Lecture 2 : Linear Systems Reviews

Dr.-Ing. Sudchai Boonto Assistant Professor

Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand

Let a finite dimensional linear time invariant (FDLTI) dynamical system be described as follow:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(t_0) = x_0$$
$$y(t) = Cx(t) + Du(t),$$

where

- $u(t) \in \mathbb{R}^n$ is called the system state
- $x(t_0)$ is called the *initial condition* of the system
- $y(t) \in \mathbb{R}^p$ is the system *output*
- ▶ The *A*, *B*, *C*, and *D* are appropriately dimensioned real constant matrices

Lecture 2 : Linear Systems Reviews

Descriptions of Linear Dynamical Systems

- A dynamical system with single-input (m = 1) and single-output (p = 1) is called a SISO (single-input and single-output) system;
- otherwise it is called a MIMO (multiple-input and multiple-output) system.
- The corresponding transfer matrix from u to y is defined as

$$Y(s) = G(s)U(s),$$

where U(s) and Y(s) are the Laplace transforms of u(t) and y(t) with zero initial condition (x(0) = 0).

• We have $G(s) = G(sI - A)^{-1}B + D$.

Descriptions of Linear Dynamical Systems

The system can be written in a more compact matrix form:

$$\begin{bmatrix} \dot{x} \\ y \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}$$

to expedite calculations involving transfer matrices, we shall use the following notation:

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} := C(sI - A)^{-1}B + D$$

MATLAB command:

- G = ss(A,B,C,D)
 - [A,B,C,D] = ssdata(G)
- % Construct state-space model
- % access to state-space data

Descriptions of Linear Dynamical Systems

▶ Now given the initial condition $x(t_0) = x_0$ and the input u(t):

$$x(t) = e^{A(t-t_0)}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$
$$y(t) = Cx(t) + Du(t)$$

• If
$$u(t) = 0, \forall t \ge 0$$
,

$$x(t) = e^{A(t-t_1)}x(t_1)$$

- ► The matrix e^{A(t-t₁)} acts as a transformation from one state to another, and thus e^{A(t-t₁)} = Φ(t, t₁) is usually called the *state transition matrix*.
- Proof see page 64.

Descriptions of Linear Dynamical Systems State-Transition matrix

For LTI system, the state-transition matrix and the output are

$$\Phi(t) = e^{At} = I + At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 + \dots$$
$$y(t) = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

For MIMO system, if the inputs are impulses then, the outputs are impulse response g_{ij}(t):

$$\begin{split} g_{ij}(t) &= y_i(t), \text{ where } u_k(t) = \begin{cases} \delta(t) & k = j \\ 0 & k \neq j \end{cases}, \ x(0) &= 0 \\ G(t) &= \begin{bmatrix} g_{11}(t) & \cdots & g_{1n_u}(t) \\ \vdots & \ddots & \vdots \\ g_{n_y1}(t) & \cdots & g_{n_yn_u}(t) \end{bmatrix} = \begin{cases} Ce^{At}B + D\delta(t) & t \geq 0 \\ 0 & t < 0 \end{cases} \end{split}$$

Descriptions of Linear Dynamical Systems Matlab Commands

G = ss(A,B,C,D) % create a constant system matrix [y,x,t] = step(G(Yu,Iu)) % step response of input % Iu to output Yu $[y,x,t] = initial(G,x_0)$ % initial response with % initial conditions x_0 [y,x,t] = impulse(G(Yu,Iu)) % Impulse response of input % Iu to output Yu [y,x] = lsim(G,U,T)% simulate time response of % the system

Descriptions of Linear Dynamical Systems Example

Consider a system described by

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$
$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \text{ with } \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} = \begin{bmatrix} 5\delta(t) \\ 21(t) \end{bmatrix},$$

where $\mathbb{1}(t)$ is a unit step function. The state-transition matrix is

$$e^{At} = \begin{bmatrix} 1 + (-t) + \frac{(-t)^2}{2!} + \dots & 1 - 1 + (-t) - (-3t) + \frac{(-t)^2}{2!} - \frac{(-3t)^2}{2!} + \dots \\ 0 & 1 + (-3t) + \frac{(-3t)^2}{2!} + \dots \end{bmatrix}$$
$$= \begin{bmatrix} e^{-t} & e^{-t} - e^{-3t} \\ 0 & e^{-3t} \end{bmatrix}$$

The impulse response is

$$g(t) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} & e^{-t} - e^{-3t} \\ 0 & e^{-3t} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} e^{-t} & 4e^{-t} \\ e^{-t} & 4e^{-t} - 8e^{-3t} \end{bmatrix}$$

Descriptions of Linear Dynamical Systems Example

The output (zero-state response) is g(t) * u(t)

$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \int_0^t \begin{bmatrix} e^{-(t-\tau)} & 4e^{-(t-\tau)} \\ e^{-(t-\tau)} & 4e^{-(t-\tau)} - 8e^{-3(t-\tau)} \end{bmatrix} \begin{bmatrix} 5\delta(\tau) \\ 2\mathbbm{1}(\tau) \end{bmatrix} d\tau$$
$$= \begin{bmatrix} 8 - 3e^{-t} \\ \frac{8}{3} - 3e^{-t} + \frac{16}{3}e^{-3t} \end{bmatrix}$$

Transfer function

 Taking the Laplace transform of the state and output equations and assuming that all initial conditions are zero yields

$$sx(s) = Ax(s) + Bu(s)$$
$$y(s) = Cx(s) + Du(s)$$

We have

$$y(s) = [C(sI - A)^{-1}B + D] u(s) = G(s)u(s)$$

Taking inverse Laplace transform

$$y(t) = \mathcal{L}^{-1} \left\{ C(sI - A)^{-1}B + D \right\} * u(t)$$

Since

$$e^{At} = \mathcal{L}^{-1} \{ (sI - A)^{-1} \} \Rightarrow g(t) = \mathcal{L}^{-1} \{ G(s) \}$$

Transfer function

Given the system described by the state model,

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$
$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix},$$

the transfer function matrix is

$$\begin{aligned} G(s) &= \begin{bmatrix} G_{11}(s) & G_{12}(s) \\ G_{21}(s) & G_{22} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} s+1 & -2 \\ 0 & s+3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{s+1} & \frac{4}{s+1} \\ \frac{1}{s+1} & \frac{-4(s-1)}{(s+1)(s+3)} \end{bmatrix}. \end{aligned}$$

Then

$$g(t) = \mathcal{L}^{-1} \{ G(s) \} = \begin{bmatrix} e^{-t} & 4e^{-t} \\ e^{-t} & 4e^{-t} - 8e^{-3t} \end{bmatrix}.$$

Poles and Zeros SISO systems

the transfer function of a SISO system is a ratio of polynomials in s-domain, where all initial conditions are zero:

$$G(s) = C(sI - A)^{-1}B + D = \frac{C \operatorname{adj}(sI - A)B + D \operatorname{det}(sI - A)}{\operatorname{det}(sI - A)}$$

▶ the roots of the numerator num(s) = 0 are called the system zeros. Or the value of z_i such that

$$G(z_i) = 0$$

the roots of the denominator den(s) = 0 are called the system poles. Or the value of p_i such that

$$|G(p_i)| = \infty.$$

- the transfer function of a MIMO system is a matrix of SISO transfer functions.
- the system poles are defined as the union of the poles of each of the SISO transfer functions.
- for state-space realization of the system, the poles are the eigenvalues of the state matrix.
- the zoers of a MIMO system are the values of s such that the transfer function matrix has less than full rank:

$$\operatorname{rank}[G(s)] < \min\{n_y, n_u\}$$

▶ for some system the output is zero for some nonzero input:

$$y(s) = 0 = G(s)u(s).$$

Poles and Zeros MIMO systems

then for the special case of square transfer functions, the zeros are the values of s such that

$$\det\left[G(s)\right] = 0$$

The Laplace transform of the state model is

$$sx(s) = Ax(s) + Bu(s)$$
$$y(s) = 0 = Cx(s) + Du(s)$$

Rewriting

$$\begin{bmatrix} sI - A & -B \\ C & D \end{bmatrix} \begin{bmatrix} x(s) \\ u(s) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \det \begin{bmatrix} sI - A & -B \\ C & D \end{bmatrix} = 0$$

Poles and Zeros

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$
$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix},$$

the transfer function is

$$G(s) = \begin{bmatrix} \frac{-s}{s+1} & \frac{4}{s+1} \\ \frac{1}{s+1} & \frac{-s^2 - 8s + 1}{(s+1)(s+3)} \end{bmatrix}$$

The poles are the solution of

$$det(sI - A) = det \begin{bmatrix} s+1 & -2\\ 0 & s+3 \end{bmatrix} = (s+1)(s+3) = 0,$$

$$p_1 = -1 \text{ and } p_2 = -3.$$

Poles and Zeros

The zeros are the solution of

$$\det \begin{bmatrix} \frac{-s}{s+1} & \frac{4}{s+1} \\ \frac{1}{s+1} & \frac{-s^2 - 8s + 1}{(s+1)(s+3)} \end{bmatrix} = \frac{s^2 + 7s - 12}{(s+1)(s+3)} = 0,$$

which are $z_1=-8.42$ and $z_2=1.42$. The better method that can be avoided the poles-zeros cancellation is

$$\det \begin{bmatrix} s+1 & -2 & -1 & 0\\ 0 & s+3 & 0 & -4\\ 1 & 1 & -1 & 0\\ 1 & -1 & 0 & -1 \end{bmatrix} = s^2 + 7s - 12 = 0.$$

Matlab code:

sys = ss(A,B,C,D);
tzero(sys)

Stability

Definition (BIBO Stability)

A system is bounded input/bounded output-stable if for every bounded input,

$$|u_i(t)| < M_1$$
 for all t and all i,

the output is bounded:

 $|y_j(t)| < M_2$ for all t and all j,

provided that the initial conditions are zero.

Definition (stability)

A causal, linear, time-invariant system is stable if and only if all of its poles have negative real parts.

a motivated example

Consider a system

v(t) is the measurement error. The transfer function $T_{yr}(s)$ is

$$\frac{y(s)}{u(s)} = \frac{\frac{s}{(s-1)}}{1 + \frac{2}{s}\frac{s}{s-1}} = \frac{s}{s+1}$$

The transfer function $T_{vu}(s)$ is

$$\frac{u(s)}{v(s)} = \frac{\frac{-2}{s}}{1 + \frac{2}{s}\frac{s}{s-1}} = \frac{-s(s-1)}{s(s+1)}$$

which is stable. Actually, the control input of this system is unbounded if the measurement error contains a constant bias.

Lecture 2 : Linear Systems Reviews

- A linear feedback system is internally stable if all internal signals and all possible outputs remain bounded given that all possible inputs are bounded.
- Internal stability is evaluated by considering all of the possible transfer functions associated with the feedback system.

The inputs $u_1(t)$ and $u_2(t)$ are applied to four possible outputs $y_1(t)$, $y_2(t)$, $e_1(t)$, and $e_2(t)$.

The eight possible transfer functions are

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} (I+GK)^{-1}G & -(I+GK)^{-1}GK \\ (I+KG)^{-1}KG & (I+KG)^{-1}K \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$= \begin{bmatrix} G_{y_1u_1} & G_{y_1u_2} \\ G_{y_2u_1} & G_{y_2u_2} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix};$$
$$\begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} (I+KG)^{-1} & -(I+KG)^{-1}K \\ (I+KG)^{-1}G & (I+GK)^{-1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$= \begin{bmatrix} G_{e_1u_1} & G_{e_1u_2} \\ G_{e_2u_1} & G_{e_2u_2} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}.$$

- the inputs can represent input disturbances, ooutput disturbances, reference inputs, and measurement noise.
- the outputs represent the plant output, the controller output, the plant input, and the controller input.

Definition (Internal Stability)

The feedback system consisting of the plant G(s) and the controller K(s) is internally stable if each of the eight transfer functions are stable.

- Internal stability is a stronger condition than stability and will be required when designing feedback systems.
- ► To check the internal stability, considering:

$$\begin{bmatrix} e_1\\ e_2 \end{bmatrix} = \begin{bmatrix} u_1\\ u_2 \end{bmatrix} + \begin{bmatrix} -y_2\\ y_1 \end{bmatrix} = \begin{bmatrix} I & 0\\ 0 & I \end{bmatrix} \begin{bmatrix} u_1\\ u_2 \end{bmatrix} + \begin{bmatrix} 0 & -I\\ I & 0 \end{bmatrix} \begin{bmatrix} y_1\\ y_2 \end{bmatrix}$$
$$\begin{bmatrix} y_1\\ y_2 \end{bmatrix} = \begin{bmatrix} 0 & I\\ -I & 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} e_1\\ e_2 \end{bmatrix} - \begin{bmatrix} I & 0\\ 0 & I \end{bmatrix} \begin{bmatrix} u_1\\ u_2 \end{bmatrix} \end{pmatrix}$$

The transfer functions from u to y are then related to the transfer functions from u to e:

$$\begin{bmatrix} G_{y_1u_1} & G_{y_1u_2} \\ G_{y_2u_1} & G_{y_2u_2} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \left(\begin{bmatrix} G_{e_1u_1} & G_{e_1u_2} \\ G_{e_2u_1} & G_{e_2u_2} \end{bmatrix} - \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \right).$$

Since all of the transformation matrices relating $G_{e_iu_j}$ to $G_{y_iu_j}$ are constants and therefore stable, the following result is obtained:

Internal Stability

The feedback system consisting of the plant G(s) and the controller K(s) is internally stable if and only if each of the four transfer functions $G_{e_1u_1}$, $G_{e_1u_2}$, $G_{e_2u_1}$, and $G_{e_2u_2}$ are stable.

Similarity Transformations

- The state equations of a system are not unique. There are infinite number of state representations of a given physical system.
- Similarity transformation can be used to generate special state models that have nice algebraic and numerical properties. The poles and zeros of the system are invariant under the operation.

Consider a system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t).$$

A new state vector can be defined:

$$\tilde{x}(t) = T^{-1}x(t)$$
, and $x(t) = T\tilde{x}(t)$

where T is a constant, invertible transformation matrix.

Similarity Transformations

Since
$$\dot{x}(t) = T\dot{\tilde{x}}(t)$$
,

$$T\dot{\tilde{x}}(t) = AT\tilde{x}(t) + Bu(t)$$
$$y(t) = CT\tilde{x}(t) + Du(t)$$

► Multiplying both sides by T⁻¹ yields a state model in term of the new state x̃(t):

$$\dot{\tilde{x}}(t) = (T^{-1}AT)\tilde{x}(t) + (T^{-1}B)u(t)$$

 $y(t) = (CT)\tilde{x}(t) + Du(t).$

the new state model is generated by

$$A \Rightarrow T^{-1}AT; B \Rightarrow T^{-1}B; C \Rightarrow CT; D \Rightarrow D.$$

Similarity Transformations example

Given

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 4 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 3u(t).$$

A new model has states that are the sum and difference of the original states:

$$\begin{bmatrix} \tilde{x}_1(t) \\ \tilde{x}_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

The transformation matrices are then

$$T^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \ T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Similarity Transformations example

Performing the similarity transformation yields the new model:

$$\begin{aligned} \dot{\tilde{x}}_1(t) \\ \dot{\tilde{x}}_2(t) \end{bmatrix} &= \begin{bmatrix} -2 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} \tilde{x}_1(t) \\ \tilde{x}_2(t) \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} \tilde{x}_1(t) \\ \tilde{x}_2(t) \end{bmatrix} + 3u(t). \end{aligned}$$

- The new state model has no coupling between states.
- The state matrix is diagonal.
- The eigenvalues (poles) of the system are then simply the diagonal elements of the state matrix.

Consider a system

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(t_0) = x_0.$$

Definition (Controllability)

The dynamical system described above or the pair (A, B) is said to be controllable if, for any initial state $x(0) = x_0$, $t_1 > 0$ and final state x_1 , there exists a (piecewise continuous) input $u(\cdot)$ such that the solution of the system satisfies $x(t_1) = x_1$. Otherwise, the system or the pair (A, B) is said to be uncontrollable.

Consider

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t), \qquad x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \qquad x(t_f) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

From the solution of the state equation

$$x_1(t) = x_2(t) = \int_0^t e^{\lambda(t-\tau)} u(\tau) d\tau$$

It is clear that there are no such input u(t) that will bring the system to the final state $x(t_f)$.

Controllability

Theorem

The following are equivalent:

- (i) (A, B) is controllable.
- (*ii*) The matrix

$$W_c(t) := \int_0^t e^{A\tau} B B^* e^{A^*\tau} d\tau$$

is positive definite for any t > 0. (*iii*) The controllability matrix

$$\mathcal{C}(A,B) = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$

has full-row rank.

(iv) The matrix $[A - \lambda I, B]$ has full-row rank for all λ in \mathbb{C} .

Theorem

- (v) Let λ and x be any eigenvalue and any corresponding left eigenvector of A (i.e., $x^*A = x^*\lambda$); then $x^*B \neq 0$.
- (vi) The eigenvalues of A + BF can be freely assigned (with the restriction that complex eigenvalues are in conjugate pairs) by a suitable choice of F.

Proof See page 65

Definition

An unforced dynamical system $\dot{x} = Ax$ is said to be *stable* if all the eigenvalues of A are in the open left half plane; that is , $\operatorname{Re} \lambda(A) < 0$. A matrix A with such a property is said to be stable or Hurwitz.

Definition

The dynamical system, or the pair (A, B), is said to be *stabilizable* if there exists a state feedback u = Fx such that the system is stable (i.e., A + BF is stable).

It is more appropriate to call this stabilizability the *state feedback stabilizability* to differentiate it from the *output feedback stabilizability*.

Theorem

The following are equivalent:

- (i) (A,B) is stabilizable.
- $(ii) \ \ \, \textit{The matrix} \ \left[A \lambda I \quad B \right] \ \ \, \textit{has full row rank for all} \ \ \, \textit{Re} \ \lambda \geq 0.$
- (*iii*) For all λ and x such that $x^*A = x^*\lambda$ and $\operatorname{Re} \lambda \ge 0$, $x^*B \neq 0$.
- (iv) There exists a matrix F such that A + BF is Hurwitz.

Observability

Consider a system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(t_0) = 0$$
$$y(t) = Cx(t) + Du(t).$$

Definition

The dynamical system described above or by the pair (C, A) is said to be *observable* if, for any $t_1 > 0$, the initial state $x(0) = x_0$ can be determined from the time history of the input u(t) and the output y(t) in the interval of $[0, t_1]$. Otherwise, the system, or (C, A), is said to be *unobservable*.

Observability

Theorem

The following are equivalent:

(i) (C, A) is observable.

(ii) The matrix

$$W_o(t) := \int_0^t e^{A^*\tau} C^* C e^{A\tau} d\tau$$

is positive definite for any t > 0.

(iii) The observability matrix

$$\mathcal{O} = \begin{bmatrix} C^* & (CA)^* & (CA^2)^* & \cdots & (CA^{n-1})^* \end{bmatrix}^*$$

has full column rank.

Observability

Theorem

(*iv*) The matrix
$$\begin{bmatrix} A - \lambda I \\ C \end{bmatrix}$$
 has full column rank for all λ in \mathbb{C} .

- (v) Let λ and y be any eigenvalue and any corresponding right eigenvector of A, i.e., $Ay = \lambda y$, then $Cy \neq 0$.
- (vi) The eigenvalues of A + LC can be freely assigned by a suitable choice of L.
- (vii) (A^*, C^*) is controllable.

Detectability

Definition

The system, or the pair (C, A), is *detectable* if A + LC is stable for some L.

Theorem

The following are equivalent: (i) (C, A) is detectable. (ii) The matrix $\begin{bmatrix} A - \lambda I \\ C \end{bmatrix}$ has full column rank for all $\operatorname{Re} \lambda \ge 0$. (iii) For all λ and x such that $Ax = \lambda x$ and $\operatorname{Re} \lambda \ge 0$, $Cx \ne 0$. (iv) There exists a matrix L such that A + LC is Hurwitz. (v) (A^*, C^*) is stabilizable.
- Cc = ctrb(A,B); % Compute the controllability matrix
- Oc = obsv(A,C); % Compute the observability matrix
- Wc = gram(SYS,'c'); % Controllability gramian
- Wc = gram(SYS,'o'); % Observability gramian

Controllability and Observability Example

We are given the system described by the following state model:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$
$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}.$$

The controllability test matrix is

$$\mathcal{C} = \begin{bmatrix} 1 & 0 & -1 & 8 \\ 0 & 4 & 0 & -12 \end{bmatrix},$$

which has full rank (a rank of 2). The system is therefore controllable. The observability test matrix is

$$\mathcal{O} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 5 \end{bmatrix},$$

which has full rank (a rank of 2). The system is observable.

Lecture 2 : Linear Systems Reviews

State Feedback

Consider a system

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t) + Du(t)$$

- ► A simple controller is u(t) = -Kx(t), where K is a vector of state feedback gains.
- The closed-loop state equation is

$$\dot{x}(t) = (A - BK)x(t)$$

 Closed-loop poles placement is one method to satisfy the requirement.

$$\det(sI - A + BK) = (s - p_1)(s - p_2)\cdots(s - p_{n_x})$$

State Feedback Example

An ac motor is described by the state equation

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t),$$

where the two states are motor shaft angle and angle rate, and the control input is the applied voltage. We want to have closed-loop poles at $p_{1,2} = -2 \pm 2j$.

$$\det [sI - A + BK)] = (s + 2 - 2j)(s + 2 + 2j) = s^2 + 4s + 8$$
$$\det \begin{bmatrix} s & -1 \\ k_1 & s + 1 + k_2 \end{bmatrix} = s^2 + (1 + k_2)s + k_1$$

Then $k_1 = 8$ and $k_2 = 3$, the control input is

$$u(t) = -\begin{bmatrix} 8 & 3 \end{bmatrix} x(t).$$

This can be done using a Matlab command K = -place(A,B,[-2+2j,-2-2j]).

State Feedback

State feedback control of an ac motor. This method is useful only the case that all states can be measured.

Consider a system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t).$$

Theorem

An observer exists iff (C, A) is detectable. Further, if (C, A) is detectable, then a full-order Luenberger observer is give by

$$\dot{q} = Aq + Bu + L(Cq + Du - y)$$
$$\hat{x} = q,$$

where L is any matrix such that A + LC is stable.

- ► If (A, B) is controllable and state x is available for feedback, then there is a state feedback u = Fx such that the closed-loop poles of the system can be arbitrarily assigned.
- ► Similarly, if (C, A) is observable, then the system observe poles can be arbitrarily placed so that the state estimator x̂ can be made to approach x arbitrarily fast.
- If the system states are not available for feedback so that the estimated state has to be used. Hence, the controller has the following dynamics:

$$\dot{\hat{x}} = (A + LC)\hat{x} + Bu + LDu - Ly$$
$$u = F\hat{x}.$$

Then the total system state equations are give by

$$\begin{bmatrix} \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} A & BF \\ -LC & A + BF + LC \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}.$$

• Let $e := x - \hat{x}$ then the system equation becomes

$$\begin{bmatrix} \dot{e} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A + LC & 0 \\ -LC & A + BF \end{bmatrix} \begin{bmatrix} e \\ \hat{x} \end{bmatrix}$$

► The closed-loop poles consist of two parts: the poles resulting from state feedback \(\lambda_i(A + BF)\) and the poles resulting from the state estimation \(\lambda_j(A + LC)\).

- ► If (A, B) is controllable and (C, A) is observable, then there exist F and L such that the eigenvalues of A + BF and A + LC can be arbitrarily assigned.
- The controller given above is called an observer-based controller and is denoted as

$$u = K(s)y$$

and

$$K(s) = \begin{bmatrix} A + BF + LC + LDF & -L \\ F & 0 \end{bmatrix}$$

- In general, if a system is stabilizable through feeding back the output y, then it is said to be output feedback stabilizable.
- ▶ It is clear that a system is output feedback stabilizable if and only if (A, B) is stabilizable and (C, A) is detectable.

Observers and Observer-Based Controllers Matlab Example

▶ Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$. We shall design a state feedback $u = Fx$ such that the closed-loop poles are at $\{-2, -3\}$. This can be done by choosing $F = \begin{bmatrix} -6 & -8 \end{bmatrix}$ using $F = -place(A, B, [-2, -3])$.

If the states are not available for feedback and we want to construct an observer so that the observer poles are at {-10, -10}. The L = L = -acker(A', C', [-10, -10])'

and the observer-based controller is given by

$$A_K = A + BF + LC + LDF, \quad B_K = -L, \quad C_K = F, \quad D_K = 0$$

and

$$K(s) = \frac{-534(s+0.6966)}{(s+34.6564)(s-8.6564)}.$$

Operations on Systems

Operations on Systems

Consider the two LTI systems

$$G_1 = \begin{bmatrix} A_1 & B_1 \\ \hline C_1 & D_1 \end{bmatrix}, \quad G_2 = \begin{bmatrix} A_2 & B_2 \\ \hline C_2 & D_2 \end{bmatrix}.$$

In parallel case: $u = u_1 = u_2$ and $y = y_1 + y_2$ we then have

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} B_1\\ B_2 \end{bmatrix} u,$$
$$y = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + (D_1 + D_2)u$$
$$G_1 + G_2 = \begin{bmatrix} A_1 & 0\\ 0 & A_2 & B_2\\ \hline C_1 & C_2 & D_1 + D_2 \end{bmatrix}$$

Block Diagrams

Interconnections

In cascade case: $u = u_1$, $y = y_2$, and $z = y_1 = u_2$ we have

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_1 & 0\\ B_2C_1 & A_2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} B_1\\ B_2D_1 \end{bmatrix} u$$
$$y = \begin{bmatrix} D_2C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + D_2D_1u$$
$$G_1G_2 = \begin{bmatrix} A_1 & 0 & B_1\\ B_2C_1 & A_2 & B_2D_1\\ \hline D_2C_1 & C_2 & D_2D_2 \end{bmatrix}$$

In negative feedback case: $u_1 = z = u - y_1$, $y = y_1$ we have

$$\dot{x}_1 = (A_1 - B_1(I + D_1)^{-1}C_1)x_1 + B_1(I - (I + D)^{-1}D_1)u$$
$$y = (I + D_1)^{-1}C_1x_1 + (I + D_1)^{-1}D_1u$$
$$G = \left[\frac{(A_1 - B_1(I + D_1)^{-1}C_1 \mid B_1(I - (I + D)^{-1}D_1)}{(I + D_1)^{-1}C_1 \mid (I + D_1)^{-1}D_1}\right]$$

Sometimes feedback interconnections are *ill-posed*. In this example, this would happen if the matrix $I + D_1$ was singular.

Cascade: To create a system sys from the cascade connection of the system sys1 whose output is connected to the input of sys2, we use a command

Parallel: To create a system sys from the parallel connection of the systems sys1 and sys2, we use a command

Feedback: The command

```
sys = feedback(sys1,sys2)
```

creates a system sys from the negative feedback interconnection of the system sys1 in the forward loop, with the system sys2 in the backward loop.

A positive feedback interconnection can be obtained using

State-Space Realizations of Transfer Matrices

Assume that G(s) is a real rational transfer matrix that is *proper*. Then we call a state-space model (A, B, C, D) such that

$$G(s) = \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right]$$

a realization of G(s).

Definition

A state-space realization (A, B, C, D) of G(s) is said to be a minimal realization of G(s) if A has the smallest possible dimension.

Definition

A state-space realization (A, B, C, D) of G(s) is minimal if and only if (A, B) is controllable and (C, A) is observable.

State-Space Realizations of Transfer Matrices

Controllable canonical form

Consider a SISO system

$$G(s) = \frac{\beta_1 s^{n-1} + \beta_2 s^{n-2} + \dots + \beta_{n-1} s + \beta_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

Rewritten as

$$G(s) = \frac{b(s)}{a(s)} \text{ and } y(s) = b(s)\frac{1}{a(s)}u(s) = b(s)v(s)$$
$$u(s) = (s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n})v(s)$$
$$y(s) = (\beta_{1}s^{n-1} + \beta_{2}s^{n-2} + \dots + \beta_{n-1}s + \beta_{n})v(s)$$

and

$$x_1 = v^{(n-1)}(t), \ x_2 = v^{(n-2)}(t), \ \dots, \ x_{n-1} = \dot{v}(t), \ x_n = v(t)$$
$$y(t) = \beta_1 x_1(t) + \beta_2 x_2(t) + \dots + \beta_{n-1} x_{n-1}(t) + \beta_n x_n$$

State-Space Realizations of Transfer Matrices Controllable canonical form

Then a *controllable canonical form* or *controller canonical form* of the system is

$$A_{c} = \begin{bmatrix} -a_{1} & -a_{2} & \cdots & -a_{n-1} & -a_{n} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \quad B_{c} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$C_{c} = \begin{bmatrix} \beta_{1} & \beta_{2} & \cdots & \beta_{n-1} & \beta_{n} \end{bmatrix}$$

State-Space Realizations of Transfer Matrices

Controllable canonical form example

A system $G(s) = \frac{3s^2 + 6s + 5}{s^3 + 2s^2 + 3s + 8}$, $u(s) = (s^3 + 2s^2 + 3s)v(s)$, and $y(s) = (3s^2 + 6s + 5)v(s)$. Then $x_3 = v(t)$, $x_2 = \dot{v}(t) x_1 = v(t)$ and

$$\dot{x}(t) = \begin{bmatrix} -2 & -3 & -8\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 3 & 6 & 5 \end{bmatrix} x(t)$$

with a block diagram.

State-Space Realizations of Transfer Matrices

Observable canonical form

Consider a SISO system

$$G(s) = \frac{\beta_1 s^{n-1} + \beta_2 s^{n-2} + \dots + \beta_{n-1} s + \beta_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

Rewritten as

$$(s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n})y(s) =$$

$$(\beta_{1}s^{n-1} + \beta_{2}s^{n-2} + \dots + \beta_{n-1}s + \beta_{n})u(s)$$

$$s [s [\dots [sy(s) + (a_{1}y(s) - \beta_{1}u(s))] + (a_{2}y(s) - \beta_{2}u(s))]$$

$$+ \dots + (a_{n-1}y(s) - \beta_{n-1}u(s)] + (a_{n}y(s) - \beta_{n}u(s)) = 0$$

Let
$$y(t) = x_1(t)$$
 then $\dot{x}_n(t) = -a_n y(t) + \beta_n u(t) = -a_n x_1(t) + \beta_n u(t)$,
 $\dot{x}_{n-1}(t) = x_n(t) - (a_{n-1}y(t) + \beta_{n-1}u(t)) = x_n(t) - a_{n-1}x_1(t) + \beta_{n-1}u(t)$
and so all.

State-Space Realizations of Transfer Matrices Observable canonical form

Then an *observable canonical form* or *observer canonical form* of the system is

$$A_{o} = \begin{bmatrix} -a_{1} & 1 & 0 & \cdots & 0 \\ -a_{2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{n-1} & 0 & 0 & \cdots & 1 \\ -a_{n} & 0 & 0 & \cdots & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n-1} \\ \beta_{n} \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

State-Space Realizations of Transfer Matrices

Observable canonical form example

A system
$$G(s) = \frac{3s^2 + 6s + 5}{s^3 + 2s^2 + 3s + 8}$$
, we have $x_1(t) = y(t)$ and $s \left[s \left[sy(s) + (2y(s) - 3u(s))\right] + (3y(s) - 6u(s))\right] + (8y(s) - 5u(s)) = 0$. Then $\dot{x}_3(t) = -8x_1(t) + 5u(t), \ \dot{x}_2(t) = x_3(t) - 3x_1(t) + 6u(t), \ \dot{x}_1(t) = x_2 - 2x_1(t) + 3u(t)$ and

$$\dot{x}(t) = \begin{bmatrix} -2 & 1 & 0 \\ -3 & 0 & 1 \\ -8 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 3 \\ 6 \\ 5 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(t)$$

with a block diagram

State-Space Realizations of Transfer Matrices

Matlab example

A system
$$G(s) = \frac{3s^2 + 6s + 5}{s^3 + 2s^2 + 3s + 8}$$

Matlab Code

```
% controllable canonical form
[Ac,Bc,Cc,Dc] = tf2ss(num,den);
```

```
% observable canonical form
Ab = Ac'; Bb = Cc'; Cb = Bc'; Db = Dc;
```

- Kemin Zhou and John Doyle "Essentials of Robust Control", Prentice Hall, 1998
- Chi-Tsong Chen "Linear System Theory and Design", Oxford University Press, 1999
- 3 Herbert Werner "Lecture Notes on Control Systems Theory and Design", 2011
- 4 Jeffrey B. Burl "Linear Optimal Control: \mathcal{H}_2 and \mathcal{H}_∞ Methods", 1999

Solutions of State Equations

Consider a SISO

$$\dot{x}(t) = ax(t) + bu(t), \ x(0) = x_0$$

The solution to the problem

$$\frac{d}{dt}\left(e^{at}a\right) = e^{-at}\left(\dot{x}(t) - ax(t)\right) = e^{-at}bu$$

Integration from 0 to t and multiplication by $e^{at}\ {\rm yields}$

$$x(t) = e^{at}x_0 + \int_0^t e^{a(t-\tau)}bu(\tau)d\tau$$

MIMO version

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

• Note that
$$\frac{d}{dt}(e^{At}) = Ae^{At}$$
. Back

Lecture 2 : Linear Systems Reviews

(*ii*) \leftrightarrow (*i*) Suppose $W_c(t_1) > 0$ for some $t_1 > 0$, and let the input be defined as

$$u(\tau) = -B^* e^{A^*(t_1 - \tau)} W_c^{-1}(t_1) (e^{At_1} x_0 - x_1).$$

It is easy to verify that $x(t_1) = x_1$ as follow:

$$x(t_1) = e^{At_1} x_0 - W_c(t_1) W_c^{-1}(t_1) (e^{At_1} x_0 - x_1)$$

Therefore, the system (A, B) is controllable if the $W_c(t)$ is invertible. Thus it has full rank and positive definite for any t > 0.

To show that the controllability of (A, B) implies that $W_c(t) > 0$ for any t > 0, assume that (A, B) is controllable but $W_c(t)$ is singular for some $t_1 > 0$.

Since $e^{At}BB^*e^{A^*t} \ge 0$ for all t, there exists a real vector $0 \neq v \in \mathbb{R}^n$ such that

$$v^* e^{At} B = 0, \quad t \in [0, t_1].$$

• Let $x(t_1) = x_1 = 0$, and then from the solution of the system, we have

$$0 = e^{At_1} x_0 + \int_0^{t_1} e^{A(t_1 - \tau)} Bu(\tau) d\tau.$$

Pre-multiply the above equation by v^* to get

$$0 = v^* e^{At_1} x_0.$$

If we chose the initial state $x_0 = e^{-At_1}v$, then v = 0, and this is contradiction. Hence, $W_c(t)$ cannot be singular for any t > 0.

• (*ii*) \leftrightarrow (*iii*) First assume that $W_c(t) > 0$ for all t > 0 but the controllability matrix C(A, B) does not have full row rank. Then there exists a $v \in \mathbb{R}^n$ such that

$$v^* A^i B = 0, \quad i = 0, 1, \dots, n-1$$

Hence $v^*e^{At}B = 0$ for all t or, equivalently, $v^*W_c(t) = 0$ for all t; this is a contradiction, and hence, the controllability matrix C(A, B) must be full row rank.

• Conversely, assume suppose C(A, B) has full row rank but $W_c(t_1)$ is singular for some t_1 . Then there exists a vector $v \neq 0 \in \mathbb{R}^n$ such that $v^*e^{At}B = 0$ for all $t \in [0, t_1]$. Therefore, set t = 0, and we have

$$v^*B = 0$$

Next, evaluate the *i*-th derivative of $v^*e^{At}B = 0$ at t = 0 to get

$$v^*A^iB = 0, \quad i > 0.$$

Hence, we have

$$v^* \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix} = 0$$

or, in other words, the controllability matrix ${\cal C}$ does not have full row rank. This is again a contradiction.

• $(iii) \rightarrow (iv)$: Suppose, on the contrary, that the matrix

$$\begin{bmatrix} A - \lambda I & B \end{bmatrix}$$

does not have full row rank for some $\lambda \in \mathbb{C}$.

• Then there exists a vector $x \in \mathbb{C}^n$ such that

$$x^* \begin{bmatrix} A - \lambda I & B \end{bmatrix} = 0$$

i.e., $x^*A = \lambda x^*$ and $x^*B = 0$. However, this will result in

$$x^* \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = \begin{bmatrix} x^*B & \lambda x^*B & \cdots & \lambda^{n-1}x^*B \end{bmatrix} = 0$$

i.e., the controllability matrix $\mathcal{C}(A,B)$ does not have full row rank, and this is a contradiction.

•
$$(iv) \rightarrow (v)$$
 This is obvious from the proof of $(iii) \rightarrow (iv)$.

▶ $(v) \rightarrow (iii)$ Assume that (v) holds but rank C(A, B) = k < n. By using a transformation T such that

$$TAT^{-1} = \begin{bmatrix} \bar{A}_c & \bar{A}_{12} \\ 0 & \bar{A}_{\bar{c}} \end{bmatrix}, \quad TB = \begin{bmatrix} \bar{B}_c \\ 0 \end{bmatrix}$$

with $\bar{A}_{\bar{c}} \in \mathbb{R}^{(n-k)\times(n-k)}$. Let λ_1 and $x_{\bar{c}}$ be any eigenvalue and any corresponding left eigenvector of $\bar{A}_{\bar{c}}$, i.e., $x_{\bar{c}}^*\bar{A}_{\bar{c}} = \lambda_1 x_{\bar{c}}^*$. Then $x^*(TB) = 0$ and

$$x = \begin{bmatrix} 0 & x_{\bar{c}} \end{bmatrix}$$

*

is an eigenvector of TAT^{-1} corresponding to the eigenvalue λ_1 , which implies that (TAT^{-1}, TB) is not controllable. This is a contradiction since similarity transformation does not change controllability.

- (vi) → (i) This follows the same arguments as in the proof of (v) → (iii) assume that (vi) holds but (A, B) is uncontrollable. Then, there is a decomposition so that some subsystems are not affected by the control, but this contradicts the condition (vi).
- $(i) \rightarrow (vi)$ We can construct a matrix F so that the eigenvalues of A + BF are in the desired locations.
- Back

Observability Proof

Proof. First, we show the equivalence between condition (i) and (iii). Once this is done, the rest will follow by the duality or condition (vii).

• $(i) \leftarrow (iii)$ Note that given the input u(t) and the initial condition x_0 , the output in the time interval $[0, t_1]$ is given by

$$y(t) = Ce^{At}x_0 + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t).$$

Since y(t) and u(t) are known, assuming $u(t) = 0, \forall t$. Hence, $y(t) = Ce^{At}x_0, \quad t \in [0, t_1].$ From this equation, we have

$$\begin{bmatrix} y(0)\\ \dot{y}(0)\\ \vdots\\ y^{(n-1)}(0) \end{bmatrix} = \begin{bmatrix} C\\ CA\\ CA^2\\ \vdots\\ CA^{n-1} \end{bmatrix} x_0$$

The observability matrix O has full column rank, there is a unique solution x_0 .

Observability Proof

• (i) \rightarrow (iii) Assume that (C, A) is observable but that the observability matrix does not have full column rank, i.e., there is a vector x_0 such that $\mathcal{O}x_0 = 0$ or equivalently $CA^i x_0 = 0, \forall i \geq 0$ by the Cayley-Hamilton Theorem. Now suppose the initial state $x(0) = x_0$, then $y(t) = Ce^{At}x_0 = 0$. This implies that the system is not observable since x_0 cannot be determined from y(t) = 0.