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State Estimate Feedback
I The state feedback LQR is suffered from the requirement of the whole state x of the

process has to be measured. This is sometime impossible in real-life.
I To overcome this problem one can construct an estimate x̂ of the state of the process

based on the past values of the measured ouput y(t) and control signal u(t), and use

u(t) = −Kx̂(t)

instead of using the real state.
I This approach is usually known as the state estimate feedback. See next page.
I Subtracting the estimator equation

˙̂x = Ax̂ + Bu + LC(x − x̂) from ẋ = Ax + Bu

gives ϵ̇ = (A − LC)ϵ.
I The state feedback gain F and the estimator gain L can be designed to place the

closed-loop plant eigenvalues. The estimator eigenvalues should be faster than the
closed-loop plant eigenvalues, but the upper limit should be trade-off to avoid high
frequency noise.

Lecture 6 : State-Estimate Feedback J 2/24 I }



State Estimate Feedback
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Deterministic Minimum-Energy Estimation (MEE)

Consider a continuous-time LTI system of the form

ẋ = Ax + Bu, y = Cx, x ∈ Rnx , u ∈ Rnu , y ∈ Rny

I Estimating the state x at time t can be viewed as solving for the unknown x(t), for
given u(τ), y(τ), and τ ≤ t.

I x(t) can be reconstructed exactly using the observability Gramian matrix

x(t) = Wo(t)−1
(∫ t

0
eAT(τ−t)CTy(τ)dτ +

∫ t

0

∫ t

τ
eAT(τ−t)CTCeA(τ−s)Bu(s)dsdτ

)
,

where

Wo(t) =
∫ t

0
eAT(τ−t)CTCeA(τ−t)dτ

Lecture 6 : State-Estimate Feedback J 4/24 I }



Stochastic Model

In practice, the model (CLTI) is never exact, and the measured output y is include the effect
of stochastic disturbances as

ẋ(t) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + v(t),

where w(t) is process noise and v(t) is measurement noise. Both noise processes are assumed
to be white, zero mean, Gaussian and uncorrelated, and satisfy

E
[
w(t)wT(t + τ)

]
= Qeδ(τ), E

[
v(t)vT(t + τ)

]
= Reδ(τ),

where E [·] is an expectation operator .
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Optimal Estimation Problem

I Let ε(t) = x(t)− x̂(t) denote the estimation error, and let q be a weighting vector such
that qTε is a linear combination of the errors .

I The estimation problem is as follow: Given the estimator structure as a previous figure,
find the estimator gain L that minimizes the stochastic cost function

Ve = lim
t→∞

E
[
εTqqTε

]
.

I Here the limit is taken as t → ∞ because we are interested in the steady state.
I Subtracting the estimator equation

˙̂x = Ax̂ + Bu + L(y − ŷ) ⇒ ε̇ = (A − LC)ε+ ξ,

where ξ is the white, zero mean, Gaussian noise process and

ξ = w − Lv, E
[
ξ(t)ξT(t + τ)

]
=

(
Qe + LReLT

)
δ(τ).
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Stochastic-Deterministic Dualism
I The estimation problem above is a stochastic optimization problem. It is easier to

solve this problem by using deterministic method since they have the same structure.
I The deterministic problem is known as the linear regulator problem. When a stochastic

problem has the same structure and can be solved by the same methods as an
equivalent deterministic problem, we call a stochastic-deterministic dualism.

I To establish this dualism, we first consider a simple deterministic and a simple
stochastic problem.
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Stochastic-Deterministic Dualism
Deterministic Problem

Given the autonomous plant model

ẋ = Ax, x(t) = eAtx0, x(0) = x0,

assume we are interested in the value of the cost function

V =

∫ ∞

0
xTQxdt, Q = QT > 0.

Substituting for x(t) in the cost function, we get

V =

∫ ∞

0
(xT

0 eATtQeAtx0)dt = xT
0

∫ ∞

0
(eATtQeAtdt)x0 = xT

0 Px0,

where P =

∫ ∞

0
(eATtQeAtdt) is the positive definite matrix satisfying

PA + ATP + Q = 0
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Stochastic-Deterministic Dualism
Stochastic Problem

Consider the process

ẋ = Ax + ξ,

where ξ is a white, zero mean, Gaussian noise process that satisfies

E
[
ξ(t)ξT(t + τ)

]
= Qsδ(τ),

and assume we want to find the value of the stochastic cost function

Vs = lim
t→∞

E
[
xTqqTx

]
,

where q is a weighting vector as before. Here we should note that x(t0) is a gaussian random
variable, of mean m and is independent of ξ(t), that is

E
[
x(t0)ξ

T(t)
]
= 0, ∀t
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Stochastic-Deterministic Dualism
Stochastic Problem

Let x(t0) = x0, the solution to the state equation above is

x(t) = eAtx0 +

∫ t

0
eA(t−τ)ξ(τ)dτ.

Using the properties of ξ, we have

E
[
xxT

]
= E

[
eAtx0xT

0 eATt +

∫ t

0

∫ t

0
eA(t−τ1)ξ(τ1)ξ

T(τ2)eAT(t−τ2)dτ1dτ2

]
= eAtE

[
x0xT

0

]
eATt +

∫ t

0

∫ t

0
eA(t−τ1)Qsδ(τ1 − τ2)eAT(t−τ2)dτ1dτ2

= eAtE
[
x0xT

0

]
eATt +

∫ t

0
eA(t−τ)QseAT(t−τ)dτ, by sampling property

= eAtE
[
x0xT

0

]
eATt +

∫ t

0
eAτQseATτdτ
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Stochastic-Deterministic Dualism
Stochastic Problem

Assuming that A is stable and taking the limit as t → ∞

lim
t→∞

E
[
xxT

]
= 0 +

∫ ∞

0
eAτQseATτdτ,

where in the last term the variable of integration has been changed. Multiplying the above
equation from left and right by qT and q respectively yields

lim
t→∞

E
[
qTxxTq

]
= lim

t→∞
E
[
xTqqTx

]
= qT

∫ ∞

0
eAτQseATτdτq,

because qTxxTq is scalar. The left hand side is the stochastic cost function Vs, and the
above equation can be written as

Vs = qTPsq

when the positive definite matrix Ps is defined as

Ps =

∫ ∞

0
eAτQseATτdτ
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Stochastic-Deterministic Dualism
Stochastic Problem

We have shown that the value of the stochastic cost is given by Vs = qTPsq. Next we have
to show that Ps is the solution of ARE

PsAT + APs + Qs = 0.

Notice that this problem as its solution have the same structure as the deterministic proble:
A is replaced by AT, x0 by q, Q by Qs and P by Ps. Substituting Ps in ARE yields∫ ∞

0

(
eAτQseATτAT + AeAτQseATτ

)
dτ + Qs = 0∫ ∞

0

d
dτ

(
eAτQseATτ

)
dτ + Qs = 0

eAτQseATτ
∣∣∣∞
0

+ Qs = 0 − Qs + Qs = 0 stable system ,

which proves that Ps satisfies ARE.
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Solution to the Optimal Estimation Problem
Stochastic Problem

The optimal estimation problem is

min
L

lim
t→∞

E
[
εTqqTε

]
,

where the estimation error is governed by

ε̇ = (A − LC)ε+ ξ, E
[
ξ(t)ξT(t + τ)

]
= (Qe + LReLT)δ(τ).

Applying the above result with the replacements

A → A − LC, Qs → Qe + LReLT, with Ve = qTPeq,

where Pe is the positive definite solution to

Pe(A − LC)T + (A − LC)Pe + Qe + LReLT = 0.
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Linear Regulator Problem

The linear regulator problem: Given the closed-loop system

ẋ = (A − BK)x, x(0) = x0,

Find the state feedback gain K that minimizes

V =

∫ ∞

0
(xTQx + uTRu)dt =

∫ ∞

0
xT(Q + KTRK)xdt

The optimal solution was shown to be K = R−1BTP, where P is the positive semidefinite
solution to the ARE

PA + ATP − PBR−1BTP + Q = 0, and V = xT
0 Px0.

With PB = KTR, it is straightforward to show that the ARE can also be written as

P(A − BK) + (A − BK)TP + Q + KTRK = 0.
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Linear Regulator Problem

Comparing this with the optimal estimation problem, we find that both problems are
equivalent with the replacement

Q → Qe, R → Re, A → AT, B → CT,

x0 → q, K → LT, P → Pe.

We can construct the following result by duality: the optimal estimator gain is

L = PeCTR−1
e ,

where Pe is the positive definite solution to

PeAT + APe − PeCTR−1
e CPe + Qe = 0.

This equation is know as the filter algebraic Riccati equation (FARE).
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Linear Regulator Problem
Example

Consider the first order system ẋ = ax + w, y = x + v, where w and v are white, zero mean,
Gaussian noise processes that satisfy

E [w(t)w(t + τ)] = qeδ(τ), E [v(t)v(t + τ)] = reδ(τ).

For the estimator ˙̂x = ax̂ + L(y − x̂) = (a − L)x̂ − Ly, find the optimal estimator gain L. The
FARE is

2ape −
1
re

p2
e + qe = 0 ⇒ p2

e − 2arepe − reqe = 0

with positive solution pe = are +
√

a2r2
e + reqe. The optimal estimator gain is therefore

L =
pe
re

= a +

√
a2 +

qe
re

.

Substituting the optimal gain in the estimator equation yields

˙̂x =

(
−
√

a2 +
qe
re

)
x̂ + Ly.

Lecture 6 : State-Estimate Feedback J 16/24 I }



Linear Regulator Problem
Example

The solution depends only on the ratio qe/re of the intensities of process and measurement
noise. The two limiting cases are qe/re → 0 and qe/re → ∞.

I When we have very large measurement noise, qe/re → 0. In this case the estimator
equation becomes

˙̂x = −|a|x̂ − Ly

Notice that

L =

{
0, a < 0

2a, a ≥ 0

I When qe/re → ∞, it is corresponds to a situation with no measurement noise. In this
case, we have L = ∞, i.e. the optimal solution is to make the estimator dynamics
infinitely fast.
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Linear Quadratic Gaussian
I When the full state is not available for feedback and state estimate feedback must be

used. The problem is changed. The closed-loop system is redrawn as a figure below.
We let K(s) denote the transfer function from the state error r − y to u, and define the
optimal control problem as the problem of finding the controller K(s) that minimizes
the stochastic cost function

VLQG = lim
t→∞

E
[
xTQx + uTRu

]
.

r = 0
Observer

x̂
K

u
Plant

w
v

y

K(s)

I This problem is known as the Linear Quadratic Gaussian (LQG) control problem.
I The cost function has the structure of the cost for the linear regulator problem with

two terms penalizing state error and control energy respectively: state estimate
feedback must be used and the presence of process and measurement noise is taken
into account.
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The Separation Principle

I The solution to the LQG problem is based on the separation principle: the controller
K(s) that minimizes the LQG cost function is obtained by combining the optimal state
feedback gain K and the optimal estimator gain L.

I This is the sketch proof is based on two properties:
I State estimate and estimation error are uncorrelated, i.e. E

[
x̂εT]

= 0
I the output error y − Cx̂ is white and zero mean, its covariance is

E
[
(y − Cx̂)(y − Cx̂)T]

= Re (this can be proved by using Kalman’s identity).

I Because x = x̂ + ε, we can use the first property and rewrite the LQG cost as

VLQG = lim
t→∞

E
[
x̂TQx̂ + uTRu + εTQε

]
.

The LQG cost can be split into two terms that can be minimized independently:
I a term that represents the cost of estimation Ve = lim

t→∞
E
[
εTQε

]
,

I a term that represents the cost of control Vc = lim
t→∞

E
[
x̂TQx̂ + uTRu

]
.
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The Separation Principle

I The cost Ve is independent of the state feedback gain K, it depens only on the
estimator gain L.

I The estimator gain that minimizes Ve is the solution to the optimal estimation
problem L = PeCTR−1, where Pe is the solution to the FARE.

I The cost Vc is independent of the estimator gain and depends only on the state
feedback gain K; here the optimal estimator we know that the state estimate x̂ is the
state x perturbed by an additive white, zero mean noise process.

I The solution to the problem of minimizing Vc is the same as that to minimizing the
deterministic cost function for the linear regulator problem: it is K = R−1BTP, where
P is the solution to ARE.

I When a stochastic problem can be solved by replacing the stochastic variables with
deterministic ones, we call that the certainty equivalence principle holds.

Finally, the controller that minimizes the LQG cost is obtained by solving two Riccati
equations: the ARE to find the optimal state feedback gain, and the FARE to find the
optimal estimator gain.
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LQG Control
Output feedback

e
−L

˙̂x 1
s

A

x̂
−K
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−

The LQG controller is (using K = lqr(A,B,Q,R) and L = lqr(A',C',Qe,Re))

K(s) =
[

A − BK − LC −L
−K 0

]
.

The closed-loop system is[
ẋ
˙̂x

]
=

[
A −BK

LC A − BK − LC

] [
x
x̂

]
+

[
0
−L

]
r(t)

y =
[
C 0

] [x
x̂

]
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LQG Control
Output feedback with integral action

e
−L

˙̂x 1
s

A

x̂
−K

u

B

C

Plantr y

K(s)

−

1
s

v Ki

The LQG controller is (using K = lqr(A,B,Q,R) and L = lqr(A',C',Qe,Re))

K(s) =

 A − BK − LC 0 −L
0 0 I

−K Ki 0

 .

The closed-loop system isẋ
˙̂x
v̇

 =

 A −BK BKi
LC A − BK − LC BKi
C 0 0

x
x̂
v

+

 0
−L
I

 r(t)

y =
[
C 0 0

] x
x̂
e


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LQG Example

Consider a system with

A =

[
1 2
1 0

]
, B =

[
1
0

]
, C =

[
1 0

]
.

Do it by youself!
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