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Feedback Structure

r e
K

u ug

di

G
y z

−

n

d

Consider the closed-loop system shown above. External inputs are a reference input r(t), an

output disturbance d(t) and measurement noise n(t). The controlled output is y(t), and we

have

y = Gu+ d, u = K(r − y − n)

yield y = (I +GK)−1GK(r − n) + (I +GK)−1d

Define the transfer functions

S(s) = (I +G(s)K(s))−1 and T (s) = (I +G(s)K(s))−1G(s)K(s)
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Feedback Structure

I The function S(s) is called sensitivity function of the feedback system. It is the

transfer function from the output disturbance d to the controlled output y.

I the function T (s) is called complementary sensitivity function of the system.

I it is the closed-loop transfer function from r to y, and it is also the transfer function

from measurement noise to controlled output.

I S + T = I.

In terms of S and T , we have

y = T (r − n) + Sd

The control error e(t) is

e = r − n− y = r − n− (GKe+ d) then e = S(r − n− d)

S is also the transfer function from reference input, measurement noise and output

disturbance, to the control error.
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Control Objectives

We consider the following objectives:

I tracking: the controlled output should track the reference input, ideally y(t) = r(t)

I disturbance rejection: the controller should keep the controlled output at its desired

value in the presence of a disturbance d(t) ̸= 0. Ideally the transfer function from d to

y would be zero.

I noise rejection: the controller should suppress the effect of measurement noise on the

control input

I reasonable control effort: the above design objectives must be achieved within given

constraints on the actuators, which means the magnitude of the control input must not

exceed given limits.

I the perfect tracking and disturbance rejection require T (s) = I, this implies S(s) = 0

and the control error should be zero.

I the prefect noise rejection requires T (s) = 0 or S(s) = I

I Clearly, tracking and disturbance rejection on one hand and the suppression of

measurement noise are conflicting design objectives.
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Control Objectives

The control effort is related to the sensitivity because

u = Ke = KS(r − n− d)

To achieve the design objectives with reasonable control effort, the transfer function

K(s)S(s) should not become “too large”. The function KS is called the control sensitivity.

I In practice, the design objectives are interpreted such that good tracking and

disturbance rejection properties should be achieved for signals within the closed-loop

bandwidth.

I noise rejection for high frequency measurement noise beyond the bandwidth.
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Mixed Sensitivity Design for SISO Systems
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I At low frequencies, the sensitivity S is close to zero, which means good tracking and

disturbance rejection.

I At higher frequencies, the magnitude of S increases, and at the frequency ω = ωb, it is

0.71 (-3dB). We will consider control to be effective if |S| < 0.71, and define the

closed-loop bandwidth as this frequency.
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Mixed Sensitivity Design for SISO Systems

I At low frequencies, T is approximately 1, which is consistent with |S| ≈ 0 and

indicates good tracking properties, because T is the transfer function from r to y.

I At high frequencies, |T | rolls off and approaches zero. This is required for the rejection

of high frequency measurement noise, and implies that |S| approaches 1.

I The closed-loop bandwidth is take as the frequency ωbT where |T | = 0.71.

I the two frequencies ωb and ωbT are usually not equal, but also not far from each other.

Lecture 9 : Design Objectives and Sensitivity Functions J 7/42 I }



The Waterbed Effect

I From the previous Figure, both |S| and |T | are shown to have peak values greater than

1. This happens often and is in many cases unavoidable.

I A peak of |T | greater than 1 indicates a resonant peak with overshoot in the step

response.

I |S| > 1 means that disturbances in this frequency range are not suppressed but

actually amplified.

I These peaks are unavoidable if

I the pole excess of the plant is greater than one, or
I if the plant has one or more zeros in the right half plane

I If the plant is minimum-phase, one can show that

∫ ∞

0
ln |S(jω)|dω = 0
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The Waterbed Effect
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I The area below 1 and above |S(jω)| is equal to the area above 1 and below |S(jω)|,
when |S(jω)| is plotted on a logarithmic scale and ω is plotted on a linear scale.
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The Waterbed Effect
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The Nyquist polot of the loop transfer function L(s) = G(s)K(s) is shown for the above

control system with a SISO plant.
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The Waterbed Effect

I If L(s) has pole excess of 2, then the Nyquist plot of L(s) will penetrate a disc of

radius 1 around the critical point −1

I Since the distance between L(jω) and −1 is |1 + L(jω)|, we have inside the disc

|1 + L(jω)| < 1 and |S(jω)| > 1

I if the plant has right half plane zeros, the resulting phase lag will lead to L(jω)

penetrating the disc even if the pole excess is only 1.
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Low Frequency Design - Shaping the Sensitivity

the H∞ norm can be used to express constraints on the sensitivity that are required to

achieve the design objectives. Properties of the closed-loop system that depend on the shape

of |S(jω)| include
I the bandwidth ωb

I peak overshoot

I the system type (capability of tracking step or ramp inputs with zero steady state error)
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Low Frequency Design - Shaping the Sensitivity
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I The magnitude response of a type 1 system has at low frequencies a slope of -20

dB/dec. Because at low frequencies (ω ≪ ωb) we have |L(jω)| ≫ 1, we can

approximate the sensitivity by

S(jω) =
1

1 + L(jω)
≈

1

L(jω)
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Low Frequency Design - Shaping the Sensitivity

I At low frequencies the graph of |S(jω)| in dB is approximately equal to the mirror

image of |L(jω)| about the 0 dB line.

I a feedback system has integral action in the loop if the magnitude of the sensitivity has

at low frequencies a positive slope of 20 dB/dec.

I Similarly, for a type 2 system we need |S(jω)| to have a slope of 40 dB/dec.

One can use the H∞ norm to express constraints on the magnitude of the sensitivity,

∥S(s)∥∞ < MS ⇒ |S(jω)| < MS ∀ω

The constraint is unrealistic, since we cannot keep the sensitivity small at all frequencies. A

weighting function WS(s) is used, yield

∥WS(s)S(s)∥∞ < 1

This enforces

|WS(jω)S(jω)| < 1 ∀ω or |S(jω)| <
1

|WS(jω)|
∀ω
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Low Frequency Design - Shaping the Sensitivity
H∞ norm
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0 dB

0

|S(jω)|

ω

1

|WS|

I If the H∞ norm is less than 1, the inverse of the weighting function is an upper bound

on the sensitivity.

I the weighting function enforces integral action and an upper bound MS on the peak

value of |S(jω)|.
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High Frequency Design
Shaping the |T (s)| and |K(s)S(s)|

At high frequencies (ω ≪ ωb) the complementary sensitivity is required to roll off in order to

suppress measurement noise. This can be expressed by introducing a weighting function

WT (s) as

∥WT (s)T (s)∥∞ < 1

This enforces

|WT (jω)T (jω)| < 1 ∀ω or |T (jω)| <
1

|WT (jω)|
∀ω

In order to maintain a reasonable control effort, the control sensitivity K(s)S(s) should not

become “too large”. We can be more specific and impose

∥WK(s)K(s)S(s)∥∞ < 1
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Weighting Filters and Generalized Plant
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∥WS(s)S(s)∥∞ < 1

∥WT (s)T (s)∥∞ < 1

∥WK(s)K(s)S(s)∥∞ < 1
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Weighting Filters and Generalized Plant
Constraints on S, T and KS in terms of a generalized plat
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Weighting Filters and Generalized Plant

Assume we want to design a controller with integral action and given actuator constraints.

We choose zS and zK as outputs and define the fictitious output vector z of the generalized

plant as

z =

[
zS
zK

]

we have [
zS
zK

]
=

[
WSS

WKKS

]
r, therefore Tzr(s) =

[
WS(s)S(s)

WK(s)K(s)S(s)

]

Find a controller K(s) such that the closed-loop transfer function satisfies ∥Tzr(s)∥∞ < 1 or

∥∥∥∥[ WSS

WKKS

]∥∥∥∥
∞

< 1
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Weighting Filters and Generalized Plant

The above H∞ norm is equivalent to

sup
ω

σ̄

([
WS(jω)S(jω)

WK(jω)K(jω)S(jω)

])
< 1

In SISO systems, we have

sup
ω

√
|WSS|2 + |WKKS|2 < 1

The largest approximation error occurs if |WSS| = |WKKS|, in this case the approximation

of above constraint become

sup
ω

|WSS| < 0.71 and sup
ω

|WKKS| < 0.71
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Mixed Sensitivity Design for MIMO Systems

For MIMO plats, the sensitivity S(s) is a l× l transfer function matrix (where l is the

number of plant outputs). Accordingly, we need a l× l weighting matrix. For example,

WS(s) =


wS(s) 0

. . .

0 wS(s)


where the same scalar shaping filter wS(s) is used for each output of S(s). With this choice

we have

sup
ω

σ̄(WS(jω)S(jω)) = sup
ω

σ̄(wS(jω)S(jω)) = sup
ω

|wS(jω)|σ̄(S(jω)) < 1

This is equivalent to σ̄(S(jω)) <
1

|wS(jω)|
∀ω
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Aircraft control

Assuming the state space model represents a

linearized model of the vertical-plane dynamics

of an aircraft is described below:

A =


0 0 1.132 0 −1

0 −0.0538 −0.1712 0 0.0705

0 0 0 1 0

0 0.0485 0 −0.8556 −1.013

0 −0.2909 0 1.0532 −0.6859



B =


0 0 0

−0.12 1 0

0 0 0

4.419 0 −1.665

1.575 0 −0.0732

 , C =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 , D =

0 0 0

0 0 0

0 0 0


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Aircraft control

u1 spoiler angle (in 0.1 deg)

u2 forward acceleration (in m s−2)

u3 elevator angle (in deg)

x1 relative altitude (in m)

x2 forward speed (in m s−1)

x3 pitch angle (in deg)

x4 pitch rate (in deg s−1)

x5 vertical speed (in m s−1)

The design objectives are:

I fast tracking of step changes for all three reference inputs, with little or no overshoot

I control input must satisfy |u3| < 20.
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Aircraft control
Scaling the Weighting Filters

In this design we will shape the sensitivity S and the control sensitivity KS, to achieve

desired properties of the closed-loop transfer function Tzw(s) from the reference input r to

the fictitious output vector z =
[
zTS zTK

]T

∥Tzw∥∞ =

∥∥∥∥∥
[

WSS

WKKS

]∥∥∥∥∥
∞

< 1

If there are on other constraints on the closed-loop system, one can compute the controller

that minimizes ∥Tzw(s)∥∞. Let

γ0 = min
K

∥Tzw(s)∥∞

denote the optimal value of the H∞ norm.
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Aircraft control
Scaling the Weighting Filters

The γ0 may or may not be less than one.

I If γ0 > 1, the constraints expressed by the weighting functions WS and WK are too

strong and a controller that satisfies them does not exist. The constraints must be

relaxed.

I If γ0 < 1, controllers that satisfy the constraints do exist and the constraints can

actually be strengthened.

To adjusting the weighting filters is scaling. Assume that the minimum value of ∥Tzw(s)∥∞
is γ0 ̸= 1 and that this value is achieved with the optimal controller K0(s). Introduce the

scaled weighting functions

W̃S(s) =
1

γ
WS(s) and W̃K(s) =

1

γ0
WK(s)

Replace the weighting filters by W̃S and W̃K . The H∞ norm is minimized by the same

controller K0(s) as before, and we have

∥∥∥∥∥
[

W̃SS

W̃KKS

]∥∥∥∥∥
∞

= 1
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Choice of Weighting Functions – Sensitivity

We begin the design with scalar weighting filters wS(s) and wK(s).

I To have integral action, a positive slope of 20 dB/dec of the sensitivity is required at

low frequencies. This could be enforced by including a factor 1/s in the weighting

function wS(s).

I the weight filters are factors of the closed-loop transfer function Tzw(s), and if wS(s)

has a pole at the origin then the same is true for Tzw.

I the H∞ norm is only defined for proper, stable transfer functions, the weighting filters

must therefore also be proper and stable.

I to enforce integral action in the loop, one can choose the weighting function to include

a factor
1

s+ ϵ
where ϵ > 0 is a small constant.

I MS is a small constant that is chosen as an upper bound on the sensitivity at low

frequencies.
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Choice of Weighting Functions – Sensitivity

1

|wS|

ω

1

MS

ωS = ϵ

|wS|

ω

MS

ωS = ϵ

I The transfer function of the weighting filter is

wS(s) =
ωS/MS

s+ ωS

where wS = ϵ.
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Choice of Weighting Functions – Control Sensitivity

The weighting filter wK(s) can be used to impose an upper bound on the control sensitivity.

I The control sensitivity should roll off at high frequencies, the inverse of this filter

should have low-pass behaviour and thus the filter itself should be a high-pass filter.

I the weight filters must be stable and proper, and if we start with a zero at ωK , an

additional pole at a frequency well above the bandwidth is required to make ωK(s)

proper.

I the pole is placed at cωK , where c is a sufficiently large constant.
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Choice of Weighting Functions – Sensitivity

1

|wK|

ω

1

MK

ωK

|wK|

ω

MK

cωKωK cωK

I The transfer function of the weighting filter is

wK(s) =
c

MK

s+ ωK

s+ cωK
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Loop Shaping

I we have made choices concerning the structure and order of the weighting functions

WS and WK – we use the same scalar, first order filters for all outputs.

I this choices are restrictive and can be changed if required.

I to reduce the design parameters, we fix c = 103 (placing the pole of wK three decades

above the zero). That leaves us with the design parameters ωs, MS , ωK and MK .

I the parameter ωS can be used to determine the closed-loop bandwidth, and MS can

be used to push the steady state error towards zero.

I We are not imposing an upper bound on |S|. The reason for this is that we can use

the upper bound MK on the control sensitivity to impose a limit on a sensitivity peak.

I the corner frequency ωK of WK should be chosen high enough not to interfere with

the bandwidth constraint on |S|.
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Design 1
response to r(t) =

[
u(t) 0 0

]T

ωS MS ωK MK
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Design 1

The aircraft model has three inputs and three outputs, the optimal controller K0(s) is a

three-by-three transfer function matrix.

I the plant is of fifth order

I we have first order weighting filters for each of the three outputs of S and KS.

I we have a generalized plant of order 11, and therefore with an 11th order controller.

I the response is fast, but the control input u3 violates the actuator constraint.

I we have

γ0 = min
K

∥Tzw∥∞ = 0.1794

I Since γ0 < 1 means that we can tighten the constraints. Introduce the scaled

weighting filters

W̃S(s) =
1

γ0
WS(s) and W̃K(s) =

1

γ0
WK(s)
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Design 1
Sensitivity S and Control Sensitivity KS
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Design 1
Sensitivity S and Control Sensitivity KS and scaled constraint
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Design 2
response to r(t) =

[
u(t) 0 0

]T

ωS MS ωK MK

10−4 10−4 102 102

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

O
u
tp

u
t 
y

 

 

y1

y2

y3

0 0.5 1 1.5 2
−30

−20

−10

0

10

In
p
u
t 
u

 

 

u1

u2

u3

Lecture 9 : Design Objectives and Sensitivity Functions J 35/42 I }



Design 2
Sensitivity S and Control Sensitivity KS and scaled constraint
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Design 2

I Because we are minimizing ∥Tzw∥∞ rather than rigidly enforcing ∥Tzw∥∞ < 1, the

functions WS and WK act as weights – or “soft constraints” – rather than hard

constraints.

I the effect of reducing MK is illustrated in Figure below:

|S|

ω

|KS|

ω

0 dB

1

2

1 1

2
2

I the curves labelled 1 represent scaled constraint (dashed) and sensitivity shapes (solid)

of the previous design.

Lecture 9 : Design Objectives and Sensitivity Functions J 37/42 I }



Design 2

I the dashed line labelled 2 shows the constraint on KS when MK is reduced.

I the new design were scaled for the previous design, the new design will give a controller

with γ0 > 1, which means the constraints will be violated.

I The violation of the constraints is spread equally over S and KS, indicated by the solid

lines labelled 2.
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Design 3

I we needs to reduced the control effort to meet the design specification.

I the response to a reference step change in y1 leads to a perturbation in y3.

I To improve tracking of r3, we increase the weight on the corresponding channel in WS

and make the following adjustment to obtain Design 3:

WS(s) =

wS(s) 0 0

0 wS(s) 0

0 0 wS(s)

→

wS(s) 0 0

0 wS(s) 0

0 0 10wS(s)


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Design 3
response to r(t) =

[
u(t) 0 0

]T
ωS MS ωK MK
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Design 4
response to r(t) =

[
u(t) 0 0

]T
ωS MS ωK MK
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