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Vector Norms

A norm ||z|| is a function mapping a vector z into a real number, that satisfies the following
four properties for any z,y € X

> ||z|| > 0 (positivity);

> ||z|]] =0 < x =0 (positive definiteness);

> ||az| = «al|z|| for any scalar @ > 0 (homogeneity);
> ||z +yl|| < ||z|| + [lyl| (triangle inequality)

A frequently used norm on vector x is the vector p-norm
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where p is a positive integer. There are three important norms:
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Vector Norms

The vector 2-norm can also be written as

lz]|2 = VzTx if z € R"™

[|z]|l2 = Va*x if € C"
Here A* denotes the Hermitian of a matrix A:
T
A* = AT

where A is the complex conjugate of A. For convenient, we will drop the subscript and write
||z]| for the vector 2-norm of x.
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a1

Contours for the vector p-norm, ||a|, =1 for p = 1,2, cc.
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Signal Norms

The p-norm of a signal is defined as

el = ([ latoirar)

One of the most used signal norm is the signal 2-norm

=

oo
() [dr
e o]

(o)l or flall =/ [

It should note that energy signals have finite 2-norm while the 2-norm does not exist for
power signals.

T
A real or complex valued signal vector z(t) = [a:l(t) z2(t) ... xn(t)] Its signal
2-norm is defined as

le(t)l2 = f_ 7 e 2dr
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Matrix Norm

Consider two complex vectors z € C™ and y € C™, and a linear mapping y = Az. The
matrix p-norm induced by the vector norm is defined as

A
Al = ma 12212
220 ||zl
Since y = Ax:
> ||Al|p is a ratio or gain of the vector norms ||y||, and ||z||p.

> This ratio is the maximum value of |ly||p/||lz||p over all nonzero x € C™ (the maximum
gain of A).

» It is a positive real number, which is a norm. It depends on the choice of vector
2-norm, it is called an induced norm

The matrix 2-norm induced by the vector 2-norm is defined as

A
”14”2 — max II xHQ
a#0  ||z[|2
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Matrix 2-Norm

By dropping the subscript the || A|| is usually known as matrix 2-norm. To find the value of
||Al|, we take squares on both sides to get

9 | Az||? T*A* Ax z*Mz
Al = max = max = max
a£0 ||z A0z A0 z*z

» M = A*A is called Hermitian matrix. M is positive semi-definite, where
z*Max > 0, Vo € C™. With y = Az, this property follows from

Mz =x*A"Ax =y*y >0

Note that this implies that z* Mz is real even if x is complex.

> the eigenvalues of M are real. It can be shown by letting A be an eigenvalue and v be
an eigenvector of M, and consider

Mv = \v

Multiplying with v* from the left yields v* Mv = Av*v. We established already that
the left hand side of this equation is real, and same on the right hand side.
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Matrix 2-Norm

> the eigenvalues of M are orthogonal (two vectors = and y are orthogonal if z*y = 0).
To show that two eigenvectors of M belonging to different eigenvalues are orthogonal,

consider
Muvi; = Ay, Muva = Aava, A1 # Ag
We have
(A1v1)*v2 = (Mv1)*v2 = v] Mva = v A2v2
thus Ajvjve = A2viwva, and from the assumption A1 # Az it then follows that
vivg = 0.

> If all eigenvectors v; of M are normalized such that ||v;|| =1, i =1,...,n, the
eigenvector matrix V is unitary, i.e. V*V =1, or V-1 = V*,
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Matrix 2-Norm

Now we can find the value of ||A|| by introducing A*A = VAV*

z* A* Ax z*VAV*z
max ———— = max ————
z#0  x*x z#0 x*x

and letting y = V*z and thus z = Vy (using orthonormality of V'), we obtain

y* Ay y*Ay Alyil® +X2ly2]® + ..+ Anlyn |

max = max = max 5 5 5

y#20 Yy V*Vy  y#0 yry  w#0 |ynf? +y2? + .+ yn
where A1,..., \, are the eigenvalues of A* A. Assume that the eigenvalues are ordered such
that A1 > A2 > ... > An. Then it is easy to see that the maximum value of the above value

T
is An, which is achieved if we choose y = [1 0o ... O] , and the minimum value is A\,
T

achieved by choosing y = [O ... 0 1]
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Matrix 2-Norm

Because the above expression is the square of the matrix 2-norm of A, we have thus
established that

Az
[|A]| = max 1Azl = v/ Amax(A*A)
w0 ||zl
and we also found that
min 1420 _ A
2#0 ||zl

The square roots of the eigenvalues of A* A are called the singular values of A.

Lecture and System Norms <10/34 »



Frobenius norm

» This norm is called the Frobenius norm

> The Frobenius norm of a matrix A € R™*™ | denoted by ||A||r, is defined as

1/2

IAllF = [ltrace(A™A)l2 = [ > > la

i=1j=1

» the Frobenius norm is not an induced norm.

Lemma

Let A and B be any matrices with appropriate dimensions. Then
> p(A) < ||A|| (this is also true for the F-norm and any induced matrix norm).

> ||AB|| < A\l Bl In particular, this gives ||A=Y|| > ||A||=t if A is invertible. (This is
also true for any induced matrix norm).

JUAV|| = ||Al|, and ||[UAV||g = ||A||r, for any appropriately dimensioned unitary
matrices U and V.

> |AB|lr < |AllllBllF and [[AB||r < [IB|[|AllF-
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Matrix Norms

» premultiplication or postmultiplication of a unitary matrix on a matrix does not change
its induced 2-norm and F'-norm, it does change its eigenvalues.
> for example, let

a=|! O], A (A) = 1,0(4) = 0
1 0
| 4
1 1
U= ‘/? ‘{5:| and UA = V2 0:|
Vi Vi o0

with A\ (UA) = v2, \2(UA) =0
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Vector and Matrix Norms

MATLAB Command

[|All2  norm(a,2)
[|[Al]1  norm(A,1)

[[Allcc norm(A,’inf’)

where A is either a matrix or a vector.
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The Singular Value Decomposition

Theorem (Singular Value Decomposition)

For every matrix A € C™*"™ there exist unitary matrices U € C™*™ and V € C™*"™ such
that

A=U3V*

and X is real and diagonal with non-negative entries.

The matrix X has the same size as A. For example if A is a 3 X 2 or 2 X 3 matrix, then

respectively, where 01,2 > 0. The diagonal entries o1 are called the singular values of A.
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The Singular Value Decomposition

Proof

There exists a unitary matrix V' such that
A*A=VAV*,

where A = diag(A1, A2,..., An) is the diagonal eigenvalue matrix of A* A, and the column
v; of V are the corresponding eigenvectors. Thus

A*A’Ui = )\i’l}i and U;A*AU,' = /\ivai = >\i7
because V' is unitary, and therefore
[[Avi[|* = A;

This implies that A\; > 0. Assume that the eigenvalues A1,..., A\, are positive and the
remaining n — r eigenvalues \; and vectors Av; are zero. Note that » < min(n, m). Define

1
i =V ui:fAvi, i=1,...,7

7
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The Singular Value Decomposition

Proof

It follows that ||u;|| = 1. Moreover, we have

N v A* Av; AivF v L
u;u; = = =0, PF£ g
0i0; 0i0;

this shows that the vectors u1,...,u, defined above have the properties required of column
vectors for U to be unitary. If r < m , one can fill up the matrix U with m — r further
orthogonal vectors to make it into a ™ X m unitary matrix.

We remain to show that the matrices U,V as defined above satisfy U* AV = ¥ where ¥ is
diagonal with o; as diagonal entries.

The (i,7) entry of U*AV is

oiufu;, j<r
(U AV )iy = uj Ay = § 7745807 =
0 j>r
Because ojuju; is zero if i # j and o if i = j, the above shows that the entries of U* AV

are all zero except for the first r entries on the main diagonal, which are the singular values
of A.
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The Singular Value Decomposition

From the definition of SVD we obtain AV = UX and thus
Av; = oju4, i=1,...,n,
where v; and wu; are the columns of V' and U, respectively. We also have
AA* =vusvrvetur = v Ut
and
A*A=vsTyrusv =velsy:

These show that U is the eigenvector matrix of AA* and V' is the eigenvector matrix of
A*A. The eigenvalue matrices are ©X7 and ST'%, respectively. Again, if A is 3 x 2 then

o 0 O 2
=10 o2 of, xTu= ["1 02}
0 0 0 0 o

The singular values of A are the square roots of the eigenvalues of AA* and A*A.
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System Norms

Hoo Norm for SISO Systems

For a stable, proper SISO system with a transfer function G(s), the Hoo norm is defined as

IG(5)lloo = sup|G(jw)l

u(t) ——— G(s) —y(t)

» the Hoo norm of a SISO system is simply the maximum gain over all frequencies, and
can be read off the Bode magnitude plot of the frequency response.

» the Hoo norm is equal to the norm induced by the signal 2-norm:

1G(5) oo = max %

if u(t) is an energy signal,
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System Norms

Hoo Norm for SISO Systems
> itis

IG(5)]loc = max M

W20 [[u() loms

if u(t) is a power signal.

G|

Gl

> in fact the steady state response to an input u(t) = sinwot is

y(t) = |G(s)[|oo sin(wot + ¢)
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System Norms

Ha Norm for SISO Systems

The H2 norm for a SISO system with a stable, strictly proper transfer function G(s) is

defined as
1 o .
166l = /5= [ 166w de
T J—oco

> the restriction to strictly proper systems is necessary because otherwise |G(jw)| > 0 as
w — oo and the integral does not exist.

» this norm is not induced by a signal norm.

> For a stochastic interpretation of the H2 norm, assume that the input u(t) is white
noise with E [u(t)u(t 4+ 7)] = §(7). In this case, the rms value of the output signal is
equal to the H2 norm of the system

ly(Ollms = 1G(s)ll2

This fact makes it possible to express the LQG problem as the problem of minimizing
the Ho norm of the generalized plant concept.
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System Norms

Ha Norm for SISO Systems

» A deterministic interpretation is in term of the impulse response

1G(s) 2 = /0 Zg0)[2dt = llg®)]l2

This is by letting © = Az + bu and y = Cz be a state space realization of G(s). And
g(t) = ceAth denotes the impulse response of the system. The frequency domain can
be changed to time domain by using Parseval’s theorem.

> the H2 norm of the system is equal to the signal 2-norm of its impulse response.

» This interpretation makes it possible to express the deterministic LQR problem as a Ho
optimization problem.
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System Norms

Hoo Norm for MIMO Systems

For MIMO system, we consider both size and direction of the signal vectors as the following
example:

> the response to a constant input u(t) = [1 O]Ta(t) isy(t)=[3 4]T¢7(t), and
[l (@)lrms = 5/‘/5

> the response to u(t) = [0 1]Ta(t) is y(t) = [0 l]Ta(t), and ||y (t)|lrms = 1/V2.

Both cases ||u(t)||rms = 1//2, the gain in terms of rms values is 5 for the first input

signal and 1 for the second input signal.

To define Hoo norm for MIMO systems, we need to consider sinusoidal input signals, and
find the combination of inputs that maximizes the output signal.

Lecture and System Norms <22/34 »



System Norms

Hoo Norm for MIMO Systems

Consider a sinusoidal input with amplitude ug and phase 1) can be interpreted as the
imaginary part of a complex signal

u(t) = ug sin(wt + ) = Im [quj(thm/z)]

a(t) = uged WHTP) = gelwt,

where 4 is a complex amplitude. The steady state response to the complex input is
7 = §eI«t, where ) is the amplitude of the input signal multiplied by the transfer function
evaluated at s = jw

§ = G(jw)d
Applying m inputs to a system that has [ outputs. At a given frequency w, the input and

output signals are

at)y=| |9 i) =| | vt = gedt

Um Y
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System Norms

Hoo Norm for MIMO Systems

To find the induced 2-norm of the system, we start with

9@ llrms _ 191l

la@®)llms 14l

The output amplitude vector at a given frequency w is obtained by multiplying the input
amplitude vector with G(jw). For example 2 X 2 system:

[2’31} _ [Gu(jw) G12(jw)] {121}

92 Go1(jw)  Gaa(jw)] [@2
For a given frequency, the transfer function matrix is just a complex matrix G(jw) € CH*™,

The maximum value value of ||g]|/||é]| at that frequency is given by the maximum singular
value of the transfer function matrix

gl _
max —— =
a0 ||af|

7(G(jw))

The Hoo norm of the system is defined as the maximum value of this induced matrix norm
over all frequencies ||G(s)||oo = sup,, 7(G(jw)).
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System Norms

Hoo Norm for MIMO Systems
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An example of the singular value plot of a mass-spring-damper system, using a command
sigma.
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System Norms

Hz Norm for MIMO Systems

We used the induced 2-norm for matrices, which is equal to the maximum singular value. By
using the Frobenius norm, which is

| Allp = v/trace(A* A)

The definition of the H2 norm of a multivariable system is

GG = /55 [ a3

Again, using Parseval's theorem, one can show that an equivalent definition in time domain is

G =/ [~ latolzar

where g(t) = CeAtB is the impulse response matrix of the system.
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Computing System Norms

Computing the H2 Norm

The Ha norm is

IG(s)ll2 = \/trace /OOO(QT(t)g(t))dt

where g(t) = CetB is the impulse response matrix for a system & = Az + Bu and y = Cx.
Substituting the impulse response in the above equation and taking squares yields

oo}
IG(s)13 = trace/ BTeA "t CT CeAt Bdt
0
T [ AT AT o AL
= traceB e "C" Ce”'dtB
0

Defining

o0
Wo = / eATtOT CeAtat then |G (s)|l2 = V/traceBTW, B
0
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Computing System Norms

Computing the H2 Norm

It is straightforward to show that Wj is the solution to the Lyapunov equaiton
ATWo +WoA+CTC =0
Using the fact that trace M N = trace N M for two matrices M and N we have
oo T
IG(s) 13 = trace / e BBTA T dt
0
and obtain as an alternative expression for the value of the Ha norm
1G(s)|l2 = VtraceCW.CT
b T
where W, = / eAtBBT A" tdt is the solution to
0

AW, + W.AT + BBT =0

Thus, the Ha norm can be computed by solving a single Lyapunov equation.

Lecture and System Norms



Computing System Norms

Computing the Hoo Norm

The Hoo norm is defined for systems with stable, proper transfer functions. Because the Hoo

norm of G(s) is the maximum of 5(G(jw)) over frequency, one can try to compute
(G (jw)) for many values of w and then search for the maximum.

The more efficient method is an iterative procedure:

> Check whether ||G(s)]|oo is less than a given positive constant .
> Consider a stable plant with transfer function G(s) = C(sI — A)~!B.

» For a given v > 0, define the Hamiltonian matrix

My =

A ~BBT
—sctc —AT

Given a positive constant v > 0, the following two statements are equivalent

~ is a singular value of G(jwo) at some frequency wy.

M., has at least one eigenvalue on the imaginary axis.
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Computing System Norms

Computing the Hoo Norm

From the theorem

> To find the largest singular value over all frequencies, we can start with a sufficiently
large value of v and use the above Theorem to check whether it is a singular value of
G(jw) at some frequency.

» We do not need to know at which frequency. If M, has no imaginary eigenvalue,
was too large and we try with a smaller value of ~.

> If M, does have an imaginary eigenvalue, v was too small and we try with a larger
value.

> A bisection method can be used as an efficient way of finding a value of v that is equal
to ||G(s)||lco within a guaranteed accuracy.
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Computing System Norms

Proof the theorem (x)

> First show that (1) = (2). Assume that v is a singular value of G(jwo) (Go). Let
Go = UXV™ be the singular value decomposition of Gg. Then, from GoV = UX and
G§U = VST, there exist nonzero vectors u and v such that

Gov = vyu, Ghu = ~v
Substituting G(s) = C(sI — A)~1B at s = jwyg for Gy yields
C(jwol — A)"'Bu = ~u, and BT (—jwol — ATs)"1CTu = yv
Introducing the vectors
p = (jwol — A)"!Bu, and q = (—jwol — AT)"1CTy
this becomes

Cp = vyu, and BTq=~u

<31/34»
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Computing System Norms

Proof the theorem (x)

or

Solving for v and u yields

=l v : o »] [ 8

The above matrix equation guarantees that

From vectors p and ¢ , they satisfy

(jwol — A)p = Bv and (—jwol — AT)q =cTy
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Computing System Norms

Proof the theorem (x)

or

o lli] [0 er] = ]

Substituting from (1) yields

(S S A I e e

which is shows that jwg is an eigenvalue of M, .

> To prove (2) = (1), assume that jwo is an eigenvalue of M,. Then there exists a

nonzero vector [pT qT]T that satisfies (2). Now use (1) to define [vT uT]T #0.
Then form (1) and (2) it follows that 7 is a singular value of G(jwo).

» If D # 0, the associated Hamiltonian matrix to check is

M. — A—BR'DTC —vBR-1BT
T | —y0Ts-'c  —(A-BR'DTO)T

where R and S are given by R= DTD — 42T and S = DDT — 421I.
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