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Generalized Variables and System Elements

The aims of system models:

� to obtain a description of the dynamic behavior of a system in

terms of some physically significant variables in mathematic form.

� in electrical systems are voltage and current

� in mechanical systems are force and velocity

� in fluid systems are pressure and volumetric flow rate

A suitable unifying concept is energy :

� A physical system can be thought of as operating upon a pair of

variables whose product is power.
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Generalized Variables and System Elements

Energy port Energy port

System

Source
Sink

� energy can be considered as begin injected into a system via an

energy port

� energy port applied to read out the system response.
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System Variables

In each engineering discipline (i.e. , mechanical, electrical, fluid and

thermal) the state of the system is defined using a pair of kinematic

variable and a pair of kinetic variables.

� the kinematic variables is used to describe the motion of objects

without considering the course of motion–external force. They are

displacement q(t) and flow f(t).

� the kinetic variables is used to describe the motion of objects with

considering the course of motion only. They are momentum p(t)

and effort e(t).
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Kinematic Variables

The kinematic variables: displacement q(t) and flow f(t)

f(t) =
dq(t)

dt
and q(t) =

∫
f(t)dt

� Mechanical Translation: displacement is a linear displacement

x(t) and flow is a linear velocity v(t), and

v(t) =
dx(t)

dt
and x(t) =

∫
v(t)dt

� Mechanical Rotation: displacement is a angular displacement

θ(t) and flow is a angular velocity ω(t), and

ω(t) =
dθ(t)

dt
and θ(t) =

∫
ω(t)dt
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Kinematic Variables

� Electrical: the displacement is corresponding to the charge q(t)

and the flow variable is the current i(t) , thus

i(t) =
dq(t)

dt
and q(t) =

∫
i(t)dt

� Fluid: the displacement is a volume variable V (t) and the flow

variable is the volumetric flow rate Q(t), thus

Q(t) =
dV (t)

dt
and V (t) =

∫
Q(t)dt

� Thermal: the displacement is the entropy S(t) and the flow

variable is the entropy flow rate Ṡ(t), then

Ṡ =
dS(t)

dt
and S(t) =

∫
Ṡ(t)dt
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Kinetic Variables

The kinetic variables: momentum p(t) and effort e(t)

e(t) =
dp(t)

dt
and p(t) =

∫
e(t)dt

� Mechanical Translation: the momentum variable is the linear

momentum p(t) and the effort variable is the force F (t), then we

have the Newton’s second law of motion

F (t) =
dp(t)

dt
=

dmv(t)

dt
= ma(t)

� Mechanical Rotation: the momentum variable is the angular

momentum H(t) and the effort variable is the torque τ(t) , and we

have the Euler’s equation of motion

τ(t) =
dH(t)

dt
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Kinetic Variables

� Electrical: the momentum variable is the flux linkage λ(t) and the

effort variable is the voltage v(t) , thus we have the Faraday’s law

v(t) =
dλ(t)

dt

� Fluid: the momentum is the pressure momentum variable Γ(t) and

the effort variable is the pressure P (t), thus

P (t) =
dΓ(t)

dt

� Thermal: There is no momentum for this system.
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Work, power and energy

The increment in work done by the effort in displacing the element an

amount dq(t) is

δW(t) = e(t)dq(t)

e(t) is the effort in the direction of the displacement q(t)

δW(t) = e(t)dq(t) =
dp(t)

dt
dq(t)

=
dq(t)

dt
dp(t) = f(t)dp(t)

the δW(t) can also be described as the increment in work done by the

flow f(t) in changing the momentum an amount dp(t)
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Work, power and energy

The power is the rate at which work is performed and given by

P(t) =
dW(t)

dt
= e(t)

q(t)

dt
= f(t)

dp(t)

dt
= e(t)f(t)

Discipline Work Power

edq fdp ef

Mechanical Translation Fdx vdp Fv

Mechanical Rotation τdθ ωdH τω

Electrical vdq idλ vi

Fluid PdV QdΓ PQ

Thermal TdS − T Ṡ

INC 693, 481 Dynamics System and Modelling: , Unified System Representation J 11/42 I }



Work, power and energy

Energy is the capacity to do work, and is defined as is the time integral

of the power.

E(t) =
∫

e(t)f(t)dt =

∫
Cq

e(t)dq(t) =

∫
Cp

f(t)dp(t)

�

∫
Cq

is the integral along the displacement path Cq

�

∫
Cq

is the integral along the momentum path Cp
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System Components

The system components are classified as one of the following:

� Energy storage components which are represented by ideal

inductors, and the ideal capacitors

� Energy dissipation components which are represented by ideal

resistors

� Energy transforming components which are represented by

constraint elements

� Energy sources which provide energy to the systems.
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Ideal Inductors

Ideal Inductor is an energy storage components whose behavior is

determined by expressions that relate the momentum p(t) and flow

variables f(t).

� the constitutive relation p(t) = ϕL(f(t))

� the constitutive relation need not to be linear but ϕL(0) = 0 and

ϕ−1
L (t) is exists.

� the flow can be determined in terms of the momentum,

f(t) = ϕ−1
L (p).
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Ideal Inductor: Translational Mass

m

v

F

(a)

v

p

T ∗(v)

T (p)

p = mv

(b)

The momentum p of the mass m is

linearly related to the object’s velocity v:

p = mv

The quantity p , the momentum, is

defined by

p =

∫ t

t0

Fdt+ p(t0) or F =
dp

dt

The stored energy T (p) (kinetic energy)

and the co-energy T ∗(v) are equal:

T =
p2

2m
= T ∗ =

1

2
mv2
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Ideal Inductor: Rotational Mass

r

I

ω

(a)

ω

H

T ∗(ω)

T (H)

H = Iω

(b)

The angular momentum H of the mass
moment of inertia of the rotor I is
linearly related to the angular velocity ω:

H = Iω

The quantity H , the angular
momentum, is defined by

H =

∫ t

t0

τdt+H(t0) or τ =
dH

dt

The stored energy T (H) (kinetic
energy) and the co-energy T ∗(ω) are
equal:

T (H) =
H2

2I
= T ∗(ω) =

1

2
ω2I
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Ideal Inductor: Electrical Inductance

i
− v +

(a)

i

λ

T ∗(i)

T (λ)

λ = ϕL(i)

(b)

The flux linkages λ is the total

magnetic flux linked by the electrical

circuit.

λ = ϕL(i), v =
dλ

dt
,

Energies stored in an inductive field

are

T (λ) =

∫ λ

0
idλ T ∗(i) =

∫ i

0
λdi

For linear inductor (λ = Li)

T (λ) =
1

2L
λ2 = T ∗(i) =

1

2
Li2
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Ideal Inductor: Fluid

P2 P1

Q

If

(a)

Q

Γ

T ∗(Q)

T (Γ)

Γ = ϕL(Q)

(b)

The fluid inertia If represents the

ideal inductor

Γ = IfQ,

where Γ is the pressure momentum,

If is the fluid inertia and Q is the

volume flow rate.

P12 = P1 − P2 =
dΓ

dt
and T (Γ) =

∫ Γ

0
QdΓ

The stored energy T (Γ) and the

co-energy T ∗(Q) are

T (Γ) =
1

2If
Γ2 = T ∗(Q) =

1

2
IfQ

2
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Ideal Capacitors

Ideal Capacitor is an energy storage components whose behavior is

determined by expressions that relate the displacement q(t) and effort

variables e(t).

� the constitutive relation q(t) = ϕC(e(t))

� the constitutive relation need not to be linear but ϕ(0) = 0 and

ϕ−1
C (t) is exists.

� the effort can be determined in terms of the displacement,

e(t) = ϕ−1
C (q).
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Ideal Capacitor: Translational Spring

kF F

x2 x1

(a)

F

x

V ∗(F )

V (x)

F = kx

(b)

For a linear spring, the relationship

between the applied force f(t) and the

deflection x(t) of the spring is given by

Hooke’s law

F (t) = k(x2 − x1) = kx,

where F (t) is the force applied to the

spring, k is the spring stiffness.

The stored energy (potential energy)

V (x) and the co-energy V ∗(F )

V (x) =

∫ x

0
F (t)dx =

1

2
kx2 = V ∗(F ) =

F 2

2k
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Ideal Capacitor: Rotational Spring

kθ

θ2 θ1

(a)

τ

θ

V ∗(τ)

V (θ)

τ = kθθ

(b)

the torsional spring is a capacitor

element. The relationship between the

applied torque τ(t) and the net angular

deflection θ(t)

τ(t) = kθ(θ2 − θ1) = kθθ,

where τ(t) is the torque applied to the

spring, kθ is the torsional spring

stiffness.

The stored energy (potential energy)

V (θ) and the co-energy V ∗(τ)

V (θ) =

∫ x

0
τ(t)dθ =

1

2
kθθ

2 = V ∗(τ) =
τ2

2kθ
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Ideal Capacitor: Fluid

h

A

(a)

P

V

V ∗(P )

V (V )

V = CfP

(b)

Tank is a capacitor elements in fluid

systems. Linear fluid capacitors satisfies

the equation

P =
V

Cf

where P is the pressure, V is the

volume of the fluid and Cf is the fluid

capacitance.

P = ρgh =
ρgV

A
, Cf =

A

ρg

V (V ) =

∫ V

0
PdV =

V 2

2Cf
= V ∗(P ) =

CfP
2

2
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Ideal Capacitor: Electrical Capacitance

i
+ v−

(a)

v

q

V ∗(v)

V (q)

q = Cv

(b)

the amount of charge q is determined

by the voltage across the conductor.

q = ϕ(v), i =
dq

dt
,

Energies stored in a linear capacitor

(q = Cv) are

V (q) =

∫ q

0
vdq =

q2

2C

V ∗(v) =

∫ v

0
qdv =

1

2
Cv2
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Ideal Energy Sources

f1
e

(c) Flow source

f

e1

+

(d) Effort source

F (t)

(e) Force

τ(t)

(f) Torque
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Ideal Resistance: Mechanical Translation

f1 f2

v2 v1

b

(a)

v

f

D∗(v)

D(f)

v = ϕ(f)

(b)

The damper behaves like

f = ϕ(v)

For linear damper,

f = b(v2 − v1) = bv, the content

and co-content energy is given by

D(f) =

∫ f

0
vdf =

1

2b
f2

= D∗(v) =
1

2
bv2

The total power dissipated is

P = bv2 =
f2

b
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Ideal Resistance: Mechanical Rotational

ω1 ω2

bω

(a)

ω

τ

D∗(ω)

D(τ)

ω = ϕ(τ)

(b)

The damper behaves like

τ = ϕ(ω)

For linear torsional damper,

τ = bω(ω2 − ω1) = bωω, the content

and co-content energy is given by

D(τ) =

∫ τ

0
ωdτ =

1

2bω
τ2 = D∗(ω) =

1

2
bωω

2

The total power dissipated is

P = bωv
2 =

τ2

bω
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Ideal Resistance: Electrical Dissipation

i
+ v −

(a)

v

i

D∗(v)

D(i)

v = ϕ(i)

(b)

The general constitutive relation for

a resistance is

v = ϕ(i)

For linear device, v = Ri, the

content and co-content energy is

given by

D(i) =

∫ i

0
vdi =

1

2R
v2 = D∗(v) =

1

2
Ri2

The total power dissipated is

P = i2R =
v2

R
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Ideal Resistance: Fluid Dissipation

Q

P2 P1

P21 = P2 − P2

(a)

P

Q

D∗(P )

D(Q)

P = RfQ

(b)

The general constitutive relation for a fluid

resistor is

P = ϕ(Q), P = RfQ

where P is the pressure across the

terminals, Rf is the fluid resistance, and Q

is the volume flow rate. The content and

co-content energy is given by

D(Q) =

∫ Q

0
PdQ =

1

2
RfQ

2 = D∗(P ) =
1

2R
P 2

The total power dissipated is

P = RfQ
2 =

P 2

Rf
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Constraint elements

� Transformers

� a transformer transfers energy between the subsystems in the

dynamic system model.

� Ideally, elements do not store, dissipate or generate energy, and ther

behave in such a way that the net power into the device is zero.

� in the case of transformers the energy transfer takes place within the

same engineering discipline.

� these elements give rise to displacement constraints or flow

constraints that do no work on the system.

� Transducers

� the transducer are similar to a transformer

� however the energy transfer takes place between different

engineering disciplines.

� these elements give rise to displacement or flow constraints the do

no work on the ssytem.
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Transformer: Mechanical Translation

������������

F1

F2

l1l1

l2

θ
θ

x1 x2

For small displacements the following kinematic relationship holds,

x1 = l1θ → θ =
x1
l1

x2 = −l2θ → x2 = − l2
l1
x1

In terms of the velocities these relations become

l2
l1
v1 + v2 = 0, v1 =

dx1
dt

, v2 =
dx2
dt

The total power dissipated is

P = RfQ
2 =

P 2

Rf
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Transformer: Mechanical Translation

Summing moments about the pivot (counterclockwise positive) gives,

−F1l1 + F2l2 = 0

which is a constraint on the effort variables of the device. the power

balance yields

Power input + Power output = F1v1 + F2v2

=

(
F1 −

l2
l1
F2

)
v1 = 0

Hence, no energy is stored or dissipated in the device.
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Transformer: Mechanical Rotational
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τ2

τ1

ω1

ω2

r1
r2

The simple gear train represents a transformer for mechanical systems in

rotation. Since there is no slipping or backlash the velocity at the point

of contact is

r1ω1 = −r2ω2 and
r1
r2
ω1 + ω2 = 0
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Transformer: Mechanical Rotational

This is the flow constraint that the simple gear train must satisfy. Force

at the point of contact satisfies

τ1
r1

=
τ2
r2

which is an effort constraint for the simple gear train. As a result, the

power balance satisfies

Power input + Power output = τ1ω1 + τ2ω2

=

(
τ1 −

r1
r1
τ2

)
ω1 = 0
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Transformer: Electrical Transformer

The coil on the left has N1 turns, applied voltage v1 and current i1.
The current in the primary coil creates a magnetic flux ϕ = N1i1 that
induces a voltage v2

i1 i2

N1 N2

+

−
v1

+

−
v2

Assume that there is no flux leakage and the inductance of the coils can
be neglected. The magnetomotive force balance given,

N1i1 +N2i2 = 0

which is the flow constraint for the device.
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Transformer: Electrical Transformer

From Faraday’s law we have

v1 =
dλ1

dt
=

d(N1ϕ)

dt
= N1

dϕ

dt

v2 =
dλ2

dt
=

d(N2ϕ)

dt
= N2

dϕ

dt
=

N2

N1
v1

which is the effort constraint that the device must satisfy. The power
balance gives

Power input + Power output = v1i1 + v2i2

=

(
v1 −

N1

N2
v2

)
i1 = 0
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Transformer: Fluid Transformer

This is a fluid transformer

Q1 Q2

P1
P2

A1

A2

the velocity of the piston is

Q1

A1
= −Q2

A2

A2

A1
Q1 +Q2 = 0

which is the flow constraint for the device.
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Transformer: Fluid Transformer

If the piston is assumed to be massless, the net force acting on the
piston is

P1A1 − P2A2 = 0,

which is a constraint on the effort variables. The power balance gives

Power input + Power output = P1Q1 + P2Q2

=

(
P1 −

A1

A2
P2

)
Q1 = 0
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Transducer:Mechanical Transducer

The rack and pinion system:
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�������������
�������������

�������������
�������������
�������������

������

τ
ω

r

F
v

the torque associated with the gear is τ , and ω is the corresponding
angular velocity. The rack has a force F and velocity v. If there is no
slipping or backlash the system satisfies the flow constraint

v + rω = 0.
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Transducer:Mechanical Transducer

If the system is inertialess, summing the moments about the center of
the gear gives

Fr − τ = 0,

which is the effort constraint that must satisfied. The power balance
gives

Power input + Power output = Fv + τω

=

(
F − 1

r
τ

)
v = 0
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Transducer:MechaniFluid-mechanical Transducer

The hydraulic press is an example of a fluid-mechanical transducer.

Q

P

A

F
v

An incompressible fluid with volume flow rate Q and pressure P acts on
a massless pistion with area A. The piston has an applied force F and
velocity v in the direction shown.

v +
Q

A
= 0.

which is the flow constraint that the device must satisfy.
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Transducer:MechaniFluid-mechanical Transducer

Since the piston is massless, the net force acting on the piston is

−F + PA = 0

which is the effort constraint that the device must satisfy. The power
balance gives

Power input + Power output = Fv + PQ

= (F −AP ) v = 0
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