Lecture 6 : State-Estimate Feedback

Dr.-Ing. Sudchai Boonto Assistant Professor

Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi **Thailand**

State Estimate Feedback

- \blacktriangleright The state feedback LQR is suffered from the requirement of the whole state x of the process has to be measured. This is sometime impossible in real-life.
- \blacktriangleright To overcome this problem one can construct an estimate \hat{x} of the state of the process based on the past values of the measured ouput *y*(*t*) and control signal *u*(*t*), and use

$$
u(t) = -K\hat{x}(t)
$$

instead of using the real state.

- \blacktriangleright This approach is usually known as the state estimate feedback. See next page.
- \blacktriangleright Subtracting the estimator equation

 $\dot{\hat{x}} = A\hat{x} + Bu + LC(x - \hat{x})$ from $\dot{x} = Ax + Bu$

gives $\dot{\epsilon} = (A - LC)\epsilon$.

 \blacktriangleright The state feedback gain F and the estimator gain L can be designed to place the closed-loop plant eigenvalues. The estimator eigenvalues should be faster than the closed-loop plant eigenvalues, but the upper limit should be trade-off to avoid high frequency noise.

Lecture 6 : State-Estimate Feedback J **2/24** ▶ **4**

State Estimate Feedback

Deterministic Minimum-Energy Estimation (MEE)

Consider a continuous-time LTI system of the form

$$
\dot{x} = Ax + Bu, \qquad y = Cx, \qquad x \in \mathbb{R}^{n_x}, u \in \mathbb{R}^{n_u}, y \in \mathbb{R}^{n_y}
$$

- **I** Estimating the state x at time t can be viewed as solving for the unknown $x(t)$, for given $u(\tau)$, $y(\tau)$, and $\tau \leq t$.
- \blacktriangleright $x(t)$ can be reconstructed exactly using the observability Gramian matrix

$$
x(t) = W_o(t)^{-1} \left(\int_0^t e^{A^T(\tau - t)} C^T y(\tau) d\tau + \int_0^t \int_\tau^t e^{A^T(\tau - t)} C^T C e^{A(\tau - s)} B u(s) ds d\tau \right),
$$

where

$$
W_o(t) = \int_0^t e^{A^T(\tau - t)} C^T C e^{A(\tau - t)} d\tau
$$

Lecture 6 : State-Estimate Feedback J **4/24** \rightarrow **4/24** \rightarrow **4**

Stochastic Model

In practice, the model (CLTI) is never exact, and the measured output *y* is include the effect of stochastic disturbances as

$$
\dot{x}(t) = Ax(t) + Bu(t) + w(t)
$$

$$
y(t) = Cx(t) + v(t),
$$

where *w*(*t*) is *process noise* and *v*(*t*) is *measurement noise*. Both noise processes are assumed to be white, zero mean, Gaussian and uncorrelated, and satisfy

$$
\mathsf{E}\left[w(t)w^T(t+\tau)\right] = Q_e\delta(\tau), \qquad \mathsf{E}\left[v(t)v^T(t+\tau)\right] = R_e\delta(\tau),
$$

where E [*·*] is an expectation operator *.*

Optimal Estimation Problem

- **I** Let $\varepsilon(t) = x(t) \hat{x}(t)$ denote the estimation error, and let *q* be a weighting vector such that $\,q^T\varepsilon$ is a linear combination of the errors .
- \blacktriangleright The estimation problem is as follow: Given the estimator structure as a previous figure, find the estimator gain *L* that minimizes the stochastic cost function

$$
V_e = \lim_{t \to \infty} \mathsf{E}\left[\varepsilon^T q q^T \varepsilon\right].
$$

- **I** Here the limit is taken as $t \rightarrow \infty$ because we are interested in the steady state.
- \blacktriangleright Subtracting the estimator equation

 $\dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y}) \Rightarrow \dot{\varepsilon} = (A - LC)\varepsilon + \xi,$

where *ξ* is the white, zero mean, Gaussian noise process and

$$
\xi = w - Lv, \qquad \mathsf{E}\left[\xi(t)\xi^{T}(t+\tau)\right] = \left(Q_e + LR_e L^T\right)\delta(\tau).
$$

- **The estimation problem above is a stochastic optimization problem. It is easier to** solve this problem by using deterministic method since they have the same structure.
- \blacktriangleright The deterministic problem is known as the linear regulator problem. When a stochastic problem has the same structure and can be solved by the same methods as an equivalent deterministic problem, we call a stochastic-deterministic dualism.
- \blacktriangleright To establish this dualism, we first consider a simple deterministic and a simple stochastic problem.

Deterministic Problem

Given the autonomous plant model

$$
\dot{x} = Ax, \qquad x(t) = e^{At}x_0, \qquad x(0) = x_0,
$$

assume we are interested in the value of the cost function

$$
V = \int_0^\infty x^T Qx dt, \qquad Q = Q^T > 0.
$$

Substituting for $x(t)$ in the cost function, we get

$$
V = \int_0^\infty (x_0^T e^{A^T t} Q e^{At} x_0) dt = x_0^T \int_0^\infty (e^{A^T t} Q e^{At} dt) x_0 = x_0^T P x_0,
$$

where $P = \int_{0}^{\infty}$ $\int_{0}^{\infty} (e^{A^{T}t}Qe^{At}dt)$ is the positive definite matrix satisfying

$$
PA + A^T P + Q = 0
$$

Stochastic Problem

Consider the process

$$
\dot{x} = Ax + \xi,
$$

where *ξ* is a white, zero mean, Gaussian noise process that satisfies

$$
\mathsf{E}\left[\xi(t)\xi^T(t+\tau)\right] = Q_s\delta(\tau),
$$

and assume we want to find the value of the stochastic cost function

$$
V_s = \lim_{t\to\infty} \mathsf{E}\left[x^T q q^T x \right],
$$

where q is a weighting vector as before. Here we should note that $x(t_0)$ is a gaussian random variable, of mean *m* and is independent of *ξ*(*t*), that is

$$
\mathsf{E}\left[x(t_0)\xi^T(t)\right] = 0, \quad \forall t
$$

Stochastic Problem

Let $x(t_0) = x_0$, the solution to the state equation above is

$$
x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}\xi(\tau)d\tau.
$$

Using the properties of *ξ*, we have

$$
\mathsf{E}\left[xx^{T}\right] = \mathsf{E}\left[e^{At}x_{0}x_{0}^{T}e^{A^{T}t} + \int_{0}^{t}\int_{0}^{t}e^{A(t-\tau_{1})}\xi(\tau_{1})\xi^{T}(\tau_{2})e^{A^{T}(t-\tau_{2})}d\tau_{1}d\tau_{2}\right]
$$
\n
$$
= e^{At}\mathsf{E}\left[x_{0}x_{0}^{T}\right]e^{A^{T}t} + \int_{0}^{t}\int_{0}^{t}e^{A(t-\tau_{1})}Q_{s}\delta(\tau_{1}-\tau_{2})e^{A^{T}(t-\tau_{2})}d\tau_{1}d\tau_{2}
$$
\n
$$
= e^{At}\mathsf{E}\left[x_{0}x_{0}^{T}\right]e^{A^{T}t} + \int_{0}^{t}e^{A(t-\tau)}Q_{s}e^{A^{T}(t-\tau)}d\tau, \text{ by sampling property}
$$
\n
$$
= e^{At}\mathsf{E}\left[x_{0}x_{0}^{T}\right]e^{A^{T}t} + \int_{0}^{t}e^{A\tau}Q_{s}e^{A^{T}\tau}d\tau
$$

Stochastic Problem

Assuming that *A* is stable and taking the limit as $t \to \infty$

$$
\lim_{t \to \infty} \mathbf{E} \left[x x^T \right] = 0 + \int_0^\infty e^{A\tau} Q_s e^{A^T \tau} d\tau,
$$

where in the last term the variable of integration has been changed. Multiplying the above equation from left and right by q^T and q respectively yields

$$
\lim_{t \to \infty} \mathsf{E}\left[q^T x x^T q\right] = \lim_{t \to \infty} \mathsf{E}\left[x^T q q^T x\right] = q^T \int_0^\infty e^{A\tau} Q_s e^{A^T \tau} d\tau q,
$$

because q^Txx^Tq is scalar. The left hand side is the stochastic cost function \emph{V}_s , and the above equation can be written as

$$
V_s = q^T P_s q
$$

when the positive definite matrix *P^s* is defined as

$$
P_s = \int_0^\infty e^{A\tau} Q_s e^{A^T \tau} d\tau
$$

Lecture 6 : State-Estimate Feedback J **11/24** \rightarrow **4 11/24** \rightarrow **4**

Stochastic Problem

We have shown that the value of the stochastic cost is given by $\mathit{V_s} = q^T \mathit{P_s} q$. Next we have to show that *P^s* is the solution of ARE

$$
P_s A^T + A P_s + Q_s = 0.
$$

Notice that this problem as its solution have the same structure as the deterministic proble: *A* is replaced by A^T , x_0 by q , Q by Q_s and P by P_s . Substituting P_s in ARE yields

$$
\int_0^\infty \left(e^{A\tau} Q_s e^{A^T \tau} A^T + A e^{A\tau} Q_s e^{A^T \tau} \right) d\tau + Q_s = 0
$$

$$
\int_0^\infty \frac{d}{d\tau} \left(e^{A\tau} Q_s e^{A^T \tau} \right) d\tau + Q_s = 0
$$

$$
e^{A\tau} Q_s e^{A^T \tau} \Big|_0^\infty + Q_s = 0 - Q_s + Q_s = 0 \text{ stable system ,}
$$

which proves that *P^s* satisfies ARE.

Solution to the Optimal Estimation Problem

Stochastic Problem

The optimal estimation problem is

$$
\min_{L}\lim_{t\to\infty} \mathsf{E}\left[\varepsilon^Tqq^T\varepsilon\right],
$$

where the estimation error is governed by

$$
\dot{\varepsilon} = (A - LC)\varepsilon + \xi, \qquad \mathsf{E}\left[\xi(t)\xi^{T}(t+\tau)\right] = (Q_e + LR_e L^T)\delta(\tau).
$$

Applying the above result with the replacements

$$
A \to A - LC, \qquad Q_s \to Q_e + LR_e L^T, \text{ with } V_e = q^T P_e q,
$$

where P_e is the positive definite solution to

$$
P_e(A - LC)^T + (A - LC)P_e + Q_e + LR_eL^T = 0.
$$

The linear regulator problem: Given the closed-loop system

$$
\dot{x} = (A - BK)x, \qquad x(0) = x_0,
$$

Find the state feedback gain *K* that minimizes

$$
V = \int_0^\infty (x^T Q x + u^T R u) dt = \int_0^\infty x^T (Q + K^T R K) x dt
$$

The optimal solution was shown to be $K = R^{-1}B^{T}P$, where *P* is the positive semidefinite solution to the ARE

$$
PA + A^T P - P B R^{-1} B^T P + Q = 0
$$
, and $V = x_0^T P x_0$.

With $PB = K^T R$, it is straightforward to show that the ARE can also be written as

$$
P(A - BK) + (A - BK)^{T}P + Q + K^{T}RK = 0.
$$

Comparing this with the optimal estimation problem, we find that both problems are equivalent with the replacement

$$
Q \to Q_e, \qquad R \to R_e, \qquad A \to A^T, \qquad B \to C^T,
$$

$$
x_0 \to q, \qquad K \to L^T, \qquad P \to P_e.
$$

We can construct the following result by duality: the optimal estimator gain is

$$
L = P_e C^T R_e^{-1},
$$

where \boldsymbol{P}_{e} is the positive definite solution to

$$
P_e A^T + A P_e - P_e C^T R_e^{-1} C P_e + Q_e = 0.
$$

This equation is know as the *filter algebraic Riccati equation (FARE)*.

Example

Consider the first order system $\dot{x} = ax + w$, $y = x + v$, where w and v are white, zero mean, Gaussian noise processes that satisfy

$$
\mathsf{E}\left[w(t)w(t+\tau)\right] = q_e\delta(\tau), \qquad \mathsf{E}\left[v(t)v(t+\tau)\right] = r_e\delta(\tau).
$$

For the estimator $\dot{\hat{x}} = a\hat{x} + L(y - \hat{x}) = (a - L)\hat{x} - Ly$, find the optimal estimator gain *L*. The FARE is

$$
2ap_e - \frac{1}{r_e}p_e^2 + q_e = 0 \quad \Rightarrow \quad p_e^2 - 2ar_e p_e - r_e q_e = 0
$$

with positive solution $p_e = ar_e + \sqrt{a^2 r_e^2 + r_e q_e}$. The optimal estimator gain is therefore

$$
L=\frac{p_e}{r_e}=a+\sqrt{a^2+\frac{q_e}{r_e}}.
$$

Substituting the optimal gain in the estimator equation yields

$$
\dot{\hat{x}} = \left(-\sqrt{a^2 + \frac{q_e}{r_e}}\right)\hat{x} + Ly.
$$

Example

The solution depends only on the ratio *qe/r^e* of the intensities of process and measurement noise. The two limiting cases are $q_e/r_e \rightarrow 0$ and $q_e/r_e \rightarrow \infty$.

▶ When we have very large measurement noise, $q_e/r_e \rightarrow 0$. In this case the estimator equation becomes

$$
\dot{\hat{x}} = -|a|\hat{x} - Ly
$$

Notice that

$$
L = \begin{cases} 0, & a < 0 \\ 2a, & a \ge 0 \end{cases}
$$

I When *qe/r^e → ∞*, it is corresponds to a situation with no measurement noise. In this case, we have $L = \infty$, i.e. the optimal solution is to make the estimator dynamics infinitely fast.

Linear Quadratic Gaussian

 \blacktriangleright When the full state is not available for feedback and state estimate feedback must be used. The problem is changed. The closed-loop system is redrawn as a figure below. We let *K*(*s*) denote the transfer function from the state error *r − y* to *u*, and define the optimal control problem as the problem of finding the controller *K*(*s*) that minimizes the stochastic cost function

- ▶ This problem is known as the *Linear Quadratic Gaussian (LQG)* control problem.
- \blacktriangleright The cost function has the structure of the cost for the linear regulator problem with two terms penalizing state error and control energy respectively: state estimate feedback must be used and the presence of process and measurement noise is taken into account.

The Separation Principle

- **IDED** The solution to the LQG problem is based on the *separation principle*: the controller *K*(*s*) that minimizes the LQG cost function is obtained by combining the optimal state feedback gain *K* and the optimal estimator gain *L*.
- \blacktriangleright This is the sketch proof is based on two properties:
	- ▶ State estimate and estimation error are uncorrelated, i.e. $E\left[\hat{x}\varepsilon^T\right] = 0$
	- **►** the output error $y C\hat{x}$ is white and zero mean, its covariance is $\mathsf{E}\left[(y - C\hat{x})(y - C\hat{x})^T \right] = R_e$ (this can be proved by using Kalman's identity).
- **I** Because $x = \hat{x} + \varepsilon$, we can use the first property and rewrite the LQG cost as

$$
V_{\textsf{LQG}} = \lim_{t\to\infty} \mathsf{E}\left[\hat{\boldsymbol{x}}^T\boldsymbol{Q}\hat{\boldsymbol{x}} + \boldsymbol{u}^T\boldsymbol{R}\boldsymbol{u} + \boldsymbol{\varepsilon}^T\boldsymbol{Q}\boldsymbol{\varepsilon}\right].
$$

The LQG cost can be split into two terms that can be minimized independently:

- ▶ a term that represents the cost of estimation $V_e = \lim_{t \to \infty} \mathsf{E}\left[\varepsilon^T Q \varepsilon\right]$,
- ▶ a term that represents the cost of control $V_c = \lim_{t \to \infty} \mathsf{E}\left[\hat{x}^T Q \hat{x} + u^T R u\right]$.

The Separation Principle

- \blacktriangleright The cost V_e is independent of the state feedback gain K , it depens only on the estimator gain *L*.
- \blacktriangleright The estimator gain that minimizes V_e is the solution to the optimal estimation problem $L = P_e C^T R^{-1}$, where P_e is the solution to the FARE.
- \blacktriangleright The cost V_c is independent of the estimator gain and depends only on the state feedback gain K ; here the optimal estimator we know that the state estimate \hat{x} is the state *x* perturbed by an additive white, zero mean noise process.
- \blacktriangleright The solution to the problem of minimizing V_c is the same as that to minimizing the deterministic cost function for the linear regulator problem: it is $K = R^{-1}B^{T}P$, where *P* is the solution to ARE.
- I When a stochastic problem can be solved by replacing the stochastic variables with deterministic ones, we call that the *certainty equivalence principle* holds.

Finally, the controller that minimizes the LQG cost is obtained by solving two Riccati equations: the ARE to find the optimal state feedback gain, and the FARE to find the optimal estimator gain.

The LQG controller is (using $K = \text{lqr}(A,B,Q,R)$ and $L = \text{lqr}(A',C',Qe,Re)$)

$$
K(s) = \left[\begin{array}{c|c} A-BK-LC & -L \\ \hline -K & 0 \end{array} \right].
$$

The closed-loop system is

$$
\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & -BK \\ LC & A - BK - LC \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} 0 \\ -L \end{bmatrix} r(t)
$$

$$
y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}
$$

LQG Example

Consider a system with

$$
A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}.
$$

Do it by youself!

Reference

- 1 Herbert Werner "*Lecture Notes on Control Systems Theory and Design*", 2011
- 2 Brian D. O. Anderson and John B. Moore "*Linear Optimal Control*", Prentice-Hall, Inc., 1989
- 3 João P. Hespanha "*Linear Systems Theory*", Princeton University Press, 2009
- 4 Mathwork "*Control System Toolbox: User's Guide*", 2014