Lecture 8 : Signal and System Norms

Dr.-Ing. Sudchai Boonto Assistant Professor

Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand

Vector Norms

A norm $\|x\|$ is a function mapping a vector x into a real number, that satisfies the following four properties for any $x,y\in\mathcal{X}$

- ▶ ||x|| > 0 (positivity);
- $||x|| = 0 \Leftrightarrow x = 0$ (positive definiteness);
- $\|\alpha x\| = \alpha \|x\|$ for any scalar $\alpha > 0$ (homogeneity);
- ▶ $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

A frequently used norm on vector x is the vector p-norm

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},$$

where p is a positive integer. There are three important norms:

$$\|x\|_1 = \sum_{i=1}^n |x_i|, \qquad \|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}, \qquad \|x\|_{\infty} = \max_i |x_i|$$

Vector Norms

The vector 2-norm can also be written as

$$\begin{aligned} \|x\|_2 &= \sqrt{x^T x} & \text{if } x \in \mathbb{R}^n \\ \|x\|_2 &= \sqrt{x^* x} & \text{if } x \in \mathbb{C}^n \end{aligned}$$

Here A^* denotes the *Hermitian* of a matrix A:

$$A^* = \bar{A}^T,$$

where \bar{A} is the complex conjugate of A. For convenient, we will drop the subscript and write ||x|| for the vector 2-norm of x.

Vector Norms

Contours for the vector *p*-norm, $||a||_p = 1$ for $p = 1, 2, \infty$.

Signal Norms

The p-norm of a signal is defined as

$$\|x(t)\|_p = \left(\int_{-\infty}^{\infty} |x(\tau)|^p d\tau\right)^{\frac{1}{p}}$$

One of the most used signal norm is the signal 2-norm

$$\|x(t)\|_2 \text{ or } \|x\| = \sqrt{\int_{-\infty}^\infty |x(\tau)|^2 d\tau}$$

It should note that *energy signals* have finite 2-norm while the 2-norm does not exist for *power signals*.

A real or complex valued signal vector $x(t) = \begin{bmatrix} x_1(t) & x_2(t) & \dots & x_n(t) \end{bmatrix}^T$ Its signal 2-norm is defined as

$$\|x(t)\|_2 = \sqrt{\int_{-\infty}^{\infty} \|x(\tau)\|^2 d\tau}$$

Consider two complex vectors $x \in \mathbb{C}^m$ and $y \in \mathbb{C}^m$, and a linear mapping y = Ax. The matrix p-norm induced by the vector norm is defined as

$$||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

Since y = Ax:

- $||A||_p$ is a ratio or *gain* of the vector norms $||y||_p$ and $||x||_p$.
- This ratio is the maximum value of ||y||_p/||x||_p over all nonzero x ∈ Cⁿ (the maximum gain of A).
- It is a positive real number, which is a norm. It depends on the choice of vector 2-norm, it is called an *induced norm*

The matrix 2-norm induced by the vector 2-norm is defined as

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$

By dropping the subscript the ||A|| is usually known as matrix 2-norm. To find the value of ||A||, we take squares on both sides to get

$$\|A\|^2 = \max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \max_{x \neq 0} \frac{x^*A^*Ax}{x^*x} = \max_{x \neq 0} \frac{x^*Mx}{x^*x}$$

• $M = A^*A$ is called Hermitian matrix. M is positive semi-definite, where $x^*Mx \ge 0, \ \forall x \in \mathbb{C}^n$. With y = Ax, this property follows from

$$x^*Mx = x^*A^*Ax = y^*y \ge 0$$

Note that this implies that x^*Mx is real even if x is complex.

• the eigenvalues of M are real. It can be shown by letting λ be an eigenvalue and v be an eigenvector of M, and consider

$$Mv = \lambda v$$

Multiplying with v^* from the left yields $v^*Mv = \lambda v^*v$. We established already that the left hand side of this equation is real, and same on the right hand side.

the eigenvalues of M are orthogonal (two vectors x and y are orthogonal if x*y = 0). To show that two eigenvectors of M belonging to different eigenvalues are orthogonal, consider

$$Mv_1 = \lambda_1 v_1, \qquad Mv_2 = \lambda_2 v_2, \qquad \lambda_1 \neq \lambda_2$$

We have

$$(\lambda_1 v_1)^* v_2 = (M v_1)^* v_2 = v_1^* M v_2 = v_1^* \lambda_2 v_2$$

thus $\lambda_1 v_1^* v_2 = \lambda_2 v_1^* v_2$, and from the assumption $\lambda_1 \neq \lambda_2$ it then follows that $v_1^* v_2 = 0$.

If all eigenvectors v_i of M are normalized such that ||v_i|| = 1, i = 1,...,n, the eigenvector matrix V is unitary, i.e. V^{*}V = I, or V⁻¹ = V^{*}.

Now we can find the value of ||A|| by introducing $A^*A = V\Lambda V^*$

$$\max_{x \neq 0} \frac{x^* A^* A x}{x^* x} = \max_{x \neq 0} \frac{x^* V \Lambda V^* x}{x^* x}$$

and letting $y = V^*x$ and thus x = Vy (using orthonormality of V), we obtain

$$\max_{y \neq 0} \frac{y^* \Lambda y}{y^* V^* V y} = \max_{y \neq 0} \frac{y^* \Lambda y}{y^* y} = \max_{y \neq 0} \frac{\lambda_1 |y_1|^2 + \lambda_2 |y_2|^2 + \ldots + \lambda_n |y_n|^2}{|y_1|^2 + |y_2|^2 + \ldots + |y_n|^2}.$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A^*A . Assume that the eigenvalues are ordered such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. Then it is easy to see that the maximum value of the above value is λ_n , which is achieved if we choose $y = \begin{bmatrix} 1 & 0 & \ldots & 0 \end{bmatrix}^T$, and the minimum value is λ_n , achieved by choosing $y = \begin{bmatrix} 0 & \ldots & 0 & 1 \end{bmatrix}^T$.

Because the above expression is the square of the matrix 2-norm of A, we have thus established that

$$\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sqrt{\lambda_{\max}(A^*A)}$$

and we also found that

$$\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sqrt{\lambda_{\min}(A^*A)}$$

The square roots of the eigenvalues of A^*A are called the *singular values* of A.

Frobenius norm

- This norm is called the Frobenius norm
- ▶ The Frobenius norm of a matrix $A \in \mathbb{R}^{m \times n}$, denoted by $||A||_F$, is defined as

$$\|A\|_F = \|\mathsf{trace}(A^*A)\|_2 = \left(\sum_{i=1}^m \sum_{j=1}^m |a_{ij}|^2\right)^{1/2}$$

the Frobenius norm is not an induced norm.

Lemma

Let A and B be any matrices with appropriate dimensions. Then

- ▶ $\rho(A) \leq ||A||$ (this is also true for the *F*-norm and any induced matrix norm).
- ||AB|| ≤ ||A|||B||. In particular, this gives ||A⁻¹|| ≥ ||A||⁻¹ if A is invertible. (This is also true for any induced matrix norm).
- ▶ ||UAV|| = ||A||, and $||UAV||_F = ||A||_F$, for any appropriately dimensioned unitary matrices U and V.
- $||AB||_F \le ||A|| ||B||_F$ and $||AB||_F \le ||B|| ||A||_F$.

Matrix Norms

- premultiplication or postmultiplication of a unitary matrix on a matrix does not change its induced 2-norm and F-norm, it does change its eigenvalues.
- for example, let

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad \lambda_1(A) = 1, \lambda_2(A) = 0$$

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \text{ and } UA = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$$

with $\lambda_1(UA) = \sqrt{2}$, $\lambda_2(UA) = 0$

$ A _2$	norm(A,2)
$\ A\ _1$	norm(A,1)
$ A _{\infty}$	<pre>norm(A,'inf')</pre>

where A is either a matrix or a vector.

Lecture 8 : Signal and System Norms

The Singular Value Decomposition

Theorem (Singular Value Decomposition)

For every matrix $A \in \mathbb{C}^{m \times n}$ there exist unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{m \times n}$ such that

$$A = U\Sigma V^*$$

and Σ is real and diagonal with non-negative entries.

The matrix Σ has the same size as A. For example if A is a 3×2 or 2×3 matrix, then

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix}$$

respectively, where $\sigma_{1,2} \geq 0$. The diagonal entries σ_1 are called the *singular values* of A.

The Singular Value Decomposition Proof

There exists a unitary matrix V such that

 $A^*A = V\Lambda V^*,$

where $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ is the diagonal eigenvalue matrix of A^*A , and the column v_i of V are the corresponding eigenvectors. Thus

$$A^*Av_i = \lambda_i v_i$$
 and $v_i^*A^*Av_i = \lambda_i v_i^*v_i = \lambda_i$,

because V is unitary, and therefore

$$||Av_i||^2 = \lambda_i$$

This implies that $\lambda_i \geq 0$. Assume that the eigenvalues $\lambda_1, \ldots, \lambda_r$ are positive and the remaining n-r eigenvalues λ_i and vectors Av_i are zero. Note that $r \leq \min(n, m)$. Define

$$\sigma_i = \sqrt{\lambda_i}, \qquad u_i = \frac{1}{\sigma_i} A v_i, \qquad i = 1, \dots, r$$

The Singular Value Decomposition Proof

It follows that $||u_i|| = 1$. Moreover, we have

$$u_i^* u_j = \frac{v_i^* A^* A v_j}{\sigma_i \sigma_j} = \frac{\lambda_i v_i^* v_j}{\sigma_i \sigma_j} = 0, \qquad i \neq j$$

this shows that the vectors u_1, \ldots, u_r defined above have the properties required of column vectors for U to be unitary. If r < m, one can fill up the matrix U with m - r further orthogonal vectors to make it into a $m \times m$ unitary matrix.

We remain to show that the matrices U, V as defined above satisfy $U^*AV = \Sigma$ where Σ is diagonal with σ_i as diagonal entries.

The (i, j) entry of U^*AV is

$$(U^*AV)_{i,j} = u_i^*\Lambda v_j = \begin{cases} \sigma_j u_i^* u_j, & j \le r \\ 0 & j > r \end{cases}$$

Because $\sigma_j u_i^* u_j$ is zero if $i \neq j$ and σ_j if i = j, the above shows that the entries of U^*AV are all zero except for the first r entries on the main diagonal, which are the singular values of A.

The Singular Value Decomposition

From the definition of SVD we obtain $AV=U\Sigma$ and thus

 $Av_i = \sigma_i u_i, \qquad i = 1, \dots, n,$

where v_i and u_i are the columns of V and U, respectively. We also have

 $AA^* = U\Sigma V^* V\Sigma^T U^* = U\Sigma \Sigma^* U^*$

and

$$A^*A = V\Sigma^T U^* U\Sigma V^* = V\Sigma^T \Sigma V^*$$

These show that U is the eigenvector matrix of AA^* and V is the eigenvector matrix of A^*A . The eigenvalue matrices are $\Sigma\Sigma^T$ and $\Sigma^T\Sigma$, respectively. Again, if A is 3×2 then

$$\Sigma\Sigma^T = \begin{bmatrix} \sigma_1^2 & 0 & 0\\ 0 & \sigma_2^2 & 0\\ 0 & 0 & 0 \end{bmatrix}, \qquad \Sigma^T\Sigma = \begin{bmatrix} \sigma_1^2 & 0\\ 0 & \sigma_2^2 \end{bmatrix}$$

The singular values of A are the square roots of the eigenvalues of AA^* and A^*A .

Lecture 8 : Signal and System Norms

$\begin{array}{l} \textbf{System Norms} \\ \mathcal{H}_{\infty} \text{ Norm for SISO Systems} \end{array}$

For a stable, proper SISO system with a transfer function G(s), the \mathcal{H}_{∞} norm is defined as

$$||G(s)||_{\infty} = \sup_{\omega} |G(j\omega)|$$

- the H_∞ norm of a SISO system is simply the maximum gain over all frequencies, and can be read off the Bode magnitude plot of the frequency response.
- the \mathcal{H}_{∞} norm is equal to the norm induced by the signal 2-norm:

$$||G(s)||_{\infty} = \max_{u \neq 0} \frac{||y(t)||}{||u(t)||}$$

if u(t) is an energy signal,

$\begin{array}{l} \textbf{System Norms} \\ \mathcal{H}_{\infty} \text{ Norm for SISO Systems} \end{array}$

it is

$$\|G(s)\|_{\infty} = \max_{u \neq 0} \frac{\|y(t)\|_{\mathsf{rms}}}{\|u(t)\|_{\mathsf{rms}}}$$

if u(t) is a power signal.

• in fact the steady state response to an input $u(t) = \sin \omega_0 t$ is

$$y(t) = \|G(s)\|_{\infty} \sin(\omega_0 t + \phi)$$

Lecture 8 : Signal and System Norms

System Norms \mathcal{H}_2 Norm for SISO Systems

The \mathcal{H}_2 norm for a SISO system with a stable, strictly proper transfer function G(s) is defined as

$$\|G(s)\|_2 = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} |G(j\omega)|^2 d\omega}$$

- ▶ the restriction to strictly proper systems is necessary because otherwise $|G(j\omega)| > 0$ as $\omega \to \infty$ and the integral does not exist.
- this norm is not induced by a signal norm.
- For a stochastic interpretation of the \mathcal{H}_2 norm, assume that the input u(t) is white noise with $\mathbf{E}[u(t)u(t+\tau)] = \delta(\tau)$. In this case, the rms value of the output signal is equal to the \mathcal{H}_2 norm of the system

$$||y(t)||_{\mathsf{rms}} = ||G(s)||_2$$

This fact makes it possible to express the LQG problem as the problem of minimizing the H_2 norm of the generalized plant concept.

System Norms \mathcal{H}_2 Norm for SISO Systems

A deterministic interpretation is in term of the impulse response

$$\|G(s)\|_2 = \sqrt{\int_0^\infty |g(t)|^2 dt} = \|g(t)\|_2$$

This is by letting $\dot{x} = Ax + bu$ and y = Cx be a state space realization of G(s). And $g(t) = ce^{At}b$ denotes the impulse response of the system. The frequency domain can be changed to time domain by using Parseval's theorem.

- the \mathcal{H}_2 norm of the system is equal to the signal 2-norm of its impulse response.
- This interpretation makes it possible to express the deterministic LQR problem as a H₂ optimization problem.

$\begin{array}{l} \textbf{System Norms} \\ \mathcal{H}_{\infty} \text{ Norm for MIMO Systems} \end{array}$

For MIMO system, we consider both size and direction of the signal vectors as the following example:

$$G(s) = \begin{bmatrix} 3 & 0\\ 4 & 1 \end{bmatrix}$$

- ► the response to a constant input $u(t) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T \sigma(t)$ is $y(t) = \begin{bmatrix} 3 & 4 \end{bmatrix}^T \sigma(t)$, and $\|y(t)\|_{\text{rms}} = 5/\sqrt{2}$.
- ► the response to $u(t) = \begin{bmatrix} 0 & 1 \end{bmatrix}^T \sigma(t)$ is $y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix}^T \sigma(t)$, and $\|y(t)\|_{\mathsf{rms}} = 1/\sqrt{2}$.
- ▶ Both cases ||u(t)||_{rms} = 1/√2, the gain in terms of rms values is 5 for the first input signal and 1 for the second input signal.

To define \mathcal{H}_{∞} norm for MIMO systems, we need to consider sinusoidal input signals, and find the combination of inputs that maximizes the output signal.

$\begin{array}{l} \textbf{System Norms} \\ \mathcal{H}_{\infty} \text{ Norm for MIMO Systems} \end{array}$

Consider a sinusoidal input with amplitude u_0 and phase ψ can be interpreted as the imaginary part of a complex signal

$$\begin{split} u(t) &= u_0 \sin(\omega t + \psi) = \mathrm{Im} \left[u_0 e^{j(\omega t + \psi)} \right] \\ \tilde{u}(t) &= u_0 e^{j(\omega t + \varphi)} = \hat{u} e^{j\omega t}, \end{split}$$

where \hat{u} is a complex amplitude. The steady state response to the complex input is $\tilde{y} = \hat{y}e^{j\omega t}$, where \hat{y} is the amplitude of the input signal multiplied by the transfer function evaluated at $s = j\omega$

$$\hat{y} = G(j\omega)\hat{u}$$

Applying m inputs to a system that has l outputs. At a given frequency ω , the input and output signals are

$$\tilde{u}(t) = \begin{bmatrix} \hat{u}_1 \\ \vdots \\ \hat{u}_m \end{bmatrix} e^{j\omega t}, \qquad \tilde{y}(t) = \begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_l \end{bmatrix} e^{j\omega t} = \hat{y}e^{j\omega t}$$

$\begin{array}{l} \textbf{System Norms} \\ \mathcal{H}_{\infty} \text{ Norm for MIMO Systems} \end{array}$

To find the induced 2-norm of the system, we start with

$\ \tilde{y}(t)\ _{rms}$	$\ \hat{y}\ $	
$\ \tilde{u}(t)\ _{rms}$	$-\frac{1}{\ \hat{u}\ }$	

The output amplitude vector at a given frequency ω is obtained by multiplying the input amplitude vector with $G(j\omega)$. For example 2×2 system:

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} = \begin{bmatrix} G_{11}(j\omega) & G_{12}(j\omega) \\ G_{21}(j\omega) & G_{22}(j\omega) \end{bmatrix} \begin{bmatrix} \hat{u}_1 \\ \hat{u}_2 \end{bmatrix}$$

For a given frequency, the transfer function matrix is just a complex matrix $G(j\omega) \in \mathbb{C}^{l \times m}$. The maximum value value of $\|\hat{y}\|/\|\hat{u}\|$ at that frequency is given by the maximum singular value of the transfer function matrix

$$\max_{\hat{u}\neq 0} \frac{\|\hat{y}\|}{\|\hat{u}\|} = \bar{\sigma}(G(j\omega))$$

The \mathcal{H}_{∞} norm of the system is defined as the maximum value of this induced matrix norm over all frequencies $\|G(s)\|_{\infty} = \sup_{\omega} \bar{\sigma}(G(j\omega)).$

An example of the singular value plot of a mass-spring-damper system, using a command sigma.

System Norms \mathcal{H}_2 Norm for MIMO Systems

We used the induced 2-norm for matrices, which is equal to the maximum singular value. By using the Frobenius norm, which is

 $\|A\|_F = \sqrt{\operatorname{trace}(A^*A)}$

The definition of the \mathcal{H}_2 norm of a multivariable system is

$$\|G(s)\|_2 = \sqrt{\frac{1}{2\pi} \int_0^\infty \|g(t)\|_F^2 dt}$$

Again, using Parseval's theorem, one can show that an equivalent definition in time domain is

$$\|G(s)\|_2 = \sqrt{\int_0^\infty \|g(t)\|_F^2 dt}$$

where $g(t) = Ce^{At}B$ is the impulse response matrix of the system.

Computing System Norms Computing the H_2 Norm

The \mathcal{H}_2 norm is

$$\|G(s)\|_2 = \sqrt{\operatorname{trace} \int_0^\infty (g^T(t)g(t))dt},$$

where $g(t) = Ce^{At}B$ is the impulse response matrix for a system $\dot{x} = Ax + Bu$ and y = Cx. Substituting the impulse response in the above equation and taking squares yields

$$\begin{split} \|G(s)\|_{2}^{2} &= \operatorname{trace} \int_{0}^{\infty} B^{T} e^{A^{T} t} C^{T} C e^{A t} B dt \\ &= \operatorname{trace} B^{T} \int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A t} dt B \end{split}$$

Defining

$$W_0 = \int_0^\infty e^{A^T t} C^T C e^{At} dt \qquad \text{then} \qquad \|G(s)\|_2 = \sqrt{\text{trace} B^T W_0 B}$$

It is straightforward to show that W_0 is the solution to the Lyapunov equaiton

$$A^T W_0 + W_0 A + C^T C = 0$$

Using the fact that trace MN =trace NM for two matrices M and N we have

$$\|G(s)\|_2^2 = \operatorname{trace} \int_0^\infty C e^{At} B B^T e^{A^T t} C^T dt$$

and obtain as an alternative expression for the value of the \mathcal{H}_2 norm

$$||G(s)||_2 = \sqrt{\mathsf{trace}CW_cC^T}$$

where $W_c = \int_0^\infty e^{At} B B^T e^{A^T t} dt$ is the solution to

$$AW_c + W_c A^T + BB^T = 0$$

Thus, the \mathcal{H}_2 norm can be computed by solving a single Lyapunov equation.

Computing the \mathcal{H}_∞ Norm

The \mathcal{H}_{∞} norm is defined for systems with stable, proper transfer functions. Because the \mathcal{H}_{∞} norm of G(s) is the maximum of $\bar{\sigma}(G(j\omega))$ over frequency, one can try to compute $\bar{\sigma}(G(j\omega))$ for many values of ω and then search for the maximum.

The more efficient method is an iterative procedure:

- Check whether $||G(s)||_{\infty}$ is less than a given positive constant γ .
- Consider a stable plant with transfer function $G(s) = C(sI A)^{-1}B$.
- For a given $\gamma > 0$, define the Hamiltonian matrix

$$M_{\gamma} = \begin{bmatrix} A & \frac{1}{\gamma} B B^T \\ -\frac{1}{\gamma} C^T C & -A^T \end{bmatrix}$$

Theorem (*)

Given a positive constant $\gamma > 0$, the following two statements are equivalent

- 1 γ is a singular value of $G(j\omega_0)$ at some frequency ω_0 .
- 2 M_{γ} has at least one eigenvalue on the imaginary axis.

Computing the \mathcal{H}_∞ Norm

From the theorem

- To find the largest singular value over all frequencies, we can start with a sufficiently large value of γ and use the above Theorem to check whether it is a singular value of G(jω) at some frequency.
- We do not need to know at which frequency. If M_γ has no imaginary eigenvalue, γ was too large and we try with a smaller value of γ.
- If M_{γ} does have an imaginary eigenvalue, γ was too small and we try with a larger value.
- A bisection method can be used as an efficient way of finding a value of γ that is equal to ||G(s)||∞ within a guaranteed accuracy.

Proof the theorem (*)

First show that (1) \Rightarrow (2). Assume that γ is a singular value of $G(j\omega_0)$ (G_0). Let $G_0 = U\Sigma V^*$ be the singular value decomposition of G_0 . Then, from $G_0V = U\Sigma$ and $G_0^*U = V\Sigma^T$, there exist nonzero vectors u and v such that

$$G_0 v = \gamma u, \qquad G_0^* u = \gamma v$$

Substituting $G(s) = C(sI - A)^{-1}B$ at $s = j\omega_0$ for G_0 yields

$$C(j\omega_0 I - A)^{-1}Bv = \gamma u, \qquad \text{and} \qquad B^T(-j\omega_0 I - A^T s)^{-1}C^T u = \gamma v$$

Introducing the vectors

$$p = (j\omega_0 I - A)^{-1} Bv$$
, and $q = (-j\omega_0 I - A^T)^{-1} C^T u$

this becomes

$$Cp = \gamma u$$
, and $B^T q = \gamma u$

Computing System Norms Proof the theorem (*)

or

$$\begin{bmatrix} C & 0 \\ 0 & B^T \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} 0 & \gamma I \\ \gamma I & 0 \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix}$$

Solving for v and u yields

$$\begin{bmatrix} v \\ u \end{bmatrix} = \begin{bmatrix} 0 & \gamma I \\ \gamma I & 0 \end{bmatrix}^{-1} \begin{bmatrix} C & 0 \\ 0 & B^T \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix}.$$
 (1)

The above matrix equation guarantees that

$$\begin{bmatrix} p \\ q \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

From vectors \boldsymbol{p} and \boldsymbol{q} , they satisfy

$$(j\omega_0 I - A)p = Bv$$
 and $(-j\omega_0 I - A^T)q = C^T u$

Computing System Norms Proof the theorem (*)

or

$$\begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} + \begin{bmatrix} B & 0 \\ 0 & -C^T \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix} = j\omega_0 \begin{bmatrix} p \\ q \end{bmatrix}$$

Substituting from (1) yields

$$\left(\begin{bmatrix} A & 0\\ 0 & -A^T \end{bmatrix} + \begin{bmatrix} B & 0\\ 0 & -C^T \end{bmatrix} \begin{bmatrix} 0 & \gamma I\\ \gamma I & 0 \end{bmatrix}^{-1} \begin{bmatrix} C & 0\\ 0 & B^T \end{bmatrix} \right) = j\omega_0 \begin{bmatrix} p\\ q \end{bmatrix}$$
(2)

which is shows that $j\omega_0$ is an eigenvalue of M_{γ} .

- ▶ To prove (2) \Rightarrow (1), assume that $j\omega_0$ is an eigenvalue of M_{γ} . Then there exists a nonzero vector $\begin{bmatrix} p^T & q^T \end{bmatrix}^T$ that satisfies (2). Now use (1) to define $\begin{bmatrix} v^T & u^T \end{bmatrix}^T \neq 0$. Then form (1) and (2) it follows that γ is a singular value of $G(j\omega_0)$.
- ▶ If $D \neq 0$, the associated Hamiltonian matrix to check is

$$M_{\gamma} = \begin{bmatrix} A - BR^{-1}D^{T}C & -\gamma BR^{-1}B^{T} \\ -\gamma C^{T}S^{-1}C & -(A - BR^{-1}D^{T}C)^{T} \end{bmatrix}$$

where R and S are given by $R=D^TD-\gamma^2 I$ and $S=DD^T-\gamma^2 I.$

- Herbert Werner "Lecture Notes on Control Systems Theory and Design", 2011
- 2 Mathwork "Control System Toolbox: User's Guide", 2014
- Kemin Zhou and John Doyle "Essentials of Robust Control", Prentice Hall, 1998