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» Regulator Problem
» Solution of the Time-Varying Riccati Equation
» The Infinite-Time Regulator Problem
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Solution of the Finite-time Regulator

Regulator problem

Consider the system

z = A(t)z(t) + B(t)u(t), z(to) = zo

The performance index is
T
Va(to) u()sto) = [ (T Ru+ 2T Qo)dt + T (T)Mx(T),
to

where A(t), B(t) assumed continuous, the Q(t) > 0 and R(t) have continuous entries, be
symmetric, and be positive definite. The optimum performance index is V*(z(to), to).

To solve the problem can be done in two steps:
> show that if V*(x(t),t) exists, it must be of the form 27 (t) P(t)x(t), where P(t) > 0.
> show that if V*(z(t),t) exists, it satisfies the so called Riccati Differential equations.
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Solution of the Finite-time Regulator

Proof

Show that V* must be of the quadratic form 27 Pz.

> the function V*(x) is a quadratic form if and only if it is continuous in  and

V*(\x) = \2V*(x) for all real «

V*(ml) + V*(mg) = %(V*(wl + xQ) =+ V*((El — CUQ))

> Let u} denotes the optimal control when the initial state is z. Since the plant model is
linear and the performance index quadratic in z, we have

1
V(Az, \ui,t) = N2V*(x, 1) and V*( Az, t) = A2V (x, Xu;z )

» Because the optimum is minimal, we also have

1
V*(\z,t) < V(O A, t) and MN2V*(z,t) < N2V (z, Xuim,t).

> Combining all together (to show both are equal.)

V* (A 1) < A2V * (1 #) and M2V * (1) < V() #)
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Solution of the Finite-time Regulator

Proof

> The two inequalities imply that V*(z, t) satisfies the condition one.

> Similar reasoning gives the inequality

1
V*(x1,t) + V*(z2,t) 1 [V*(2z1,t) + V™ (2z2,1)]

IN
P

[V(Zzl’ u:cl-&-xg + uil—m,t) + V (222, u;1+x2 - u:cl—rz ) t)]

by linearity

=N

[V(z1+ T2, UL 4oy t) + V(21 — mg,u;I_ZQ,t)]

5 [V*(xl +1‘2,t) + V*(xl —xz,t)]

> By using the controls u7, and uj,, we establish the following inequality in a like
manner:

1
5 [V*($1 +1‘2,t) + V*(xl —xz,t)] < V*(:El,t) +V*(x2,t)
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Solution of the Finite-time Regulator

Proof

> This is trivial to show that V*(x(¢),t) is continuous in z(t). It is follows that it has
the form

V*(@(t),t) = & (8) P(t)x(t)

for some matrix P(t).
> The Positive semidefiniteness follows from the fact that V*(z(¢),¢) cannot be negative.

> P(t) is symmetric. If it is not, one can replace it by the symmetric matrix %(P + PT)
without altering the value of V'*.
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Matrix Riccati Equation

The second step we show that the matrix P(t) satisfies a particular matrix differential
equation, the Riccati Differential Equation (RDE).

> the first form of the HJB equation

* PEVE
o (a(t).1) = — min <z<z,u,t)+[f’; } f(x,u,t)>

» for the linear regulator problem, we have

l(z,u,t) =27 Qz + u” Ru and V* =27 Pz for some P(t).

» Thus, we have f(z,u,t) = Az + Bu

> Since t and z(t) are considered separately, we have

P 2T @pw) and L =T (0P
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Matrix Riccati Equation

» in the special case of the regulator problem

zT Pz = — min [mTQac +uTRu+ 22T PAz + 22:TPBu]
u

v

By completing the square:

uT Ru + 27 Qx + 227 PAz 4 22T PBu = (u + R™'BT P2)T R(u + R~ BPxz)
+27(Q — PBR™'BTP + PA+ ATP)x

v

Because the matrix R(¢) is positive definite, the equation is minimized by setting

a(t) = —R~Y@) BT (t) P(t)x(t)
T Pr = —2T(PA+ ATP - PBRT'BTP +Q)x.

v

Since the equation holds for all z, we have the celebrated matrix Riccati Equation

—-P=PA+A"P-PBR'B"P+Q
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Matrix Riccati Equation

A boundary condition for the Riccati Equation follows from the boundary condition for the
HJB equation

V*(x(T),T) = 2T (T)P(T)a(T) = 2T (T)Sx(T) or P(T) =S

where S is the penalty on the final state vector introduced previously.
In conclusion

» 4 is the optimal control input at time ¢, thus solving the Riccati equation and
substituting the solution P(t) back the optimal controller in the form of linear,
time-varying state feedback

uw*(t) = F(H)z(t)
F(t)=—-R'BTP(®).
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Solution of the Riccati Equation

Consider the Riccati differential equation
—P(t) = P(t)A+ ATP(t) - P(t)BR™'BTP(t) + Q,

with boundary condition P(T') = S. Note that in the last lecture we consider only a constant
matrix P .

First, we show that the Riccati equation can be solved by solving the linear system

X®] _[A —-BR'BT|[X X)) _[I

Y| |-Q —AT Y]’ ZIREIN
where X (t) and Y (¢) are square matrices of the same size as A. Having solved the above
system for X and Y, one can compute the solution of the Riccati equation as

P@t) =Y ()X ().
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Solution of the Riccati Equation

This can be proved as

dP _dyx—! _dX-! 4y __,

at - a at dr

Differentiate both sides of X (t)X ~1(t) = I we have

ax—! — _Xflgxfl
dt dt
Substituting this result to get
dyx—1! dX dy
-  ——yx !l —x"14_—_x!
dt dt dt

= - VX 1AX - BR!'BTY)X '+ (—QXx - ATy)x !
=YX 'AXX ' ATYX '+ vX'BR'BTYyXx ' —Qxx~!

Comparing with the Riccati equation, it is clear that P(t) = Y (t) X ~1(¢).
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Solution of the Riccati Equation

Hamiltonian matrix

The matrix

A —BRlB
=l e

is called the Hamiltonian matrix and plays an important role in the linear quadratic

optimization. It has a property that if A is an eigenvalue of H, then so is —A. This can be
proved as

H=-JHTJ ! where J = [_OI é}

If H has no eigenvalue on the imaginary axis there exists a nonsingular transformation U
such that

U™'HU = [AS 0 } ,

0 Ay

where A is a matrix whose eigenvalues are the stable eigenvalues of H, and A, is a matrix
with the unstable eigenvalues of H.
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Solution of the Riccati Equation

Hamiltonian matrix

Partitioning U as

Uy U12}
U= ,
[U21 Uaa

T . .
the the columns of [Ull Ugl] span the eigenvalue space corresponding to the stable

. T .
eigenvalues of H, whereas the columns of [U12 ng] span the eigenvalue space
corresponding to the unstable eigenvalues. Applying the transformation

Fl=ef] s [0 D)6

The solution at time 7" can be computed in terms of the solution at time ¢ as

X(T) = T X (1)
Y(T) = ATy (1)
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Solution of the Riccati Equation

Hamiltonian matrix

From X(T) =1 and Y(T) =S, we have
I=UnX(T)+ UY(T)
S = Ua1 X(T) + Ua2Y (T)
Defining G = —(U22 — SU12) "1 (U21 — SU11) we obtain
Y (T) = GX(T).
Evaluating X (¢) and Y (¢) , we have
X(1) = (U1 + Urgem M (T=0Get(T0) o= (T=0 %(1)
V() = (Un1 + Uppe e (T=0Gehs(T=0) = A (T=0 (),
The Riccati differential equation is
Pt) =Y ()X ()

-1
_ (U21 + U226—Au(Tft>GeAs(Tft)) (U11 + Ulze*AdT*”GeAs(T*t)) ]
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Solution of the Riccati Equation

Example

T
Consider a system & = u with a cost function V (z(0),u(-),0) = / (22 + u?)dt. We have
0

the Hamilton matrix
a= | 1.
-1 0

The eigenvalues are A\; = —1 and A, = 1, and the transformation matrix is

1 1
U= [1 —1} ’
With S =0, we have G = 1 and

1 — e—2(T—1)

PO = eman

Note that the time-varying state feedback gain is

K=-R!BTP(®) if N=0.
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Solution of the Riccati Equation

Example

Consider the speed control problem, with a plant equation
T
w(t) = —aw(t) + bu(t) and cost function / (W2(t) + pu?(t))dt 4+ sw*(T).
0

The numerical values are a = 0.5 sec™!, b = 150 rad/(V sec?), p = 10% and s = 0. Consider
solutions of the Riccati equation P(¢) with different time horizons T', ranging from T =1 to
T = 10. The we have the Hamiltonian matrix as

H— 0.5 —225 and ~ 10,9737 0.9825
-1 -05 ~10.2280 —0.1864

The solution or the Riccati equation is

_0.2280 — 0.2280e9-5394(T—1)

P(t) = _
(1) = 5.9739 + 1.2017¢ -9 53947 —1)
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Solution of the Riccati Equation

Example

0.3

0.251

0.15-

0.1F

0.05

T=1T=2 T=5 T =10

-0.05 i i i i i

It is clear that P(t) is constant during most of the time interval and changes only when
approaching the final time. If we select T' = oo, it will be no different between P(t) and a
constant P.
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Existence of the Solution

Consider the system

1| |71 0 z10| _ |1
[fb2] B Lﬂz} * H ule), Lﬁm} B [0}
and the performance index

o0
V= / (22 + 23 + u?)dt.
0

> from @1 = x1 , we have x1 = et , which is independent of the control input. The cost

function will contain the term e?t no matter what control is chosen, and the

performance index will be infinite.
Why there exists no solution in this example?
Firstly the unstable mode z; is uncontrollable.

Secondly the unstable and uncontrollable mode is reflected in the performance index.

vvyyVvyy

We have two problems that must be addresses: a) does a solution to the problem exist,
and b) is the solution stable.
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Existence of the Solution

A solution P is the algebraic Riccati equation for the infinite time regulator problem exists if
the system (A, B) is controllable. (It means P < c0.)

> the controllability implies the existence of a state feedback gain F' such that (A — BF)
is stable. Then the control input u(t) = —Fz(¢) , which is not necessarily optimal,
stabilizes the system, and the resulting performance index V (zo,u, to) will be finite.
But it is clear that

V*(zo0) < V(zo,u) < 0o.

Since V*(zo) = x Pxo (proof is in the references), we conclude that 27 Pzo < oo ;
and because this holds for any xg, it is follows that P is bounded.
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Stability

Controllability ensures the existence of bounded solution P to the algebraic Riccati equation
and of a state feedback gain that minimizes the performance index. However it does not
imply closed-loop stability. Consider a system

T=x+u

and the performance index

14 =/ u?dt.
0

The system is controllable, and the optimal control is u*(¢) = 0, resulting in V' =0 and an
unstable closed-loop system.

> The instability is due to the fact that the unstable mode is not reflected in the
performance index. A bounded solution P guarantees stability if all modes are reflected
in the performance index.

The stability of the closed-loop system is guaranteed if (A, C) is observable.
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Stability

Proof

> The system i = Az is stable if there exists a Lyapunov function V = z7 Pz such that
P >0and V <0, and where V = 0 implies z(t) = 0.

> Let A denote the optimal closed-loop state matrix

A=A+ BF*=A—-BR'BTP.

> First show that (A, C) observable implies P > 0 by showing that P > 0 leads to a
contradiction. Assume P > 0, then there exists a nonzero initial state zgp # 0 such that

oo
V =zl Pxy = / (.’,ETCTCQI + uTRu) dt = 0.
0

But this can only be true if Cz(t) = CeAtzg =0 for 0 < t < oo, and (4, C)
observable then implies that zg = 0, which contradicts the assumption xg # 0.

» Next we prove that

and that V = 0 implies z(t) = 0.
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Stability

Proof

> Observe that form the algebraic Riccati equation and from the definition of A we have
ATpP+PA=-PBR™'BTP-CTC.
Substituting the right hand side in
V =iTPz 4+ 2T Pi =27 (ATP + PA) T
gives
V=—2"PBR 'BTPz — 27 CT Cux,

so clearly V < 0, and V = 0 can only be true if Cz(t) = 0, which by observability
implies g = 0 and thus z(t) = 0. Invoking the Lyaponov stability result quoted above,
this proves that observability of (A, C') guarantees stability of the optimal closed-loop
system.
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Closed-loop Eigenvalues

Using the algebraic Riccati equation, one can show that the optimal closed-loop eigenvalues
are the stable eigenvalues of the Hamiltonian matrix: apply the similarity transformation

. I 0
T 'HT =H T =

to the Hamiltonian matrix. The result is

. A —BR BT
H_[o —AT ]

so the eigenvalues of H are the eigenvalues of A together with those of —A.
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The derivation of (¢

From X(T) =1 and Y(T) =S, we have

I=UnX(T)+ U2Y(T) (1)
S = Ua1 X(T) 4 U2 Y (T) 2)

By multiplying (1) with S from the left we have

S = SUllX(T) —+ SU12}~/(T)
S = U1 X(T) + U Y (T).

Then equal both equation we obtain
Y(T) = —(Uaz2 — SU12) "t (U21 — SUN)X(T) = GX(T),

where G = —(Ua2 — SU12)71(U21 — SU11).
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