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Solution of the Finite-time Regulator

Regulator problem
Consider the system

ẋ = A(t)x(t) +B(t)u(t), x(t0) = x0

The performance index is

V (x(t0), u(·), t0) =
∫ T

t0

(uTRu+ xTQx)dt+ xT (T )Mx(T ),

where A(t), B(t) assumed continuous, the Q(t) ≥ 0 and R(t) have continuous entries, be

symmetric, and be positive definite. The optimum performance index is V ∗(x(t0), t0).

To solve the problem can be done in two steps:

I show that if V ∗(x(t), t) exists, it must be of the form xT (t)P (t)x(t), where P (t) ≥ 0.

I show that if V ∗(x(t), t) exists, it satisfies the so called Riccati Differential equations.
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Solution of the Finite-time Regulator
Proof

Show that V ∗ must be of the quadratic form xTPx.

I the function V ∗(x) is a quadratic form if and only if it is continuous in x and

V ∗(λx) = λ2V ∗(x) for all real α

V ∗(x1) + V ∗(x2) =
1

2
(V ∗(x1 + x2) + V ∗(x1 − x2)).

I Let u∗
x denotes the optimal control when the initial state is x. Since the plant model is

linear and the performance index quadratic in x, we have

V (λx, λu∗
x, t) = λ2V ∗(x, t) and V ∗(λx, t) = λ2V (x,

1

λ
u∗
λx

, t)

I Because the optimum is minimal, we also have

V ∗(λx, t) ≤ V (λx, λu∗
x, t) and λ2V ∗(x, t) ≤ λ2V (x,

1

λ
u∗
λx

, t).

I Combining all together (to show both are equal.)

V ∗(λx, t) ≤ λ2V ∗(x, t) and λ2V ∗(x, t) ≤ V ∗(λ, t).
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Solution of the Finite-time Regulator
Proof

I The two inequalities imply that V ∗(x, t) satisfies the condition one.

I Similar reasoning gives the inequality

V ∗(x1, t) + V ∗(x2, t) =
1

4
[V ∗(2x1, t) + V ∗(2x2, t)]

≤
1

4

[
V (2x1, u

∗
x1+x2

+ u∗
x1−x2

, t) + V (2x2, u
∗
x1+x2

− u∗
x1−x2

, t)
]

by linearity

=
1

2

[
V (x1 + x2, u

∗
x1+x2

, t) + V (x1 − x2, u
∗
x1−x2

, t)
]

=
1

2
[V ∗(x1 + x2, t) + V ∗(x1 − x2, t)]

I By using the controls u∗
x1

and u∗
x2

, we establish the following inequality in a like

manner:

1

2
[V ∗(x1 + x2, t) + V ∗(x1 − x2, t)] ≤ V ∗(x1, t) + V ∗(x2, t)
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Solution of the Finite-time Regulator
Proof

I This is trivial to show that V ∗(x(t), t) is continuous in x(t). It is follows that it has

the form

V ∗(x(t), t) = xT (t)P (t)x(t)

for some matrix P (t).

I The Positive semidefiniteness follows from the fact that V ∗(x(t), t) cannot be negative.

I P (t) is symmetric. If it is not, one can replace it by the symmetric matrix 1
2
(P + PT )

without altering the value of V ∗.
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Matrix Riccati Equation

The second step we show that the matrix P (t) satisfies a particular matrix differential

equation, the Riccati Differential Equation (RDE).

I the first form of the HJB equation

∂V ∗

∂t
(x(t), t) = −min

u(t)

(
l(x, u, t) +

[
∂V ∗

∂x

]T
f(x, u, t)

)

I for the linear regulator problem, we have

l(x, u, t) = xTQx+ uTRu and V ∗ = xTPx for some P (t).

I Thus, we have f(x, u, t) = Ax+Bu

I Since t and x(t) are considered separately, we have

∂V ∗

∂x
= 2xT (t)P (t) and

∂V ∗

∂t
= xT (t)Ṗ (t)x(t)
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Matrix Riccati Equation

I in the special case of the regulator problem

xT Ṗ x = −min
u

[
xTQx+ uTRu+ 2xTPAx+ 2xTPBu

]
I By completing the square:

uTRu+ xTQx+ 2xTPAx+ 2xTPBu = (u+R−1BTPx)TR(u+R−1BPx)

+ xT (Q− PBR−1BTP + PA+ATP )x

I Because the matrix R(t) is positive definite, the equation is minimized by setting

ū(t) = −R−1(t)BT (t)P (t)x(t)

xT Ṗ x = −xT (PA+ATP − PBR−1BTP +Q)x.

I Since the equation holds for all x, we have the celebrated matrix Riccati Equation

−Ṗ = PA+ATP − PBR−1BTP +Q
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Matrix Riccati Equation

A boundary condition for the Riccati Equation follows from the boundary condition for the

HJB equation

V ∗(x(T ), T ) = xT (T )P (T )x(T ) = xT (T )Sx(T ) or P (T ) = S

where S is the penalty on the final state vector introduced previously.

In conclusion

I ū is the optimal control input at time t, thus solving the Riccati equation and

substituting the solution P (t) back the optimal controller in the form of linear,

time-varying state feedback

u∗(t) = F (t)x(t)

F (t) = −R−1BTP (t).
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Solution of the Riccati Equation

Consider the Riccati differential equation

−Ṗ (t) = P (t)A+ATP (t)− P (t)BR−1BTP (t) +Q,

with boundary condition P (T ) = S. Note that in the last lecture we consider only a constant

matrix P .

First, we show that the Riccati equation can be solved by solving the linear system

[
Ẋ(t)

Ẏ (t)

]
=

[
A −BR−1BT

−Q −AT

] [
X

Y

]
,

[
X(T )

Y (T )

]
=

[
I

S

]
,

where X(t) and Y (t) are square matrices of the same size as A. Having solved the above

system for X and Y , one can compute the solution of the Riccati equation as

P (t) = Y (t)X−1(t).
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Solution of the Riccati Equation

This can be proved as

dP

dt
=

dY X−1

dt
= Y

dX−1

dt
+

dY

dt
X−1.

Differentiate both sides of X(t)X−1(t) = I we have

dX−1

dt
= −X−1 dX

dt
X−1

Substituting this result to get

dY X−1

dt
= −Y X−1 dX

dt
X−1 +

dY

dt
X−1

= −Y X−1(AX −BR−1BTY )X−1 + (−QX −ATY )X−1

= −Y X−1AXX−1 −ATY X−1 + Y X−1BR−1BTY X−1 −QXX−1

Comparing with the Riccati equation, it is clear that P (t) = Y (t)X−1(t).
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Solution of the Riccati Equation
Hamiltonian matrix

The matrix

H =

[
A −BR−1B

−Q −AT

]

is called the Hamiltonian matrix and plays an important role in the linear quadratic

optimization. It has a property that if λ is an eigenvalue of H, then so is −λ. This can be

proved as

H = −JHT J−1 where J =

[
0 I

−I 0

]

If H has no eigenvalue on the imaginary axis there exists a nonsingular transformation U

such that

U−1HU =

[
Λs 0

0 Λu

]
,

where Λs is a matrix whose eigenvalues are the stable eigenvalues of H, and Λu is a matrix

with the unstable eigenvalues of H.
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Solution of the Riccati Equation
Hamiltonian matrix

Partitioning U as

U =

[
U11 U12

U21 U22

]
,

the the columns of
[
U11 U21

]T
span the eigenvalue space corresponding to the stable

eigenvalues of H, whereas the columns of
[
U12 U22

]T
span the eigenvalue space

corresponding to the unstable eigenvalues. Applying the transformation

[
X

Y

]
= U

[
X̃

Ỹ

]
yields

[
˙̃X
˙̃Y

]
=

[
Λs 0

0 Λu

] [
X̃

Ỹ

]

The solution at time T can be computed in terms of the solution at time t as

X̃(T ) = eΛs(T−t)X̃(t)

Ỹ (T ) = eΛu(T−t)Ỹ (t)
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Solution of the Riccati Equation
Hamiltonian matrix

From X(T ) = I and Y (T ) = S , we have

I = U11X̃(T ) + U12Ỹ (T )

S = U21X̃(T ) + U22Ỹ (T )

Defining G = −(U22 − SU12)−1(U21 − SU11) we obtain

Ỹ (T ) = GX̃(T ).

Evaluating X(t) and Y (t) , we have

X(t) =
(
U11 + U12e

−Λu(T−t)GeΛs(T−t)
)
e−Λs(T−t)X̃(T )

Y (t) =
(
U21 + U22e

−Λu(T−t)GeΛs(T−t)
)
e−Λs(T−t)X̃(T ).

The Riccati differential equation is

P (t) = Y (t)X−1(t)

=
(
U21 + U22e

−Λu(T−t)GeΛs(T−t)
)(

U11 + U12e
−Λu(T−t)GeΛs(T−t)

)−1
.
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Solution of the Riccati Equation
Example

Consider a system ẋ = u with a cost function V (x(0), u(·), 0) =
∫ T

0
(x2 + u2)dt. We have

the Hamilton matrix

H =

[
0 −1

−1 0

]
.

The eigenvalues are λs = −1 and λu = 1, and the transformation matrix is

U =

[
1 1

1 −1

]
.

With S = 0, we have G = 1 and

P (t) =
1− e−2(T−t)

1 + e−2(T−t)
.

Note that the time-varying state feedback gain is

K = −R−1BTP (t) if N = 0.
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Solution of the Riccati Equation
Example

Consider the speed control problem, with a plant equation

ω̇(t) = −aω(t) + bu(t) and cost function

∫ T

0
(ω2(t) + ρu2(t))dt+ sω2(T ).

The numerical values are a = 0.5 sec−1, b = 150 rad/(V sec2), ρ = 104 and s = 0. Consider

solutions of the Riccati equation P (t) with different time horizons T , ranging from T = 1 to

T = 10. The we have the Hamiltonian matrix as

H =

[
0.5 −22.5

−1 −0.5

]
and U =

[
0.9737 0.9825

0.2280 −0.1864

]

The solution or the Riccati equation is

P (t) =
0.2280− 0.2280e−9.5394(T−t)

0.9739 + 1.2017e−9.5394(T−t)
.
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Solution of the Riccati Equation
Example
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It is clear that P (t) is constant during most of the time interval and changes only when

approaching the final time. If we select T = ∞, it will be no different between P (t) and a

constant P .
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Existence of the Solution

Consider the system

[
ẋ1

ẋ2

]
=

[
x1

x2

]
+

[
0

1

]
u(t),

[
x10

x20

]
=

[
1

0

]

and the performance index

V =

∫ ∞

0
(x2

1 + x2
2 + u2)dt.

I from ẋ1 = x1 , we have x1 = et , which is independent of the control input. The cost

function will contain the term e2t no matter what control is chosen, and the

performance index will be infinite.

I Why there exists no solution in this example?

I Firstly the unstable mode x1 is uncontrollable.

I Secondly the unstable and uncontrollable mode is reflected in the performance index.

I We have two problems that must be addresses: a) does a solution to the problem exist,

and b) is the solution stable.
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Existence of the Solution

Existence
A solution P is the algebraic Riccati equation for the infinite time regulator problem exists if

the system (A,B) is controllable. (It means P < ∞.)

I the controllability implies the existence of a state feedback gain F such that (A−BF )

is stable. Then the control input u(t) = −Fx(t) , which is not necessarily optimal,

stabilizes the system, and the resulting performance index V (x0, u, t0) will be finite.

But it is clear that

V ∗(x0) ≤ V (x0, u) < ∞.

Since V ∗(x0) = xT
0 Px0 (proof is in the references), we conclude that xT

0 Px0 < ∞ ;

and because this holds for any x0, it is follows that P is bounded.
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Stability

Controllability ensures the existence of bounded solution P to the algebraic Riccati equation

and of a state feedback gain that minimizes the performance index. However it does not

imply closed-loop stability. Consider a system

ẋ = x+ u

and the performance index

V =

∫ ∞

0
u2dt.

The system is controllable, and the optimal control is u∗(t) ≡ 0, resulting in V = 0 and an

unstable closed-loop system.

I The instability is due to the fact that the unstable mode is not reflected in the

performance index. A bounded solution P guarantees stability if all modes are reflected

in the performance index.

Stability
The stability of the closed-loop system is guaranteed if (A,C) is observable.
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Stability
Proof

I The system ẋ = Āx is stable if there exists a Lyapunov function V = xTPx such that

P > 0 and V̇ ≤ 0, and where V̇ ≡ 0 implies x(t) ≡ 0.

I Let Ā denote the optimal closed-loop state matrix

Ā = A+BF ∗ = A−BR−1BTP.

I First show that (A,C) observable implies P > 0 by showing that P ≥ 0 leads to a

contradiction. Assume P ≥ 0, then there exists a nonzero initial state x0 ̸= 0 such that

V = xT
0 Px0 =

∫ ∞

0

(
xTCTCx+ uTRu

)
dt = 0.

But this can only be true if Cx(t) = CeAtx0 ≡ 0 for 0 ≤ t < ∞, and (A,C)

observable then implies that x0 = 0, which contradicts the assumption x0 ̸= 0.

I Next we prove that

V̇ =
d

dt

(
xTPx

)
≤ 0

and that V̇ ≡ 0 implies x(t) ≡ 0.
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Stability
Proof

I Observe that form the algebraic Riccati equation and from the definition of Ā we have

ĀTP + PĀ = −PBR−1BTP − CTC.

Substituting the right hand side in

V̇ = ẋTPx+ xTP ẋ = xT
(
ĀTP + PĀ

)
x

gives

V̇ = −xTPBR−1BTPx− xTCTCx,

so clearly V̇ ≤ 0, and V̇ ≡ 0 can only be true if Cx(t) ≡ 0, which by observability

implies x0 = 0 and thus x(t) ≡ 0. Invoking the Lyaponov stability result quoted above,

this proves that observability of (A,C) guarantees stability of the optimal closed-loop

system.
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Closed-loop Eigenvalues

Using the algebraic Riccati equation, one can show that the optimal closed-loop eigenvalues

are the stable eigenvalues of the Hamiltonian matrix: apply the similarity transformation

T−1HT = H̃, T =

[
I 0

P I

]

to the Hamiltonian matrix. The result is

H̃ =

[
Ā −BR−1BT

0 −ĀT

]
,

so the eigenvalues of H are the eigenvalues of Ā together with those of −Ā.
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The derivation of G

From X(T ) = I and Y (T ) = S , we have

I = U11X̃(T ) + U12Ỹ (T ) (1)

S = U21X̃(T ) + U22Ỹ (T ) (2)

By multiplying (1) with S from the left we have

S = SU11X̃(T ) + SU12Ỹ (T )

S = U21X̃(T ) + U22Ỹ (T ).

Then equal both equation we obtain

Ỹ (T ) = −(U22 − SU12)
−1(U21 − SU11)X̃(T ) = GX̃(T ),

where G = −(U22 − SU12)−1(U21 − SU11).
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