qquad i = \frac{dq}{dt},$$

Energies stored in a linear capacitor (q = Cv) are

Ideal Energy Sources

Ideal Resistance: Mechanical Translation

The damper behaves like

$$f = \phi(v)$$

For linear damper, $f = b(v_2 - v_1) = bv$, the content and co-content energy is given by

$$D(f) = \int_0^f v df = \frac{1}{2b} f^2$$
$$= D^*(v) = \frac{1}{2} b v^2$$

The total power dissipated is

$$P = bv^2 = \frac{f^2}{b}$$

Ideal Resistance: Mechanical Rotational

The damper behaves like

(a)

$$\tau = \phi(\omega)$$

For linear torsional damper, $\tau = b_{\omega}(\omega_2 - \omega_1) = b_{\omega}\omega$, the content and co-content energy is given by

$$D(\tau) = \int_0^\tau \omega d\tau = \frac{1}{2b_\omega} \tau^2 = D^*(\omega) = \frac{1}{2} b_\omega \omega^2$$

The total power dissipated is

$$P = b_{\omega}v^2 = \frac{\tau^2}{b_{\omega}}$$

Ideal Resistance: Electrical Dissipation

The general constitutive relation for a resistance is

$$v = \phi(i)$$

For linear device, v = Ri, the content and co-content energy is given by

$$D(i) = \int_0^i v di = \frac{1}{2R} v^2 = D^*(v) = \frac{1}{2}Ri^2$$

The total power dissipated is

$$P = i^2 R = \frac{v^2}{R}$$

(a)

Ideal Resistance: Fluid Dissipation

 $P_2 \qquad P_1 \qquad P_1 \qquad P_2 \qquad P_1 \qquad P_1 \qquad P_2 \qquad P_1 \qquad P_2 \qquad P_2 \qquad P_1 \qquad P_2 \qquad P_2$

The general constitutive relation for a fluid resistor is

$$P = \phi(Q), \qquad P = R_f Q$$

where P is the pressure across the terminals, R_f is the fluid resistance, and Q is the volume flow rate. The content and co-content energy is given by

$$D(Q) = \int_0^Q P dQ = \frac{1}{2} R_f Q^2 = D^*(P) = \frac{1}{2R} P^2$$

• $_Q$ The total power dissipated is

$$P = R_f Q^2 = \frac{P^2}{R_f}$$

INC 693, 481 Dynamics System and Modelling: , Unified System Representation

◄ 28/42 ▶ ⊚

Transformers

- a transformer transfers energy between the subsystems in the dynamic system model.
- Ideally, elements do not store, dissipate or generate energy, and ther behave in such a way that the net power into the device is zero.
- in the case of transformers the energy transfer takes place within the same engineering discipline.
- these elements give rise to *displacement constraints* or *flow constraints* that do no work on the system.

Transducers

- the transducer are similar to a transformer
- however the energy transfer takes place between different engineering disciplines.
- these elements give rise to displacement or flow constraints the do no work on the ssytem.

Transformer: Mechanical Translation

For small displacements the following kinematic relationship holds,

$$\begin{aligned} x_1 &= l_1 \theta \quad \to \quad \theta = \frac{x_1}{l_1} \\ x_2 &= -l_2 \theta \quad \to \quad x_2 = -\frac{l_2}{l_1} x_1 \end{aligned}$$

In terms of the velocities these relations become

$$\frac{l_2}{l_1}v_1 + v_2 = 0, \quad v_1 = \frac{dx_1}{dt}, v_2 = \frac{dx_2}{dt}$$

INC 693, 481 Dynamics System and Modelling: , Unified System Representation

∢ 30/42 ▶ @

Transformer: Mechanical Translation

Summing moments about the pivot (counterclockwise positive) gives,

 $-F_1l_1 + F_2l_2 = 0$

which is a constraint on the effort variables of the device. the power balance yields

Power input + Power output =
$$F_1v_1 + F_2v_2$$

= $\left(F_1 - \frac{l_2}{l_1}F_2\right)v_1 = 0$

Hence, no energy is stored or dissipated in the device.

Transformer: Mechanical Rotational

The simple gear train represents a transformer for mechanical systems in rotation. Since there is no slipping or backlash the velocity at the point of contact is

$$r_1\omega_1 = -r_2\omega_2$$
 and $\frac{r_1}{r_2}\omega_1 + \omega_2 = 0$

Transformer: Mechanical Rotational

This is the flow constraint that the simple gear train must satisfy. Force at the point of contact satisfies

$$\frac{\tau_1}{r_1} = \frac{\tau_2}{r_2}$$

which is an effort constraint for the simple gear train. As a result, the power balance satisfies

Power input + Power output = $\tau_1\omega_1 + \tau_2\omega_2$

$$= \left(\tau_1 - \frac{r_1}{r_1}\tau_2\right)\omega_1 = 0$$

Transformer: Electrical Transformer

The coil on the left has N_1 turns, applied voltage v_1 and current i_1 . The current in the primary coil creates a magnetic flux $\phi = N_1 i_1$ that induces a voltage v_2

Assume that there is no flux leakage and the inductance of the coils can be neglected. The magnetomotive force balance given,

$$N_1 i_1 + N_2 i_2 = 0$$

which is the flow constraint for the device.

Transformer: Electrical Transformer

From Faraday's law we have

$$v_1 = \frac{d\lambda_1}{dt} = \frac{d(N_1\phi)}{dt} = N_1\frac{d\phi}{dt}$$
$$v_2 = \frac{d\lambda_2}{dt} = \frac{d(N_2\phi)}{dt} = N_2\frac{d\phi}{dt} = \frac{N_2}{N_1}v_1$$

which is the effort constraint that the device must satisfy. The power balance gives

Power input + Power output = $v_1i_1 + v_2i_2$ = $\left(v_1 - \frac{N_1}{N_2}v_2\right)i_1 = 0$

Transformer: Fluid Transformer

This is a fluid transformer

the velocity of the piston is

$$\frac{Q_1}{A_1} = -\frac{Q_2}{A_2}$$
$$\frac{A_2}{A_1}Q_1 + Q_2 = 0$$

which is the flow constraint for the device.

Transformer: Fluid Transformer

If the piston is assumed to be massless, the net force acting on the piston is

$$P_1 A_1 - P_2 A_2 = 0,$$

which is a constraint on the effort variables. The power balance gives

Power input + Power output =
$$P_1Q_1 + P_2Q_2$$

= $\left(P_1 - \frac{A_1}{A_2}P_2\right)Q_1 = 0$

Transducer: Mechanical Transducer

The rack and pinion system:

the torque associated with the gear is τ , and ω is the corresponding angular velocity. The rack has a force F and velocity v. If there is no slipping or backlash the system satisfies the flow constraint

$$v + r\omega = 0.$$

Transducer: Mechanical Transducer

If the system is inertialess, summing the moments about the center of the gear gives

$$Fr - \tau = 0,$$

which is the effort constraint that must satisfied. The power balance gives

Power input + Power output = $Fv + \tau \omega$

$$= \left(F - \frac{1}{r}\tau\right)v = 0$$

Transducer: MechaniFluid-mechanical Transducer

The hydraulic press is an example of a fluid-mechanical transducer.

An incompressible fluid with volume flow rate Q and pressure P acts on a massless pistion with area A. The piston has an applied force F and velocity v in the direction shown.

$$v + \frac{Q}{A} = 0.$$

which is the flow constraint that the device must satisfy.

Transducer: MechaniFluid-mechanical Transducer

Since the piston is massless, the net force acting on the piston is

-F + PA = 0

which is the effort constraint that the device must satisfy. The power balance gives

Power input + Power output =
$$Fv + PQ$$

= $(F - AP) v = 0$

- Wellstead, P. E. Introduction to Physical System Modelling, Electronically published by: www.control-systems-principles.co.uk, 2000
- Banerjee, S., *Dynamics for Engineers*, John Wiley & Sons, Ltd., 2005
- Rojas, C. , *Modeling of Dynamical Systems*, Automatic Control, School of Electrical Engineering, KTH Royal Institute of Technology, Sweeden
- 4. Fabien, B., Analytical System Dynamics: Modeling and Simulation Springer, 2009