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Optimization
Introduction

I Optimization is the problem of determining a set of parameters that minimize or

minimize a given function.

I Finding the minimum of a smooth function J : Rn → R. We wish to find a point

x∗ ∈ Rn such that J(x∗) ≤ J(x) for all x ∈ Rn. A necessary condition for x∗ to be a

minimum is that the gradient of the function be zero at x∗:

∂J

∂x
(x∗) = 0.

I In control system, J(x) is often called a cost function and x∗ is the optimal value for x.

J(x)

x∗

x1

∂J

∂x
dx

dx

x2

x
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Optimization
Variations

I The function J(x) has a local minimum at x∗ if and only if

J(x∗ + δx) ≥ J(x∗), ∀δx sufficiently small.

I It is equivalent to

∆J(x∗, δx) = J(x∗ + δx)− J(x∗) ≥ 0, ∀δx sufficiently small.

I Using a Taylor series arond the point x∗, the optimality condition can be written

∆J(x∗, δx) = J(x∗ + δx)− J(x∗)

= J(x∗) +
∂J

∂x
(x∗)δx+

∂2J

∂x2
(x∗)δx2 + H.O.T − J(x∗) ≥ 0

=
∂J

∂x
(x∗)δx+

∂2J

∂x2
(x∗)δx2 + H.O.T ≥ 0.

Here δx is called the variation of x, and the term in the increment that is linear in δx

is called the variation of J and is denoted δJ(x∗, δx).
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Optimization
Variations

I A necessary condition for x∗ to be a local minimum is as follows:

∂J

∂x
(x∗) = 0 ∀δx.

I Consider J(x) = x2 + 6x+ 8, we have

∆J(x, δx) = (x+ δx)2 + 6(x+ δx) + 8− (x2 + 6x+ 8)

= (2x+ 6)δx+ δx2.

The necessary condition for x to be minimum is that the variation of J(x) equals zero:

∂J

∂x
(x∗) = (2x∗ + 6)δx = 0

2x∗ + 6 = 0 ⇒ x∗ = −3.
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Optimization
Lagrange Multipliers

I the problem is more complicated if constraints are present.

I Let Gi : Rn → R, i = 1, . . . , k be a set of smooth functions with Gi(x) = 0

representing the constrains.

min
x∈Rn

J(x)

S.T. Gi(x) = 0, i = 1, . . . , k

I This situation can be visualized as constraining the point to a surface (defined by the

constraints) and searching for the minimum of the cost function along this surface.

I The necessary condition for being at a minimum is that there are no directions tangent

to the constraints that also decrease the cost.

I The tangent directions to the surface can be computed by considering small

perturbations of the constraint that remain on the surface:

Gi(x+ δx) ≈ Gi(x) +
∂Gi

∂x
(x)δx = 0 ⇒

∂Gi

∂x
(x)δx = 0,

where δx ∈ Rn is a vanishingly small perturbation.
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Optimization
Lagrange Multipliers

I It follows that the normal directions to the surface are spanned by ∂Gi/∂x, since these

are precisely the vectors that annihilate an admissible tangent vector δx.

I Using this characterization of the tangent and normal vectors to the constraint, a

necessary condition for optimization is that the gradient of J is spanned by vectors that

are nomal to the constraints, so that the only directions that increase the cost violate

the constraints. We thus require that there exist scalars λi, i = 1, . . . , k such that

∂J

∂x
(x∗) +

k∑
i=1

λi
∂Gi

∂x
(x∗) = 0.

or in matrix form

∂J

∂x
(x∗) + λT

∂G

∂x
(x∗) = 0

I Defining J̃(x, λ) = J(x) + λTG(x), the necessary condition becomes

∂J̃

∂x
(x∗) = 0
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Optimization
Lagrange Multipliers

The cost function and the constraint are

J(x, y) = x2 + y2; G(x, y) = 2x+ y + 4 = 0.

The augmented cost function is

J̃(x, y, λ) = x2 + y2 + λ(2x+ y + 4)

∂J̃

∂x
= 2x∗ + 2λ∗ = 0

∂J̃

∂y
= 2y∗ + λ∗ = 0

∂J̃

∂λ
= 2x∗ + y∗ + 4 = 0

Solving for the values of x∗, y∗ and λ, yields

x∗y∗
λ∗

 =

−1.6

−0.8

1.6

 .
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Optimal Control
Introduction

Suppose the plant is described by the nonlinear time-varying dynamical equation

ẋ(t) = f(x, u, t),

which state x(t) ∈ Rn and control input u(t) ∈ Rm. The performance index is

J(x, u, t) =

∫ T

t0

L(x(t), u(t), t)dt+ V (x(T ), T ),

where [t0, T ] is the time interval of interest.

optimal control problem
The optimal control problem is to find the input u∗(t) on the time interval [t0, T ] that drives

the plant along with the trajectory x∗(t) such that the cost function is minimized, and such

that

ψ(x(T ), T ) = 0

for a given function ψ ∈ Rp.
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Optimal Control
Introduction

Using Lagrange multipliers to adjoint the constraints to performance the cost function.

I λ(t) ∈ Rn for time function constraint.

I ν ∈ Rp for the final value constraint.

The augmented performance index is thus

J̃(x(·), u(·), λ(·), ν(·)) = V (x(T ), T ) + νTψ(x(T ), T )

+

∫ T

0

[
L(x, u, t) + λT (f(x, u, t)− ẋ)

]
dt

Define the Hamiltonian function as

H(x, u, t) = L(x, u, t) + λT f(x, u, t),

Then

J̃ = V (x(T ), T ) + νTψ(x(T ), T ) +

∫ T

0

[
H(x, u, t)− λT ẋ

]
dt.
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Optimal Control
Introduction

Linearize the cost function around the optimal solution x(t) = x∗(t) + δx(t),

u(t) = u∗(t) + δu(t), λ(t) = λ∗(t) + δλ(t) and ν = ν∗ + δν, then the incremental cost can

be written as

δJ̃ = J̃(x∗ + δx, u∗ + δu, λ∗ + δλ, ν∗ + δν)− J̃(x∗, u∗, λ∗, ν∗)

≈
∫ T

0

(
∂H

∂x
δx+

∂H

∂u
δu− λT δẋ+

(
∂H

∂λ
− ẋT

)
δλ

)
dt

+
∂V

∂x
δx(T ) + νT

∂ψ

∂x
δx(T ) + δνTψ(x(T ), T ) +H.O.T.

where (t) is omitted and all derivatives are evaluated along the optimal solution. We can

eliminate the dependence on δẋ using integration by parts:

−
∫ T

0
λT δẋdt = −λT (T )δx(T ) + λT (0)δx(0) +

∫ T

0
λ̇T δxdt.
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Optimal Control
Introduction

Since x(0) = x0, the second term vanishes and substituting this into δJ̃ yields

∆J̃ ≈
∫ T

0

[(
∂H

∂x
+ λ̇T

)
δx+

∂H

∂u
δu+

(
∂H

∂λ
− ẋT

)
δλ

]
dt

+

(
∂V

∂x
+ νT

∂ψ

∂x
− λT (T )

)
δx(T ) + δνTψ(x(T ), T ).

To be optimal, we need ∆J̃ = 0 for all δx, δu, δλ and δν, and we obtain the local conditions

in the next theorem.

For the general case, consider a nonlinear system

ẋ = f(x, u, t), x(0) = x0

We wish to minimize a cost function J with terminal constraints:

J =

∫ T

0
L(x, u, t)dt+ V (x(T )), ψ(x(T )) = 0.
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Optimal Control
Introduction

The Hamiltonian is then

H(x, u, t) = L(x, u, t) + λT f(x, u, t)

A set of necessary conditions for a solution to be optimal was derived by Pontryagin.

Theorem (Maximum Principle)

If (x∗, u∗) is optimal, then there exists λ∗(t) ∈ Rn and ν∗ ∈ Rq such that

ẋi =
∂H

∂λi
, −λ̇i =

∂H

∂xi
, x(0) = x0, ψ(x(T )) = 0

λ(T ) =
∂V

∂x
(x(T )) + νT

∂ψ

∂x

H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u(t), λ∗(t)) ∀ u ∈ Ω

The necessary condition for the optimal (control) input is

∂H

∂u
= 0.
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Optimal Control
Example: Scalar linear system

A system ẋ = ax+ bu, where x ∈ R is a state , u ∈ R is an input, the initial state

x(t0) = x0 and a, b ∈ R are positive constants. We wish to find a trajectory (x(t), u(t)) that

minimizes the cost function

J =
1

2

∫ tf

t0

u2(t)dt+
1

2
cx2(tf ),

where the terminal time tf is given and c > 0 is a constant. Here

L =
1

2
u2(t) V =

1

2
cx2(tf )

The Hamiltonian is

H = L+ λf =
1

2
u2 + λ(ax+ bu),

λ̇ = −
∂H

∂x
= −aλ, λ(tf ) =

∂V

∂x
= cx(tf ).
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Optimal Control
Example: Scalar linear system

This is a final value problem for a linear differential equation in λ and the solution is

λ(t) = cx(tf )e
a(tf−t).

The optimal control is given by

∂H

∂u
= u+ bλ = 0 ⇒ u∗(t) = −bλ(t) = −bcx(tf )ea(tf−t).

Substituting this control input into the dynamics system yields a first-order ODE in x:

ẋ = ax− b2cx(tf )e
a(tf−t).

x∗(t) = x(t0)e
a(t−t0) +

b2c

2a
x∗(tf )

[
ea(tf−t) − ea(t+tf−2t0)

]
.

Setting t = tf and solving for x(tf ) gives

x∗(tf ) =
2aea(tf−t0)x(t0)

2a− b2c
(
1− e2a(tf−t0)

)
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Optimal Control
Example: Scalar linear system

and finally we can write

u∗(t) = −
2abcea(2tf−t0−t)x(t0)

2a− b2c
(
1− e2a(tf−t0)

)
x∗(t) = x(t0)e

a(t−t0) +
b2cea(tf−t0)x(t0)

2a− b2c
(
1− e2a(tf−t0)

) [
ea(tf−t) − ea(t+tf−2t0)

]
.

Setting t = tf and taking the limit we find that

lim
c→∞

x∗(tf ) = 0.
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Optimal Control
Example: Temperature Control

It is desired to heat a room using the least possible energy. If θ(t) is the temperature in the

room, θa = 60◦ is the ambient air temperature, and u(t) is the rate of heat supply to the

room, then the dynamics equation is

θ̇ = −a(θ − θa) + bu.

By defining the state as x(t) , θ(t)− θa and the state equation is

ẋ = −ax+ bu.

To control the temperature on the fixed time interval [0, T ] with the least possible supplied

energy, define the performance index as

J =
1

2

∫ T

0
u2(t)dt.

The Hamiltonian is

H =
u2

2
+ λ(−ax+ bu).
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Optimal Control
Example: Temperature Control

We have

ẋ =
∂H

∂λ
= −ax+ bu,

λ̇ = −
∂H

∂x
= aλ,

0 =
∂H

∂u
= u+ bλ.

Then the optimal control is given by u(t) = −bλ(t). To determine u∗(t) we need only find

the optimal costate λ∗(t). Substituting the control input back to the state-costate equations

ẋ = −ax− b2λ, λ̇ = aλ(t)

The solution of λ(t) is λ(t) = e−a(T−t)λ(T ). Using the solution yields

ẋ = −ax− b2λ(T )e−a(T−t).
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Optimal Control
Example: Temperature Control

Using Laplace transform to solve this gives

sX(s)− x(0) = −aX(s)−
b2λ(T )e−aT

(s− a)

X(s) =
x(0)

s+ a
−

b2λ(T )e−aT

(s+ a)(s− a)

=
x(0)

s+ a
−
b2

a
λ(T )e−aT

(
−1/2

s+ a
+

1/2

s− a

)

so that

x(t) = x(0)e−at −
b2

a
λ(T )e−aT sinh(at).

Both x(t) and λ(t) give the optimal costate λ∗(t) and state x∗(t) in terms of the unknown

final costate λ(T ). Suppose x(0) = 0◦ and the control objective is to drive the final

temperature θ(T ) exactly to 70◦ at the final time of T seconds. The final state is required to

take on the fixed value of x(T ) = 10◦.
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Optimal Control
Example: Temperature Control

To find λ(T ), we have

x(T ) = x(0)e−aT −
b2

2a
λ(T )(1− e−2aT ).

Since x(0) = 0◦ and x(T ) = 10◦, the final costate is

λ(T ) =
−20a

b2(1− e−2aT )
, and λ∗(t) = −

10aeat

b2 sinh(aT )
.

Finally, the optimal rate of heat supply to the room is given by

u∗(t) = −bλ∗(t) =
10aeat

b sinh(aT )
, 0 ≤ t ≤ T.

Solving for the state trajectory yields

x∗(t) = 10
sinh(at)

sinh(aT )
⇒ x∗(T ) = 10◦

as desired.
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Deterministic Linear Quadratic Regulation (LQR)

The plant to be controlled in state space model is

ẋ = Ax+Bu

y = Cx(t), z = Gx+Hu

Controller
u(t)

Process

z(t)

y(t)

I y(t) is the measured output

I z(t) is the controlled output. Sometimes z(t) = y(t) but mostly

not, e.g. z(t) =
[
y(t) ẏ(t)

]T
.
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Optimal Regulation

I The LQR problem is to find the control input u(t), t ∈ [0,∞) that makes the following

criterion as small as possible:

JLQR1
:=

∫ ∞

0
∥z(t)∥2 + ρ∥u(t)∥2dt,

where ρ is a positive constant.

I The term ∫ ∞

0
∥z(t)∥2dt

corresponds to the energy of the controlled output, and the term∫ ∞

0
∥u(t)∥2dt

corresponds to the energy of the control signal.

I Here ρ is a penalty factor to the control input u(t).

Lecture 3 : Linear Quadratic Optimal Control J 21/38 I }



Optimal Regulation

I the more general cost function is

JLQR2
:=

∫ ∞

0
zT (t)Q̄z(t) + ρuT (t)R̄u(t)dt,

where Q̄ and R̄ are symmetric positive-definite matrices. and ρ is a positive constant.

I the most general form for a quadratic cost function is

JLQR :=

∫ ∞

0
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Nu(t)dt

I Since z = Gx+Hu, it is not hard to see that for JLQR1

Q = GTG, R = HTH + ρI, N = GTH

and for JLQR2

Q = GT Q̄G, R = HT Q̄H + ρR̄, N = GT Q̄H.
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Feedback Invariants

Given a continuous-time LTI system (AB-CLTI)

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rk,

we say that a function

H(x(·), u(·))

is feedback invariant for the system if its value depends only on the initial condition x(0) and

not the specific input signal u(·).

Feedback invariant
For every symmetric matrix P , the functional

H(x(·), u(·)) := −
∫ ∞

0
(Ax(t) +Bu(t))T Px(t) + xT (t)P (Ax(t) +Bu(t)) dt

is a feedback invariant for the system (AB-CLTI), as long as limt→∞ x(t) = 0.
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Feedback Invariants

I Proof: We can rewrite H as

H(x(·), u(·)) = −
∫ ∞

0
ẋT (t)Px(t) + xT (t)P ẋ(t)dt

= −
∫ ∞

0

d(xT (t)Px(t))

dt
dt = xT (0)Px(0)− lim

t→∞
xT (t)Px(t)

= xT (0)Px(0),

as long as limt→∞ x(t) = 0.

I limt→∞ x(t) = 0 simply mean the system is stable.
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Feedback Invariants in Optimal Control

I a cost function J is minimized by an appropriate choice of the input u(·) in the form

J = H(x(·), u(·)) +
∫ ∞

0
L(x(t), u(t))dt,

where H is a feedback invariant and the function L(x, u) has the property that for

every x ∈ Rn

min
u∈Rk

L(x, u) = 0

I In control system, the optimal control input

u∗(t) = arg min
u∈Rk

L(x, u),

minimizes the criterion J , and the optimal value of J is equal to the feedback invariant

J = H(x(·), u∗(·)).
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Optimal State Feedback

The LQR criterion

JLQR :=

∫ ∞

0
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Nu(t)dt

By adding and subtracting the feedback invariant to the LQR criterion, we have

JLQR :=

∫ ∞

0
xTQx+ uTRu+ 2xTNudt

= H(x(·), u(·)) +
∫ ∞

0
xTQx+ uTRu+ 2xTNu+ (Ax+Bu)TPx+ xTP (Ax+Bu)dt

= H(x(·), u(·)) +
∫ ∞

0
xT (ATP + PA+Q)x+ uTRu+ 2uT (BTP +NT )xdt

By completing the square, we have

(u+Kx)TR(u+Kx) = uTRu+ xT (PB +N)R−1(PB +N)T x+ 2uT (PB +N)T x,

where K := R−1(PB +N)T and P is a symmetric matrix.

Lecture 3 : Linear Quadratic Optimal Control J 26/38 I }



Optimal State Feedback

We conclude that

JLQR = H(x(·), u(·)) +
∫ ∞

0
xT (ATP + PA+Q− (PB +N)R−1(PB +N)T )x

+ (u+Kx)TR(u+Kx)dt.

I If we are able to select the matrix P so that, the Riccati equation,

ATP + PA+Q− (PB +N)R−1(PB +N)T = 0,

we have

L(x, u) := (u+Kx)TR(u+Kx),

which has a minimum equal to zero for

u = −Kx, K := R−1(PB +N)T ,
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Optimal State Feedback

I leading to the closed-loop system

ẋ =
(
A−BR−1(PB +N)T

)
x.

Theorem
Assume that there exists a symmetric solution P to the algebraic Riccati equation for which

A−BR−1(PB +N)T is a stability matrix. Then the feedback law

u(t) := −Kx(t), ∀t ≥ 0, K := R−1(PB +N)T

minimizes the LQR criterion and leads to

JLQR :=

∫ ∞

0
xTQx+ uTRu+ 2xTNu dt = xT (0)Px(0).
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Optimal State Feedback
Example: a double integrator

Consider a double integrator system

ẋ =

[
0 1

0 0

]
x+

[
0

1

]
u

with quadratic cost given by

Q =

[
1
q2

0

0 0

]
, R = 1.

Let P be a symmetric positive definite matrix of the form

P =

[
a b

c d

]

Then the Riccati equation becomes

[
−b2 + q2 a− bd

a− bd 2b− d2

]
=

[
0 0

0 0

]
⇒ P =

√ 2
q3

1
q

1
q

√
2
q


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Optimal State Feedback
Example: a double integrator

The controller is given by

K = R−1BTP =
[
1
q

√
2
q

]
.

The feedback law minimizing the given cost function is then u = −Kx.
The closed-loop matrix is then

Acl = A−BK =

[
0 1

−1/q −
√

2/q

]
.

The characteristic polynomial of the matrix is

λ2 +

√
2

q
λ+

1

q
= 0.

Comparing this to λ2 + 2ζω0λ+ ω2
0 , we have a good tradeoff between rise time and

overshoot:

ω0 =
√

1/q, ζ =
1
√
2
= 0.707.
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Optimal State Feedback
Choosing LQR weights

To select the cost function weights Q and R, we must use the knowledge of the system we

are controlling. The simplest method is to use diagonal weights

Q =


q1 0

. . .

0 qn

 , R =


ρ1 0

. . .

0 ρn

 .
The individual weights for the (diagonal) elements of the Q and R matrix can be selected as

follow:

1 choose qi and ρj as the inverse of the square of the maximum value for the

corresponding xi or uj .

2 modify the elements to obtain a compromise among response time, damping and

control effort.
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Optimal State Feedback
LQR in MATLAB

The command [K,P,E] = lqr(A,B,Q,R,N) solves the algebraic Riccati equation

ATP + PA+Q− (PB +N)R−1(BTP +NT ) = 0

and computes the optimal state feedback matrix gain

K = R−1(BTP +NT )

that minimizes the LQR criteria

J =

∫ ∞

0
xTQx+ uTRu+ 2xTNudt

for the continuous-time process

ẋ = Ax+Bu.

This command also returns the poses E of the closed-loop system

ẋ = (A−BK)x.
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Optimal State Feedback with Reference inputs
Simple method

Suppose we have an equilibrium point (xd, ud) . The normal state spae control law to

include the nominal input:

u = ud −K(x− xd).

This allows the required input u = ud to be applied when x = xd to achieved the equilibrium

point.

I to adjust the equilibrium point based on the reference r. We need to find xd and ud as
a function of r as

0 = Axd +Bud

r = Cxd +Dud

Since it is a linear equation, then we have

[
xd
ud

]
=

[
A B
C D

]−1 [
0
1

]
r =

[
Nx

Nu

]
r

I Then u = −K(x−Nxr) +Nur = −Kx+Nr, where N = Nu +KNx.
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Optimal State Feedback with Reference inputs
Simple method

I The scalar N represents a feedforward gain. The closed loop system is

ẋ = (A−BK)x+BNr

y = (C −DK)x+DNr

where r represents the reference input and y is the output for the closed loop plant.

I This approach is not very robust and if the system model is not corrent then this

approach will generate steady state errors.

I One way to see this is that the resulting control law does not compare the actual

output to the reference output, and hence it cannot correct for errors in the output.
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Optimal State Feedback with Reference inputs
Integral action

An alternative way to achieving zero steady state error is to add integral action to a

state-space feedback controller. By augmenting the plant:

ẋ = Ax+Bu

ẋi = e = r − Cx

y = Cx.

This can be written in terms of the augmented state
[
x xi

]T
:

[
ẋ

ẋi

]
=

[
A 0

−C 0

] [
x

xi

]
+

[
B

0

]
u+

[
0

I

]
r.

We design a control law for the case where r = 0 to get state feedback and

u = −
[
K Ki

] [x− xd
xi

]
+ ud

This method is more robust than the previous method. In fact, the controller will

automatically adjust the integrator state to provide sufficient input to hold the output at the

reference value.
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LQR with Matlab

Matlab command to solve the algebraic Riccati equation
[K,P,E] = lqr(A, B, Q, N)

The optimal state feedback matrix gain is

K = R−1(PB +N)T

that minimizes the LQR criteria

J :=

∫ ∞

0
xTQx+ uTRu+ 2xTNu dt

for the continuous-time process

ẋ = Ax+Bu.

This command also returns the poles E of the closed-loop system

ẋ = (A−BK)x.
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LQR Design Example

An Aricraft roll dynamics equation is

θ̇ = ω, ω̇ = −0.875ω − 20τ, τ̇ = −50τ + 50u

Defining x :=
[
θ ω τ

]T
, we write the state-space model as

ẋ = Ax+Bu, where

A =

0 1 0

0 −0.875 −20

0 0 −50

 , B =

 0

0

50

 .
The controlled output was chosen to be z =

[
θ γθ̇

]T
, which corresponds to

G =

[
1 0 0

0 γ 0

]
, H =

[
0

0

]
.

Find a state-feedback gain K that the closed-loop system can be tracked a step input.
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