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Linear Quadratic Gaussian

I The state space methods for optimal controller design developed in the 1960s

I Linear Quadratic Gaussian (LQG) control was recognized by the Apollo people, and the

Kalman filter became the first embedded system.

I In 1970s were found to suffer from being sensitive to modelling errors and parameters

uncertainty.

I There were a lot of failures of the method in practical application: a Trident submarine

caused the vessel to unexpectedly surface in a simulation of rough sea, the same year

F-8c crusader aircraft led to disappointing results.

I J. Doyle, “Guaranteed Margins for LQG Regulators”, IEEE Transactions on Automatic

Control, Vol. 23, No. 4, pp. 756–757, 1978.
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Robust Control

I George Zames posed the problem of robust control, also known as H∞-synthesis.

I In the 1980s research activities turned to a new approach, where design objectives are

achieved by minimizing the H2 norm or H∞ norm of suitable closed-loop transfer

functions.

I The new method is closely related to the familiar LQG methods – the computation of

both H2 and H∞ optimal controllers involves the solution of two algebraic Riccati

equations.

I More efficient methods for such a design have been developed in the 1990s. Instead of

solving Riccati equations, one can express H2 and H∞ constraints as linear matrix

inequalities (LMI).

I The major problem with modern H2 and H∞ optimal control is the controllers have

the same dynamic order as the plant. (This problem has been solved, they claimed, by

Pierre Apkarian and Dominikus Noll since 2006.) If the plant to be controlled is of

high dynamic order, the optimal design results in controllers that are difficult to

implement. Moreover, the high order may cause numerical problems.
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The Concept of a Generalized Plant
LQG control

In modern control, almost any design problem is represented in the form shown in the below

Figure.

w
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We can show the problem of designing an LQG controller in the generalized plant format.

Consider a state space realization of the plant with transfer function G(s) corrupted by

process noise wx and measurement noise wy .

ẋ = Ax+Bu+ wx

y = Cx+ wy ,

where wx and wy are white noise processes.
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The Concept of a Generalized Plant
LQG control

r K(s) u G(s)

wx
wy

y

−

A regulation problem with r = 0. The objective is to find a controller K(s) that minimizes

the LQG performance index

V = lim
T→∞

E

[
1

T

∫ T

0

(
xTQx+ uTRu

)
dt

]

The state space realization of the generalized P . It has two inputs w and u, and two output

z and v:

ẋ = Apx+Bww +Buu

z = Czx+Dzww +Dzuu

v = Cvx+Dvww +Dvuu
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The Concept of a Generalized Plant
LQG control

I The measured output v of the generalized plant to be the control error e = −y in the

LQG problem.

I Take the control input u of the generalized plant to be the control input of the LQG

problem. Relate the plant model and the generalized plant:

Ap = A, Bu = B, Cv = −C, Dvu = 0

I Select

Cz =

[
Q1/2

0

]
, Dzu =

[
0

R1/2

]

I Assume w = 0 , the square integral of the fictitious output z is

∫ ∞

0
zT zdt =

∫ ∞

0

(
xTQx+ uTRu

)
dt

Lecture 7 : Generalized Plant and LFT form J 6/30 I }



The Concept of a Generalized Plant
LQG control

I Assume that w is a white noise process satisfying E
[
w(t)wT (t+ τ)

]
= δ(τ)I, and

choose

Bw =
[
Q

1/2
e 0

]
, Dvw =

[
0 R

1/2
e

]
Then

wx = Bww =
[
Q

1/2
e 0

] [w1

w2

]
= Q

1/2
e w1

wy = Dvww =
[
0 R

1/2
e

] [w1

w2

]
= R

1/2
e w2

It is easy to see that minimizing

lim
T→∞

E

[
1

T

∫ T

0
zT (t)z(t)dt

]

is equivalent to minimizing the LQG performance index V .
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The Concept of a Generalized Plant
LQG control

The transfer function of a generalized plant that represents the LQG problem is

P (s) =

[
Ap Bp

Cp Dp

]
=



A
[
Q

1/2
e 0

]
B

[
Q1/2

0

]
0

[
0

R1/2

]

−C
[
0 R

1/2
e

]
0


where 0 stand for zero matrix blocks of appropriate dimensions.

In MATLAB, use a command P = ss(Ap, Bp, Cp, Dp)
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The Concept of a Generalized Plant
LQG control - reference tracking

P (s)

w1 Q
1/2
e

R
1/2
e

w2

B
1

s
x

C

r

wx

wy

−
e

A

R1/2

Q1/2 z1

u

z2

K(s)

I the external input w =
[
r w1 w2

]T
I the fictitious output z =

[
z1 z2

]T
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Aircraft control

Assuming the state space model represents a

linearized model of the vertical-plane dynamics

of an aircraft is described below:

A =


0 0 1.132 0 −1

0 −0.0538 −0.1712 0 0.0705

0 0 0 1 0

0 0.0485 0 −0.8556 −1.013

0 −0.2909 0 1.0532 −0.6859



B =


0 0 0

−0.12 1 0

0 0 0

4.419 0 −1.665

1.575 0 −0.0732

 , C =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 , D =

0 0 0

0 0 0

0 0 0


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Aircraft control

u1 spoiler angle (in 0.1 deg)

u2 forward acceleration (in m s−2)

u3 elevator angle (in deg)

x1 relative altitude (in m)

x2 forward speed (in m s−1)

x3 pitch angle (in deg)

x4 pitch rate (in deg s−1)

x5 vertical speed (in m s−1)

The design objectives are:

I fast tracking of step changes for all three reference inputs, with little or no overshoot

I control input must satisfy |u3| < 20.

I Hint: use H2 control synthesis command, K = h2syn(Gplant, nmeas, ncont) , of

MATLAB

I We will discuss how this function work later.
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Aircraft control
Design example

0 2 4 6 8 10
0
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y
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)
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0

5
Control inputs

u
(t
)

This result has been done by selecting:

I R = 1× 10−5I, Re = 0.1I, Q = C , and Qe = B.

I Noting that we did not use an integrator.
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Feedback Structure

r e
K

u ug

di

G
y z

−

n

d

The standard feedback configuration is consisted of the interconnected plant P and

controller K.

I r is a reference signal

I n is a sensor noise

I d and di are plant output disturbance and plant input disturbance

I ug and y are plant input and output.
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Standard Problem: P −K-Structure

P

K

z

vu

w

Pcl

[
z
v

]
=

[
P11 P12

P21 P22

]
︸ ︷︷ ︸

P

[
w
u

] I external inputs: w

I external outputs: z

I controller input: v

I controller output: u
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Transformation into Standard Problem

For any control structure, perform the following steps:

I Collect all signals that are evaluated for performance into the performance vector z

I Collect all signals from outside into generalized disturbance vector w

I Collect all signals that are fed to K into generalized measurement vector v

I Denote output of K by u

I Cut out K

I Determine transfer matrix [
z

v

]
= P

[
w

u

]
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Standard Problem – Example

For the classical control

r e
K

u ug

di

G
y z

−

n

d

z = d+G(di + u)

v = e = r − (n+ z) = r − n− d−G(di + u)

[
z
v

]
=

[
0 I G 0 G
I −I −G −I −G

]
r
d
di
n
u


P =

[
P11 P12

P21 P22

]
=

[
0 I G 0 G
I −I −G −I −G

]
w =

[
rT dT dTi nT

]T
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Standard Problem – P −K-Structure

Procedure leads to standard problem or the P −K-Structure:

P

K

z

vu

w

Pcl

[
z

v

]
=

[
P11 P12

P21 P22

]
︸ ︷︷ ︸

P

[
w

u

]

Closed-loop interconnection described by

Z(s) = Pcl(s)W (s) or short z = Pclw

with Pcl = P11 + P12(I −KP22)
−1KP21

= P11 + P12K(I − P22K)−1P21

= F(P,K)
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Linear Fractional Transformation (LFT)

Consider a mapping F : C 7→ C of the form

F (s) =
a+ bs

c+ ds

with a, b, c, and d ∈ C is called a linear fractional transformation, if c ̸= 0 the F (s) can also

be written as

F (s) = α+ βs(1− γs)−1

for some λ, β and γ ∈ C.
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Linear Fractional Transformations
Lower linear fractional transformation

The lower LFT with respect to ∆l is defined as

P

∆l

z1

v1u1

w1 [
z1

v1

]
= P

[
w1

u1

]
=

[
A B

C D

][
w1

u1

]
u1 = ∆lv1

Fl(M,∆l) =

[
A B

C D

]
⋆∆l := A+B(I −∆lD)−1∆lC

= A+B∆l(I −D∆l)
−1C,

provided that the inverse (I −∆lD)−1 exists.
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Linear Fractional Transformations
Upper linear fractional transformation

The upper LFT with respect to ∆u is defined as

P

∆u

z2

v2u2

w2

[
v2

z2

]
= P

[
u2

w2

]
=

[
A B

C D

][
u2

w2

]
u2 = ∆uv2.

Fu(M,∆u) = ∆u ⋆

[
A B

C D

]
:= D + C(I −∆uA)−1∆uB

= D + C∆u(I −A∆u)
−1B,

provided that the inverse (I −∆uA)−1 exists.
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Linear Fractional Transformations
Example

e
K

u
G

yg
W2

f

W1
uf d

F

−

n

P

K

z

vu

w
w =

[
d n

]T
z =

[
f uf

]T
[
z
v

]
= P

[
w
u

]
=

 W2G 0 W2G
0 0 W1

− FG −F −FG

 d
n
u


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Linear Fractional Transformations
Example

Assuming that the plant G is strictly proper and P, F,W1, and W2 have the following
state-space realizations:

G =

[
Ag Bg

Cg 0

]
, F =

[
Af Bf

Cf Df

]
,

W1 =

[
Aw1 Bw1

Cw1 Dw1

]
, W2 =

[
Aw2 Bw2

Cw2 Dw2

]
That is

ẋg = Agxg +Bg(d+ u), yg = Cgxg

ẋf = Afxf +Bf (yg + n), −y = Cfxf +Df (yg + n),

ẋw1 = Aw1xw1 +Bw1u, uf = Cw1xu +Dw1u,

ẋw2 = Aw2xw2 +Bw2yg , f = Cw2xw2 +Dw2yg .
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Linear Fractional Transformations
Example

Define a new state vector

x =
[
xg xf xw1 xw2

]T
and elimainate the variable yg to get a realization of P as

ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

v = C2x+D21w +D22u

with

A =


Ag 0 0 0

BfCg Af 0 0
0 0 Aw1 0

Bw2Cg 0 0 Aw2

 , B1 =


Bg 0
0 Bf

0 0
0 0

 , B2 =


Bg

0
Bw1

0


C1 =

[
Dw2Cg 0 0 Cw2

0 0 Cw1 0

]
, D11 = 0, D12 =

[
0

Dw1

]
C2 =

[
−DfCg −Cf 0 0

]
, D21 =

[
0 −Df

]
, D22 = 0.
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Linear Fractional Transformations
A Mass/Spring/Damper System

The dynamical equation of the system motion can be described by

ẍ+
c

m
ẋ+

k

m
x =

F

m
.

Suppose m, c, and k are not known exactly, but are believed to lie in known intervals as

m = m̄± 10%, c = c̄± 20%, k = k̄ ± 30%

Introducing perturbations δm, δc, δk ∈ [−1, 1].

F
1

m̄(1 + 0.1δm)

ẍ 1

s

ẋ 1

s

c̄(1 + 0.2δc)

−

x

k̄(1 + 0.3δk)
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Linear Fractional Transformations
A Mass/Spring/Damper System

It is easy to check that 1
m

can be represented as an LFT in δm:

1

m
=

1

m̄(1 + 0.1δm)
=

1

m̄
−

0.1

m̄
δm(1 + 0.1δm)−1 = Fl(M1, δm), M1 =

 1

m̄
−
0.1

m̄

1 −0.1


F

M

δm

vmum

ẍ = ẋ2 1

s

ẋ = x2 1

s

c̄

0.2
vc

δc

uc

−

x = x1

k̄

0.3
vk

δk

uk
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Linear Fractional Transformations
A Mass/Spring/Damper System


ẋ1

ẋ2

vk
vc
vm

 =


0 1 0 0 0 0

− k̄
m̄

− c̄
m̄

1
m̄

− 1
m̄

− 1
m̄

− 0.1
m̄

0.3k̄ 0 0 0 0 0

0 0.2c̄ 0 0 0 0

−k̄ −c̄ 1 −1 −1 −0.1




x1

x2

F
uk

uc

um

 ,

uk

uc

um

 = ∆

vk
vc
vm



[
ẋ1

ẋ2

]
= Fl(M,∆)

x1

x2

F


where

M =



0 1 0 0 0 0

− k̄
m̄

− c̄
m̄

1
m̄

− 1
m̄

− 1
m̄

− 0.1
m̄

0.3k̄ 0 0 0 0 0

0 0.2c̄ 0 0 0 0

− k̄ −c̄ 1 −1 −1 −0.1


, ∆ =

δk 0 0
0 δc 0
0 0 δm

 .
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Linear Fractional Transformations
Basic Principle

Consider an input/output relation

z =
a+ bδ2 + cδ1δ22
1 + dδ1δ2 + eδ21

w := Gw

where a, b, c, d, and e are given constants or transfer functions. we would like to write G as

an LFT in terms of δ1 and δ2. We can do this in three steps:

1. Draw a block diagram for the input/output relation with each δ separated as shown in

the next Figure.

2. Mark the inputs and outputs of the δ’s as y’s and u’s, respectively. (This is essentially

pulling out the ∆’s

3. Write z and v’s in terms of w and u’s with all δ’s taken out.
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Linear Fractional Transformations
Basic Principle

w
v1

δ1
u1 v3

δ2
u3

−d

δ1−e
v2u2

c

v4
δ2

u4
zb

a
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Linear Fractional Transformations
Basic Principle


v1

v2

v3

v4

z

 = M


u1

u2

u3

u4

w


where

M =


0 −e −d 0 1

1 0 0 0 0

1 0 0 0 0

0 −be −bd+ c 0 b

0 −ae −ad 1 a

 , then z = Fu(M,∆)w, ∆ =

[
δ1I2 0

0 δ2I2

]
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