Lecture 8 : Signal and System Norms

Dr.-Ing. Sudchai Boonto Assistant Professor

Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi **Thailand**

Vector Norms

A norm *∥x∥* is a function mapping a vector *x* into a real number, that satisfies the following four properties for any $x, y \in \mathcal{X}$

- I *∥x∥ >* 0 (positivity);
- **►** $||x|| = 0 \Leftrightarrow x = 0$ (positive definiteness);
- \blacktriangleright $||\alpha x|| = \alpha ||x||$ for any scalar $\alpha > 0$ (homogeneity);
- $\blacktriangleright \ \|x + y\| \leq \|x\| + \|y\| \text{ (triangle inequality)}$

A frequently used norm on vector *x* is the vector p-norm

$$
||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},
$$

where *p* is a positive integer. There are three important norms:

$$
||x||_1 = \sum_{i=1}^n |x_i|,
$$
 $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2},$ $||x||_{\infty} = \max_i |x_i|$

Lecture 8 : Signal and System Norms J **2/34** I **4 2/34** I **4**

Vector Norms

The vector 2-norm can also be written as

$$
||x||_2 = \sqrt{x^T x} \qquad \text{if } x \in \mathbb{R}^n
$$

$$
||x||_2 = \sqrt{x^* x} \qquad \text{if } x \in \mathbb{C}^n
$$

Here *A∗* denotes the *Hermitian* of a matrix *A*:

$$
A^* = \bar{A}^T,
$$

where \bar{A} is the complex conjugate of A . For convenient, we will drop the subscript and write *∥x∥* for the vector 2-norm of *x*.

Vector Norms

Contours for the vector *p*-norm, $||a||_p = 1$ for $p = 1, 2, \infty$.

Signal Norms

The p-norm of a signal is defined as

$$
||x(t)||_p = \left(\int_{-\infty}^{\infty} |x(\tau)|^p d\tau\right)^{\frac{1}{p}}
$$

One of the most used signal norm is the signal 2-norm

$$
\|x(t)\|_2 \text{ or } \|x\|=\sqrt{\int_{-\infty}^{\infty}|x(\tau)|^2d\tau}
$$

It should note that *energy signals* have finite 2-norm while the 2-norm does not exist for *power signals*.

A real or complex valued signal vector $x(t)=\begin{bmatrix} x_1(t) & x_2(t) & \dots & x_n(t) \end{bmatrix}^T$ Its signal 2-norm is defined as

$$
||x(t)||_2 = \sqrt{\int_{-\infty}^{\infty} ||x(\tau)||^2 d\tau}
$$

Lecture 8 : Signal and System Norms J **1999** I **5/34** I **4 5/34**

Consider two complex vectors $x \in \mathbb{C}^m$ and $y \in \mathbb{C}^m$, and a linear mapping $y = Ax$. The matrix p-norm induced by the vector norm is defined as

$$
||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}
$$

Since $y = Ax$:

- **►** $||A||_p$ is a ratio or *gain* of the vector norms $||y||_p$ and $||x||_p$.
- **►** This ratio is the maximum value of $||y||_p / ||x||_p$ over all nonzero $x \in \mathbb{C}^n$ (the *maximum gain* of *A*).
- \blacktriangleright It is a positive real number, which is a norm. It depends on the choice of vector 2-norm, it is called an *induced norm*

The matrix 2-norm induced by the vector 2-norm is defined as

$$
||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}
$$

By dropping the subscript the *∥A∥* is usually known as matrix 2-norm. To find the value of *∥A∥*, we take squares on both sides to get

$$
||A||^{2} = \max_{x \neq 0} \frac{||Ax||^{2}}{||x||^{2}} = \max_{x \neq 0} \frac{x^{*} A^{*} A x}{x^{*} x} = \max_{x \neq 0} \frac{x^{*} M x}{x^{*} x}
$$

 $M = A^*A$ is called Hermitian matrix. *M* is positive semi-definite, where *x*^{*} Mx ≥ 0, $\forall x \in \mathbb{C}^n$. With $y = Ax$, this property follows from

$$
x^*Mx = x^*A^*Ax = y^*y \ge 0
$$

Note that this implies that x^*Mx is real even if x is complex.

In the eigenvalues of *M* are real. It can be shown by letting λ be an eigenvalue and v be an eigenvector of *M*, and consider

$$
Mv=\lambda v
$$

Multiplying with v^* from the left yields $v^* M v = \lambda v^* v$. We established already that the left hand side of this equation is real, and same on the right hand side.

Lecture 8 : Signal and System Norms J **7/34** \blacktriangleright **4 7/34** \blacktriangler

▶ the eigenvalues of *M* are orthogonal (two vectors *x* and *y* are orthogonal if $x^*y = 0$). To show that two eigenvectors of *M* belonging to different eigenvalues are orthogonal, consider

$$
Mv_1 = \lambda_1 v_1, \qquad Mv_2 = \lambda_2 v_2, \qquad \lambda_1 \neq \lambda_2
$$

We have

$$
(\lambda_1 v_1)^* v_2 = (Mv_1)^* v_2 = v_1^* M v_2 = v_1^* \lambda_2 v_2
$$

thus $\lambda_1 v_1^* v_2 = \lambda_2 v_1^* v_2$, and from the assumption $\lambda_1 \neq \lambda_2$ it then follows that $v_1^* v_2 = 0.$

If all eigenvectors v_i of M are normalized such that $||v_i|| = 1$, $i = 1, ..., n$, the eigenvector matrix V is unitary, i.e. $V^*V = I$, or $V^{-1} = V^*$.

Now we can find the value of $||A||$ by introducing $A^*A = V\Lambda V^*$

$$
\max_{x\neq 0}\frac{x^*A^*Ax}{x^*x}=\max_{x\neq 0}\frac{x^*V\Lambda V^*x}{x^*x}
$$

and letting $y = V^*x$ and thus $x = Vy$ (using orthonormality of V), we obtain

$$
\max_{y\neq 0} \frac{y^* \Lambda y}{y^* V^* V y} = \max_{y\neq 0} \frac{y^* \Lambda y}{y^* y} = \max_{y\neq 0} \frac{\lambda_1 |y_1|^2 + \lambda_2 |y_2|^2 + \ldots + \lambda_n |y_n|^2}{|y_1|^2 + |y_2|^2 + \ldots + |y_n|^2},
$$

where *λ*1*, . . . , λⁿ* are the eigenvalues of *A∗A*. Assume that the eigenvalues are ordered such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. Then it is easy to see that the maximum value of the above value is λ_n , which is achieved if we choose $y=\begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T$, and the minimum value is λ_n , achieved by choosing $y = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix}^T$.

Because the above expression is the square of the matrix 2-norm of *A*, we have thus established that

$$
||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} = \sqrt{\lambda_{\max}(A^*A)}
$$

and we also found that

$$
\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sqrt{\lambda_{\min}(A^*A)}
$$

The square roots of the eigenvalues of *A∗A* are called the *singular values* of *A*.

Frobenius norm

- \blacktriangleright This norm is called the Frobenius norm
- ^I The Frobenius norm of a matrix *^A [∈]* ^R*m×ⁿ* , denoted by *[∥]A∥^F* , is defined as

$$
\|A\|_F = \|\text{trace}(A^*A)\|_2 = \left(\sum_{i=1}^m\sum_{j=1}^m |a_{ij}|^2\right)^{1/2}
$$

 \blacktriangleright the Frobenius norm is not an induced norm.

Lemma

Let A and B be any matrices with appropriate dimensions. Then

- I *ρ*(*A*) *≤ ∥A∥ (this is also true for the F-norm and any induced matrix norm).*
- ^I *[∥]AB∥ ≤ ∥A∥∥B∥. In particular, this gives [∥]A−*1*∥ ≥ ∥A∥−*¹ *if A is invertible. (This is also true for any induced matrix norm).*
- I *∥UAV ∥* = *∥A∥, and ∥UAV ∥^F* = *∥A∥^F , for any appropriately dimensioned unitary matrices U and V .*
- $\blacktriangleright \ \|AB\|_F \le \|A\| \|B\|_F \text{ and } \|AB\|_F \le \|B\| \|A\|_F.$

Matrix Norms

- **In premultiplication or postmultiplication of a unitary matrix on a matrix does not change** its induced 2-norm and *F*-norm, it does change its eigenvalues.
- \blacktriangleright for example, let

I

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad \lambda_1(A) = 1, \lambda_2(A) = 0
$$

$$
U=\begin{bmatrix}\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\text{ and }UA=\begin{bmatrix}\sqrt{2}&0\\0&0\end{bmatrix}
$$

with $\lambda_1(UA) = \sqrt{2}$, $\lambda_2(UA) = 0$

Vector and Matrix Norms MATLAB Command

where *A* is either a matrix or a vector.

The Singular Value Decomposition

Theorem (Singular Value Decomposition)

For every matrix $A \in \mathbb{C}^{m \times n}$ *there exist unitary matrices* $U \in \mathbb{C}^{m \times m}$ *and* $V \in \mathbb{C}^{m \times n}$ *such that*

$$
A = U\Sigma V^*
$$

and Σ *is real and diagonal with non-negative entries.*

 \overline{a}

The matrix Σ has the same size as *A*. For example if *A* is a 3 *×* 2 or 2 *×* 3 matrix, then

 \overline{a}

$$
\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix}
$$

respectively, where $\sigma_{1,2} \geq 0$. The diagonal entries σ_1 are called the *singular values* of A.

The Singular Value Decomposition Proof

There exists a unitary matrix *V* such that

$$
A^*A = V\Lambda V^*,
$$

where $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ is the diagonal eigenvalue matrix of A^*A , and the column v_i of V are the corresponding eigenvectors. Thus

> $A^*Av_i = \lambda_i v_i$ and *v* $\lambda_i^* A^* A v_i = \lambda_i v_i^* v_i = \lambda_i,$

because *V* is unitary, and therefore

$$
||Av_i||^2 = \lambda_i
$$

This implies that $\lambda_i \geq 0$. Assume that the eigenvalues $\lambda_1, \ldots, \lambda_r$ are positive and the remaining *n − r* eigenvalues *λⁱ* and vectors *Avⁱ* are zero. Note that *r ≤* min(*n, m*). Define

$$
\sigma_i = \sqrt{\lambda_i}, \qquad u_i = \frac{1}{\sigma_i}Av_i, \qquad i = 1, \dots, r
$$

Lecture 8 : Signal and System Norms J **15/34** \blacktriangleright **4 15/34** \blacktriangleright **4 1**

The Singular Value Decomposition Proof

It follows that *∥ui∥* = 1. Moreover, we have

$$
u_i^* u_j = \frac{v_i^* A^* A v_j}{\sigma_i \sigma_j} = \frac{\lambda_i v_i^* v_j}{\sigma_i \sigma_j} = 0, \qquad i \neq j
$$

this shows that the vectors u_1, \ldots, u_r defined above have the properties required of column vectors for *U* to be unitary. If $r < m$, one can fill up the matrix *U* with $m - r$ further orthogonal vectors to make it into a $m \times m$ unitary matrix.

We remain to show that the matrices U, V as defined above satisfy $U^*AV = \Sigma$ where Σ is diagonal with *σⁱ* as diagonal entries.

The (*i, j*) entry of *U∗AV* is

$$
(U^*AV)_{i,j} = u_i^* \Lambda v_j = \begin{cases} \sigma_j u_i^* u_j, & j \le r \\ 0 & j > r \end{cases}
$$

Because $\sigma_j u_i^* u_j$ is zero if $i \neq j$ and σ_j if $i = j$, the above shows that the entries of $U^* A V$ are all zero except for the first *r* entries on the main diagonal, which are the singular values of *A*.

The Singular Value Decomposition

From the definition of SVD we obtain $AV = U\Sigma$ and thus

$$
Av_i = \sigma_i u_i, \qquad i = 1, \ldots, n,
$$

where v_i and u_i are the columns of V and U , respectively. We also have

$$
AA^* = U\Sigma V^* V \Sigma^T U^* = U\Sigma \Sigma^* U^*
$$

and

$$
A^*A = V\Sigma^T U^* U \Sigma V^* = V\Sigma^T \Sigma V^*
$$

These show that *U* is the eigenvector matrix of *AA∗* and *V* is the eigenvector matrix of *^A∗A*. The eigenvalue matrices are ΣΣ*^T* and ^Σ*^T* ^Σ, respectively. Again, if *^A* is ³ *[×]* ² then

$$
\Sigma\Sigma^T=\begin{bmatrix}\sigma_1^2 & 0 & 0\\ 0 & \sigma_2^2 & 0\\ 0 & 0 & 0\end{bmatrix},\qquad \Sigma^T\Sigma=\begin{bmatrix}\sigma_1^2 & 0\\ 0 & \sigma_2^2\end{bmatrix}
$$

The singular values of *A* are the square roots of the eigenvalues of *AA∗* and *A∗A*.

Lecture 8 : Signal and System Norms J **17/34** \triangleright **4 17/34** \triangler

H[∞] Norm for SISO Systems

For a stable, proper SISO system with a transfer function $G(s)$, the \mathcal{H}_{∞} norm is defined as

$$
||G(s)||_{\infty} = \sup_{\omega} |G(j\omega)|
$$

- **►** the \mathcal{H}_{∞} norm of a SISO system is simply the maximum gain over all frequencies, and can be read off the Bode magnitude plot of the frequency response.
- I the *H[∞]* norm is equal to the norm induced by the signal 2-norm:

$$
||G(s)||_{\infty} = \max_{u \neq 0} \frac{||y(t)||}{||u(t)||}
$$

if *u*(*t*) is an energy signal,

H[∞] Norm for SISO Systems

$$
||G(s)||_{\infty} = \max_{u \neq 0} \frac{||y(t)||_{\text{rms}}}{||u(t)||_{\text{rms}}}
$$

if *u*(*t*) is a power signal.

In fact the steady state response to an input $u(t) = \sin \omega_0 t$ is

 H_2 Norm for SISO Systems

The *H*² norm for a SISO system with a stable, strictly proper transfer function *G*(*s*) is defined as

$$
||G(s)||_2 = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} |G(j\omega)|^2 d\omega}
$$

- \blacktriangleright the restriction to strictly proper systems is necessary because otherwise $|G(j\omega)| > 0$ as *ω → ∞* and the integral does not exist.
- \blacktriangleright this norm is not induced by a signal norm.
- For a stochastic interpretation of the H_2 norm, assume that the input $u(t)$ is white noise with $E[u(t)u(t + \tau)] = \delta(\tau)$. In this case, the rms value of the output signal is equal to the H_2 norm of the system

$$
||y(t)||_{\rm rms} = ||G(s)||_2
$$

This fact makes it possible to express the LQG problem as the problem of minimizing the H_2 norm of the generalized plant concept.

 H_2 Norm for SISO Systems

 \blacktriangleright A deterministic interpretation is in term of the impulse response

$$
||G(s)||_2 = \sqrt{\int_0^\infty |g(t)|^2 dt} = ||g(t)||_2
$$

This is by letting $\dot{x} = Ax + bu$ and $y = Cx$ be a state space realization of $G(s)$. And $g(t) = ce^{At}b$ denotes the impulse response of the system. The frequency domain can be changed to time domain by using Parseval's theorem.

- \triangleright the \mathcal{H}_2 norm of the system is equal to the signal 2-norm of its impulse response.
- \blacktriangleright This interpretation makes it possible to express the deterministic LQR problem as a \mathcal{H}_2 optimization problem.

H[∞] Norm for MIMO Systems

For MIMO system, we consider both size and direction of the signal vectors as the following example:

$$
G(s) = \begin{bmatrix} 3 & 0 \\ 4 & 1 \end{bmatrix}
$$

- ► the response to a constant input $u(t) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T \sigma(t)$ is $y(t) = \begin{bmatrix} 3 & 4 \end{bmatrix}^T \sigma(t)$, and *∥y*(*t*)*∥*rms = 5*/ √* 2.
- ► the response to $u(t) = \begin{bmatrix} 0 & 1 \end{bmatrix}^T \sigma(t)$ is $y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix}^T \sigma(t)$, and $||y(t)||_{\text{rms}} = 1/\sqrt{2}$.
- **I** Both cases $||u(t)||_{\text{rms}} = 1/\sqrt{2}$, the *gain* in terms of rms values is 5 for the first input signal and 1 for the second input signal.

To define *H[∞]* norm for MIMO systems, we need to consider sinusoidal input signals, and find the combination of inputs that maximizes the output signal.

H[∞] Norm for MIMO Systems

Consider a sinusoidal input with amplitude u_0 and phase ψ can be interpreted as the imaginary part of a complex signal

$$
u(t) = u_0 \sin(\omega t + \psi) = \text{Im}\left[u_0 e^{j(\omega t + \psi)}\right]
$$

$$
\tilde{u}(t) = u_0 e^{j(\omega t + \varphi)} = \hat{u} e^{j\omega t},
$$

where \hat{u} is a complex amplitude. The steady state response to the complex input is $\tilde{y} = \hat{y}e^{j\omega t}$, where \hat{y} is the amplitude of the input signal multiplied by the transfer function evaluated at $s = j\omega$

$$
\hat{y} = G(j\omega)\hat{u}
$$

Applying *m* inputs to a system that has *l* outputs. At a given frequency *ω*, the input and output signals are

$$
\tilde{u}(t) = \begin{bmatrix} \hat{u}_1 \\ \vdots \\ \hat{u}_m \end{bmatrix} e^{j\omega t}, \qquad \tilde{y}(t) = \begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_l \end{bmatrix} e^{j\omega t} = \hat{y} e^{j\omega t}
$$

H[∞] Norm for MIMO Systems

To find the induced 2-norm of the system, we start with

$$
\frac{\|\tilde{y}(t)\|_{\text{rms}}}{\|\tilde{u}(t)\|_{\text{rms}}} = \frac{\|\hat{y}\|}{\|\hat{u}\|}
$$

The output amplitude vector at a given frequency *ω* is obtained by multiplying the input amplitude vector with $G(j\omega)$. For example 2×2 system:

$$
\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} = \begin{bmatrix} G_{11}(j\omega) & G_{12}(j\omega) \\ G_{21}(j\omega) & G_{22}(j\omega) \end{bmatrix} \begin{bmatrix} \hat{u}_1 \\ \hat{u}_2 \end{bmatrix}
$$

For a given frequency, the transfer function matrix is just a complex matrix $G(j\omega) \in \mathbb{C}^{l \times m}$. The maximum value value of $||\hat{y}||/||\hat{u}||$ at that frequency is given by the maximum singular value of the transfer function matrix

$$
\max_{\hat{u}\neq 0} \frac{\|\hat{y}\|}{\|\hat{u}\|} = \bar{\sigma}(G(j\omega))
$$

The *H[∞]* norm of the system is defined as the maximum value of this induced matrix norm over all frequencies $||G(s)||_{\infty} = \sup_{\omega} \bar{\sigma}(G(j\omega)).$

System Norms \mathcal{H}_{∞} Norm for MIMO Systems

An example of the singular value plot of a mass-spring-damper system, using a command sigma.

 H_2 Norm for MIMO Systems

We used the induced 2-norm for matrices, which is equal to the maximum singular value. By using the Frobenius norm, which is

$$
||A||_F = \sqrt{\text{trace}(A^*A)}
$$

The definition of the \mathcal{H}_2 norm of a multivariable system is

$$
||G(s)||_2 = \sqrt{\frac{1}{2\pi} \int_0^\infty ||g(t)||_F^2 dt}
$$

Again, using Parseval's theorem, one can show that an equivalent definition in time domain is

$$
\|G(s)\|_2 = \sqrt{\int_0^\infty \|g(t)\|_F^2 dt}
$$

where $g(t) = Ce^{At}B$ is the impulse response matrix of the system.

Computing the H_2 Norm

The \mathcal{H}_2 norm is

$$
||G(s)||_2 = \sqrt{\mathrm{trace}\int_0^\infty (g^T(t)g(t))dt},
$$

where $g(t) = Ce^{At}B$ is the impulse response matrix for a system $\dot{x} = Ax + Bu$ and $y = Cx$. Substituting the impulse response in the above equation and taking squares yields

$$
||G(s)||_2^2 = \text{trace} \int_0^\infty B^T e^{A^T t} C^T C e^{At} B dt
$$

$$
= \text{trace} B^T \int_0^\infty e^{A^T t} C^T C e^{At} dt B
$$

Defining

$$
W_0 = \int_0^\infty e^{A^Tt} C^T C e^{At} dt \qquad \text{then} \qquad ||G(s)||_2 = \sqrt{\text{trace} B^T W_0 B}
$$

Computing the H_2 Norm

It is straightforward to show that W_0 is the solution to the Lyapunov equaiton

$$
A^T W_0 + W_0 A + C^T C = 0
$$

Using the fact that trace $MN =$ trace NM for two matrices M and N we have

$$
\|G(s)\|_2^2 = \mathop{\rm trace}\nolimits \int_0^\infty C e^{At}BB^Te^{A^Tt}C^Tdt
$$

and obtain as an alternative expression for the value of the \mathcal{H}_2 norm

$$
||G(s)||_2 = \sqrt{\text{trace} CW_c C^T}
$$

where $W_c=\int^\infty$ $\int_{0}^{\infty} e^{At}BB^{T}e^{A^{T}t}dt$ is the solution to

$$
A W_c + W_c A^T + B B^T = 0
$$

Thus, the H_2 norm can be computed by solving a single Lyapunov equation.

Computing the *H[∞]* Norm

The *H[∞]* norm is defined for systems with stable, proper transfer functions. Because the *H[∞]* norm of $G(s)$ is the maximum of $\bar{\sigma}(G(j\omega))$ over frequency, one can try to compute $\bar{\sigma}(G(j\omega))$ for many values of ω and then search for the maximum.

The more efficient method is an iterative procedure:

- **I** Check whether $||G(s)||_{∞}$ is less than a given positive constant $γ$.
- ► Consider a stable plant with transfer function $G(s) = C(sI A)^{-1}B$.
- **For a given** $\gamma > 0$, define the Hamiltonian matrix

$$
M_{\gamma} = \begin{bmatrix} A & \frac{1}{\gamma}BB^T \\ -\frac{1}{\gamma}C^TC & -A^T \end{bmatrix}
$$

Theorem (*∗*)

Given a positive constant γ > 0*, the following two statements are equivalent*

- **1** γ *is a singular value of* $G(j\omega_0)$ *at some frequency* ω_0 *.*
- 2 *Mγ has at least one eigenvalue on the imaginary axis.*

Computing the *H[∞]* Norm

From the theorem

- \blacktriangleright To find the largest singular value over all frequencies, we can start with a sufficiently large value of *γ* and use the above Theorem to check whether it is a singular value of $G(j\omega)$ at some frequency.
- \triangleright We do not need to know at which frequency. If M_{γ} has no imaginary eigenvalue, γ was too large and we try with a smaller value of *γ*.
- If M_{γ} does have an imaginary eigenvalue, γ was too small and we try with a larger value.
- **►** A bisection method can be used as an efficient way of finding a value of $γ$ that is equal to *∥G*(*s*)*∥[∞]* within a guaranteed accuracy.

Computing System Norms Proof the theorem (*∗*)

► First show that (1) \Rightarrow (2) . Assume that γ is a singular value of $G(j\omega_0)$ (G_0) . Let $G_0 = U \Sigma V^*$ be the singular value decomposition of $G_0.$ Then, from $G_0 V = U \Sigma$ and $G_0^*U = V\Sigma^T$, there exist nonzero vectors u and v such that

$$
G_0v = \gamma u, \qquad G_0^*u = \gamma v
$$

Substituting $G(s) = C(sI - A)^{-1}B$ at $s = j\omega_0$ for G_0 yields

$$
C(j\omega_0 I - A)^{-1} Bv = \gamma u, \qquad \text{and} \qquad B^T(-j\omega_0 I - A^T s)^{-1} C^T u = \gamma v
$$

Introducing the vectors

$$
p = (j\omega_0 I - A)^{-1} Bv
$$
, and $q = (-j\omega_0 I - A^T)^{-1} C^T u$

this becomes

$$
Cp = \gamma u, \qquad \text{and} \qquad B^T q = \gamma u
$$

Proof the theorem (*∗*)

$$
\quad\text{or}\quad
$$

$$
\begin{bmatrix} C & 0 \\ 0 & B^T \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} 0 & \gamma I \\ \gamma I & 0 \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix}
$$

Solving for *v* and *u* yields

$$
\begin{bmatrix} v \\ u \end{bmatrix} = \begin{bmatrix} 0 & \gamma I \\ \gamma I & 0 \end{bmatrix}^{-1} \begin{bmatrix} C & 0 \\ 0 & B^T \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix}.
$$
 (1)

The above matrix equation guarantees that

$$
\begin{bmatrix} p \\ q \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

From vectors *p* and *q* , they satisfy

$$
(j\omega_0 I - A)p = Bv
$$
 and $(-j\omega_0 I - A^T)q = C^T u$

Computing System Norms Proof the theorem (*∗*)

or

$$
\begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} + \begin{bmatrix} B & 0 \\ 0 & -C^T \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix} = j \omega_0 \begin{bmatrix} p \\ q \end{bmatrix}
$$

Substituting from (1) yields

$$
\left(\begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix} + \begin{bmatrix} B & 0 \\ 0 & -C^T \end{bmatrix} \begin{bmatrix} 0 & \gamma I \\ \gamma I & 0 \end{bmatrix}^{-1} \begin{bmatrix} C & 0 \\ 0 & B^T \end{bmatrix}\right) = j\omega_0 \begin{bmatrix} p \\ q \end{bmatrix}
$$
 (2)

which is shows that $j\omega_0$ is an eigenvalue of M_γ .

- $▶$ To prove (2) \Rightarrow (1), assume that $j\omega_0$ is an eigenvalue of M_γ . Then there exists a nonzero vector $\begin{bmatrix} p^T & q^T \end{bmatrix}^T$ that satisfies (2). Now use (1) to define $\begin{bmatrix} v^T & u^T \end{bmatrix}^T \neq 0$.
Then form (1) and (2) it follows that γ is a singular value of $G(j\omega_0)$.
- If $D \neq 0$, the associated Hamiltonian matrix to check is

$$
M_{\gamma} = \begin{bmatrix} A - BR^{-1}D^TC & -\gamma BR^{-1}B^T \\ -\gamma C^TS^{-1}C & -(A - BR^{-1}D^TC)^T \end{bmatrix}
$$

where *R* and *S* are given by $R = D^T D - \gamma^2 I$ and $S = D D^T - \gamma^2 I$.

Reference

- 1 Herbert Werner "*Lecture Notes on Control Systems Theory and Design*", 2011
- 2 Mathwork "*Control System Toolbox: User's Guide*", 2014
- 3 Kemin Zhou and John Doyle "*Essentials of Robust Control*", Prentice Hall, 1998