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Vector Norms

A norm ∥x∥ is a function mapping a vector x into a real number, that satisfies the following

four properties for any x, y ∈ X
I ∥x∥ > 0 (positivity);

I ∥x∥ = 0 ⇔ x = 0 (positive definiteness);

I ∥αx∥ = α∥x∥ for any scalar α > 0 (homogeneity);

I ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

A frequently used norm on vector x is the vector p-norm

∥x∥p =

(
n∑
i=1

|xi|p
) 1

p

,

where p is a positive integer. There are three important norms:

∥x∥1 =

n∑
i=1

|xi|, ∥x∥2 =

√√√√ n∑
i=1

|xi|2, ∥x∥∞ = max
i

|xi|
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Vector Norms

The vector 2-norm can also be written as

∥x∥2 =
√
xT x if x ∈ Rn

∥x∥2 =
√
x∗x if x ∈ Cn

Here A∗ denotes the Hermitian of a matrix A:

A∗ = ĀT ,

where Ā is the complex conjugate of A. For convenient, we will drop the subscript and write

∥x∥ for the vector 2-norm of x.
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Vector Norms

−1 1

1

−1

a1

a2

p = 1

p = ∞
p = 2

Contours for the vector p-norm, ∥a∥p = 1 for p = 1, 2,∞.

Lecture 8 : Signal and System Norms J 4/34 I }



Signal Norms

The p-norm of a signal is defined as

∥x(t)∥p =

(∫ ∞

−∞
|x(τ)|pdτ

) 1
p

One of the most used signal norm is the signal 2-norm

∥x(t)∥2 or ∥x∥ =

√∫ ∞

−∞
|x(τ)|2dτ

It should note that energy signals have finite 2-norm while the 2-norm does not exist for

power signals.

A real or complex valued signal vector x(t) =
[
x1(t) x2(t) . . . xn(t)

]T
Its signal

2-norm is defined as

∥x(t)∥2 =

√∫ ∞

−∞
∥x(τ)∥2dτ
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Matrix Norm

Consider two complex vectors x ∈ Cm and y ∈ Cm, and a linear mapping y = Ax. The

matrix p-norm induced by the vector norm is defined as

∥A∥p = max
x̸=0

∥Ax∥p
∥x∥p

Since y = Ax:

I ∥A∥p is a ratio or gain of the vector norms ∥y∥p and ∥x∥p.
I This ratio is the maximum value of ∥y∥p/∥x∥p over all nonzero x ∈ Cn (the maximum

gain of A).

I It is a positive real number, which is a norm. It depends on the choice of vector

2-norm, it is called an induced norm

The matrix 2-norm induced by the vector 2-norm is defined as

∥A∥2 = max
x̸=0

∥Ax∥2
∥x∥2
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Matrix 2-Norm

By dropping the subscript the ∥A∥ is usually known as matrix 2-norm. To find the value of

∥A∥, we take squares on both sides to get

∥A∥2 = max
x ̸=0

∥Ax∥2

∥x∥2
= max

x̸=0

x∗A∗Ax

x∗x
= max

x ̸=0

x∗Mx

x∗x

I M = A∗A is called Hermitian matrix. M is positive semi-definite, where

x∗Mx ≥ 0, ∀x ∈ Cn. With y = Ax, this property follows from

x∗Mx = x∗A∗Ax = y∗y ≥ 0

Note that this implies that x∗Mx is real even if x is complex.

I the eigenvalues of M are real. It can be shown by letting λ be an eigenvalue and v be

an eigenvector of M , and consider

Mv = λv

Multiplying with v∗ from the left yields v∗Mv = λv∗v. We established already that

the left hand side of this equation is real, and same on the right hand side.
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Matrix 2-Norm

I the eigenvalues of M are orthogonal (two vectors x and y are orthogonal if x∗y = 0).

To show that two eigenvectors of M belonging to different eigenvalues are orthogonal,

consider

Mv1 = λ1v1, Mv2 = λ2v2, λ1 ̸= λ2

We have

(λ1v1)
∗v2 = (Mv1)

∗v2 = v∗1Mv2 = v∗1λ2v2

thus λ1v∗1v2 = λ2v∗1v2, and from the assumption λ1 ̸= λ2 it then follows that

v∗1v2 = 0.

I If all eigenvectors vi of M are normalized such that ∥vi∥ = 1, i = 1, . . . , n, the

eigenvector matrix V is unitary, i.e. V ∗V = I, or V −1 = V ∗.
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Matrix 2-Norm

Now we can find the value of ∥A∥ by introducing A∗A = V ΛV ∗

max
x̸=0

x∗A∗Ax

x∗x
= max

x̸=0

x∗V ΛV ∗x

x∗x

and letting y = V ∗x and thus x = V y (using orthonormality of V ), we obtain

max
y ̸=0

y∗Λy

y∗V ∗V y
= max

y ̸=0

y∗Λy

y∗y
= max

y ̸=0

λ1|y1|2 + λ2|y2|2 + . . .+ λn|yn|2

|y1|2 + |y2|2 + . . .+ |yn|2
,

where λ1, . . . , λn are the eigenvalues of A∗A. Assume that the eigenvalues are ordered such

that λ1 ≥ λ2 ≥ . . . ≥ λn. Then it is easy to see that the maximum value of the above value

is λn, which is achieved if we choose y =
[
1 0 . . . 0

]T
, and the minimum value is λn,

achieved by choosing y =
[
0 . . . 0 1

]T
.
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Matrix 2-Norm

Because the above expression is the square of the matrix 2-norm of A, we have thus

established that

∥A∥ = max
x̸=0

∥Ax∥
∥x∥

=
√
λmax(A∗A)

and we also found that

min
x̸=0

∥Ax∥
∥x∥

=
√
λmin(A∗A)

The square roots of the eigenvalues of A∗A are called the singular values of A.
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Frobenius norm

I This norm is called the Frobenius norm

I The Frobenius norm of a matrix A ∈ Rm×n , denoted by ∥A∥F , is defined as

∥A∥F = ∥trace(A∗A)∥2 =

 m∑
i=1

m∑
j=1

|aij |2
1/2

I the Frobenius norm is not an induced norm.

Lemma
Let A and B be any matrices with appropriate dimensions. Then

I ρ(A) ≤ ∥A∥ (this is also true for the F -norm and any induced matrix norm).

I ∥AB∥ ≤ ∥A∥∥B∥. In particular, this gives ∥A−1∥ ≥ ∥A∥−1 if A is invertible. (This is

also true for any induced matrix norm).

I ∥UAV ∥ = ∥A∥, and ∥UAV ∥F = ∥A∥F , for any appropriately dimensioned unitary

matrices U and V .

I ∥AB∥F ≤ ∥A∥∥B∥F and ∥AB∥F ≤ ∥B∥∥A∥F .
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Matrix Norms

I premultiplication or postmultiplication of a unitary matrix on a matrix does not change

its induced 2-norm and F -norm, it does change its eigenvalues.

I for example, let

A =

[
1 0

1 0

]
, λ1(A) = 1, λ2(A) = 0

I

U =

[
1√
2

1√
2

− 1√
2

1√
2

]
and UA =

[√
2 0

0 0

]

with λ1(UA) =
√
2, λ2(UA) = 0
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Vector and Matrix Norms
MATLAB Command

∥A∥2 norm(A,2)

∥A∥1 norm(A,1)

∥A∥∞ norm(A,’inf’)

where A is either a matrix or a vector.
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The Singular Value Decomposition

Theorem (Singular Value Decomposition)

For every matrix A ∈ Cm×n there exist unitary matrices U ∈ Cm×m and V ∈ Cm×n such

that

A = UΣV ∗

and Σ is real and diagonal with non-negative entries.

The matrix Σ has the same size as A. For example if A is a 3× 2 or 2× 3 matrix, then

Σ =

σ1 0

0 σ2

0 0

 or Σ =

[
σ1 0 0

0 σ2 0

]

respectively, where σ1,2 ≥ 0. The diagonal entries σ1 are called the singular values of A.
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The Singular Value Decomposition
Proof

There exists a unitary matrix V such that

A∗A = V ΛV ∗,

where Λ = diag(λ1, λ2, . . . , λn) is the diagonal eigenvalue matrix of A∗A, and the column

vi of V are the corresponding eigenvectors. Thus

A∗Avi = λivi and v∗i A
∗Avi = λiv

∗
i vi = λi,

because V is unitary, and therefore

∥Avi∥2 = λi

This implies that λi ≥ 0. Assume that the eigenvalues λ1, . . . , λr are positive and the

remaining n− r eigenvalues λi and vectors Avi are zero. Note that r ≤ min(n,m). Define

σi =
√
λi, ui =

1

σi
Avi, i = 1, . . . , r
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The Singular Value Decomposition
Proof

It follows that ∥ui∥ = 1. Moreover, we have

u∗i uj =
v∗i A

∗Avj

σiσj
=
λiv

∗
i vj

σiσj
= 0, i ̸= j

this shows that the vectors u1, . . . , ur defined above have the properties required of column

vectors for U to be unitary. If r < m , one can fill up the matrix U with m− r further

orthogonal vectors to make it into a m×m unitary matrix.

We remain to show that the matrices U, V as defined above satisfy U∗AV = Σ where Σ is

diagonal with σi as diagonal entries.

The (i, j) entry of U∗AV is

(U∗AV )i,j = u∗iΛvj =

{
σju

∗
i uj , j ≤ r

0 j > r

Because σju
∗
i uj is zero if i ̸= j and σj if i = j, the above shows that the entries of U∗AV

are all zero except for the first r entries on the main diagonal, which are the singular values

of A.
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The Singular Value Decomposition

From the definition of SVD we obtain AV = UΣ and thus

Avi = σiui, i = 1, . . . , n,

where vi and ui are the columns of V and U , respectively. We also have

AA∗ = UΣV ∗V ΣTU∗ = UΣΣ∗U∗

and

A∗A = V ΣTU∗UΣV ∗ = V ΣTΣV ∗

These show that U is the eigenvector matrix of AA∗ and V is the eigenvector matrix of

A∗A. The eigenvalue matrices are ΣΣT and ΣTΣ, respectively. Again, if A is 3× 2 then

ΣΣT =

σ2
1 0 0

0 σ2
2 0

0 0 0

 , ΣTΣ =

[
σ2
1 0

0 σ2
2

]

The singular values of A are the square roots of the eigenvalues of AA∗ and A∗A.
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System Norms
H∞ Norm for SISO Systems

For a stable, proper SISO system with a transfer function G(s), the H∞ norm is defined as

∥G(s)∥∞ = sup
ω

|G(jω)|

u(t) G(s) y(t)

I the H∞ norm of a SISO system is simply the maximum gain over all frequencies, and

can be read off the Bode magnitude plot of the frequency response.

I the H∞ norm is equal to the norm induced by the signal 2-norm:

∥G(s)∥∞ = max
u ̸=0

∥y(t)∥
∥u(t)∥

if u(t) is an energy signal,
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System Norms
H∞ Norm for SISO Systems

I it is

∥G(s)∥∞ = max
u ̸=0

∥y(t)∥rms

∥u(t)∥rms

if u(t) is a power signal.

ωω0

∥G∥∞

|G|

I in fact the steady state response to an input u(t) = sinω0t is

y(t) = ∥G(s)∥∞ sin(ω0t+ ϕ)
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System Norms
H2 Norm for SISO Systems

The H2 norm for a SISO system with a stable, strictly proper transfer function G(s) is

defined as

∥G(s)∥2 =

√
1

2π

∫ ∞

−∞
|G(jω)|2dω

I the restriction to strictly proper systems is necessary because otherwise |G(jω)| > 0 as

ω → ∞ and the integral does not exist.

I this norm is not induced by a signal norm.

I For a stochastic interpretation of the H2 norm, assume that the input u(t) is white

noise with E [u(t)u(t+ τ)] = δ(τ). In this case, the rms value of the output signal is

equal to the H2 norm of the system

∥y(t)∥rms = ∥G(s)∥2

This fact makes it possible to express the LQG problem as the problem of minimizing

the H2 norm of the generalized plant concept.
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System Norms
H2 Norm for SISO Systems

I A deterministic interpretation is in term of the impulse response

∥G(s)∥2 =

√∫ ∞

0
|g(t)|2dt = ∥g(t)∥2

This is by letting ẋ = Ax+ bu and y = Cx be a state space realization of G(s). And

g(t) = ceAtb denotes the impulse response of the system. The frequency domain can

be changed to time domain by using Parseval’s theorem.

I the H2 norm of the system is equal to the signal 2-norm of its impulse response.

I This interpretation makes it possible to express the deterministic LQR problem as a H2

optimization problem.
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System Norms
H∞ Norm for MIMO Systems

For MIMO system, we consider both size and direction of the signal vectors as the following

example:

G(s) =

[
3 0

4 1

]

I the response to a constant input u(t) =
[
1 0

]T
σ(t) is y(t) =

[
3 4

]T
σ(t), and

∥y(t)∥rms = 5/
√
2.

I the response to u(t) =
[
0 1

]T
σ(t) is y(t) =

[
0 1

]T
σ(t), and ∥y(t)∥rms = 1/

√
2.

I Both cases ∥u(t)∥rms = 1/
√
2, the gain in terms of rms values is 5 for the first input

signal and 1 for the second input signal.

To define H∞ norm for MIMO systems, we need to consider sinusoidal input signals, and

find the combination of inputs that maximizes the output signal.
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System Norms
H∞ Norm for MIMO Systems

Consider a sinusoidal input with amplitude u0 and phase ψ can be interpreted as the

imaginary part of a complex signal

u(t) = u0 sin(ωt+ ψ) = Im
[
u0e

j(ωt+ψ)
]

ũ(t) = u0e
j(ωt+φ) = ûejωt,

where û is a complex amplitude. The steady state response to the complex input is

ỹ = ŷejωt, where ŷ is the amplitude of the input signal multiplied by the transfer function

evaluated at s = jω

ŷ = G(jω)û

Applying m inputs to a system that has l outputs. At a given frequency ω, the input and

output signals are

ũ(t) =


û1
...

ûm

 ejωt, ỹ(t) =


ŷ1
...

ŷl

 ejωt = ŷejωt
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System Norms
H∞ Norm for MIMO Systems

To find the induced 2-norm of the system, we start with

∥ỹ(t)∥rms

∥ũ(t)∥rms
=

∥ŷ∥
∥û∥

The output amplitude vector at a given frequency ω is obtained by multiplying the input

amplitude vector with G(jω). For example 2× 2 system:

[
ŷ1
ŷ2

]
=

[
G11(jω) G12(jω)

G21(jω) G22(jω)

] [
û1
û2

]

For a given frequency, the transfer function matrix is just a complex matrix G(jω) ∈ Cl×m.

The maximum value value of ∥ŷ∥/∥û∥ at that frequency is given by the maximum singular

value of the transfer function matrix

max
û ̸=0

∥ŷ∥
∥û∥

= σ̄(G(jω))

The H∞ norm of the system is defined as the maximum value of this induced matrix norm

over all frequencies ∥G(s)∥∞ = supω σ̄(G(jω)).
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System Norms
H∞ Norm for MIMO Systems
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An example of the singular value plot of a mass-spring-damper system, using a command

sigma.
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System Norms
H2 Norm for MIMO Systems

We used the induced 2-norm for matrices, which is equal to the maximum singular value. By

using the Frobenius norm, which is

∥A∥F =
√

trace(A∗A)

The definition of the H2 norm of a multivariable system is

∥G(s)∥2 =

√
1

2π

∫ ∞

0
∥g(t)∥2F dt

Again, using Parseval’s theorem, one can show that an equivalent definition in time domain is

∥G(s)∥2 =

√∫ ∞

0
∥g(t)∥2F dt

where g(t) = CeAtB is the impulse response matrix of the system.
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Computing System Norms
Computing the H2 Norm

The H2 norm is

∥G(s)∥2 =

√
trace

∫ ∞

0
(gT (t)g(t))dt,

where g(t) = CeAtB is the impulse response matrix for a system ẋ = Ax+Bu and y = Cx.

Substituting the impulse response in the above equation and taking squares yields

∥G(s)∥22 = trace

∫ ∞

0
BT eA

T tCTCeAtBdt

= traceBT
∫ ∞

0
eA

T tCTCeAtdtB

Defining

W0 =

∫ ∞

0
eA

T tCTCeAtdt then ∥G(s)∥2 =
√

traceBTW0B
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Computing System Norms
Computing the H2 Norm

It is straightforward to show that W0 is the solution to the Lyapunov equaiton

ATW0 +W0A+ CTC = 0

Using the fact that traceMN = traceNM for two matrices M and N we have

∥G(s)∥22 = trace

∫ ∞

0
CeAtBBT eA

T tCT dt

and obtain as an alternative expression for the value of the H2 norm

∥G(s)∥2 =
√

traceCWcCT

where Wc =

∫ ∞

0
eAtBBT eA

T tdt is the solution to

AWc +WcA
T +BBT = 0

Thus, the H2 norm can be computed by solving a single Lyapunov equation.
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Computing System Norms
Computing the H∞ Norm

The H∞ norm is defined for systems with stable, proper transfer functions. Because the H∞
norm of G(s) is the maximum of σ̄(G(jω)) over frequency, one can try to compute

σ̄(G(jω)) for many values of ω and then search for the maximum.

The more efficient method is an iterative procedure:

I Check whether ∥G(s)∥∞ is less than a given positive constant γ.

I Consider a stable plant with transfer function G(s) = C(sI −A)−1B.

I For a given γ > 0, define the Hamiltonian matrix

Mγ =

[
A 1

γ
BBT

− 1
γ
CTC −AT

]

Theorem (∗)
Given a positive constant γ > 0, the following two statements are equivalent

1 γ is a singular value of G(jω0) at some frequency ω0.

2 Mγ has at least one eigenvalue on the imaginary axis.
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Computing System Norms
Computing the H∞ Norm

From the theorem

I To find the largest singular value over all frequencies, we can start with a sufficiently

large value of γ and use the above Theorem to check whether it is a singular value of

G(jω) at some frequency.

I We do not need to know at which frequency. If Mγ has no imaginary eigenvalue, γ

was too large and we try with a smaller value of γ.

I If Mγ does have an imaginary eigenvalue, γ was too small and we try with a larger

value.

I A bisection method can be used as an efficient way of finding a value of γ that is equal

to ∥G(s)∥∞ within a guaranteed accuracy.
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Computing System Norms
Proof the theorem (∗)

I First show that (1) ⇒ (2). Assume that γ is a singular value of G(jω0) (G0). Let

G0 = UΣV ∗ be the singular value decomposition of G0. Then, from G0V = UΣ and

G∗
0U = V ΣT , there exist nonzero vectors u and v such that

G0v = γu, G∗
0u = γv

Substituting G(s) = C(sI −A)−1B at s = jω0 for G0 yields

C(jω0I −A)−1Bv = γu, and BT (−jω0I −AT s)−1CTu = γv

Introducing the vectors

p = (jω0I −A)−1Bv, and q = (−jω0I −AT )−1CTu

this becomes

Cp = γu, and BT q = γu
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Computing System Norms
Proof the theorem (∗)

or [
C 0

0 BT

] [
p

q

]
=

[
0 γI

γI 0

] [
v

u

]

Solving for v and u yields

[
v

u

]
=

[
0 γI

γI 0

]−1 [
C 0

0 BT

] [
p

q

]
. (1)

The above matrix equation guarantees that

[
p

q

]
̸=
[
0

0

]

From vectors p and q , they satisfy

(jω0I −A)p = Bv and (−jω0I −AT )q = CTu
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Computing System Norms
Proof the theorem (∗)

or [
A 0
0 −AT

] [
p
q

]
+

[
B 0
0 −CT

] [
v
u

]
= jω0

[
p
q

]
Substituting from (1) yields([

A 0
0 −AT

]
+

[
B 0
0 −CT

] [
0 γI
γI 0

]−1 [
C 0
0 BT

])
= jω0

[
p
q

]
(2)

which is shows that jω0 is an eigenvalue of Mγ .

I To prove (2) ⇒ (1), assume that jω0 is an eigenvalue of Mγ . Then there exists a

nonzero vector
[
pT qT

]T
that satisfies (2). Now use (1) to define

[
vT uT

]T ̸= 0.
Then form (1) and (2) it follows that γ is a singular value of G(jω0).

I If D ̸= 0, the associated Hamiltonian matrix to check is

Mγ =

[
A−BR−1DTC −γBR−1BT

−γCTS−1C −(A−BR−1DTC)T

]

where R and S are given by R = DTD − γ2I and S = DDT − γ2I.
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