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Descriptions of Linear Dynamical Systems

Let a finite dimensional linear time invariant (FDLTI) dynamical system

be described as follow:

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = Cx(t) +Du(t),

where

I u(t) ∈ Rn is called the system state

I x(t0) is called the initial condition of the system

I y(t) ∈ Rp is the system output

I The A,B,C, and D are appropriately dimensioned real constant

matrices
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Descriptions of Linear Dynamical Systems

I A dynamical system with single-input (m = 1) and single-output

(p = 1) is called a SISO (single-input and single-output) system;

I otherwise it is called a MIMO (multiple-input and multiple-output)

system.

I The corresponding transfer matrix from u to y is defined as

Y (s) = G(s)U(s),

where U(s) and Y (s) are the Laplace transforms of u(t) and y(t)

with zero initial condition (x(0) = 0).

I We have G(s) = G(sI −A)−1B +D.
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Descriptions of Linear Dynamical Systems

The system can be written in a more compact matrix form:[
ẋ

y

]
=

[
A B

C D

][
x

u

]

to expedite calculations involving transfer matrices, we shall use the

following notation:[
A B

C D

]
:= C(sI −A)−1B +D

MATLAB command:

G = ss(A,B,C,D) % Construct state-space model

[A,B,C,D] = ssdata(G) % access to state-space data
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Descriptions of Linear Dynamical Systems

I Now given the initial condition x(t0) = x0 and the input u(t):

x(t) = eA(t−t0)x0 +

∫ t

0
eA(t−τ)Bu(τ)dτ

y(t) = Cx(t) +Du(t)

I If u(t) = 0, ∀t ≥ 0,

x(t) = eA(t−t1)x(t1)

I The matrix eA(t−t1) acts as a transformation from one state to

another, and thus eA(t−t1) = Φ(t, t1) is usually called the state

transition matrix.

I Proof see page 64.
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Descriptions of Linear Dynamical Systems
State-Transition matrix

I For LTI system, the state-transition matrix and the output are

Φ(t) = eAt = I +At+
1

2!
A2t2 +

1

3!
A3t3 + . . .

y(t) = CeAtx(0) +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

I For MIMO system, if the inputs are impulses then, the outputs are impulse response

gij(t):

gij(t) = yi(t), where uk(t) =

δ(t) k = j

0 k ̸= j
, x(0) = 0

G(t) =


g11(t) · · · g1nu (t)

...
. . .

...

gny1(t) · · · gnynu (t)

 =

CeAtB +Dδ(t) t ≥ 0

0 t < 0
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Descriptions of Linear Dynamical Systems
Matlab Commands

G = ss(A,B,C,D) % create a constant system matrix

[y,x,t] = step(G(Yu,Iu)) % step response of input

% Iu to output Yu

[y,x,t] = initial(G,x_0) % initial response with

% initial conditions x_0

[y,x,t] = impulse(G(Yu,Iu)) % Impulse response of input

% Iu to output Yu

[y,x] = lsim(G,U,T) % simulate time response of

% the system
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Descriptions of Linear Dynamical Systems
Example

Consider a system described by[
ẋ1(t)
ẋ2(t)

]
=

[
−1 2
0 −3

] [
x1(t)
x2(t)

]
+

[
1 0
0 4

] [
u1(t)
u2(t)

]
[
y1(t)
y2(t)

]
=

[
1 1
1 −1

] [
x1(t)
x2(t)

]
with

[
u1(t)
u2(t)

]
=

[
5δ(t)
21(t)

]
,

where 1(t) is a unit step function. The state-transition matrix is

eAt =

[
1 + (−t) + (−t)2

2!
+ . . . 1− 1 + (−t)− (−3t) + (−t)2

2!
− (−3t)2

2!
+ . . .

0 1 + (−3t) + (−3t)2

2!
+ . . .

]

=

[
e−t e−t − e−3t

0 e−3t

]
The impulse response is

g(t) =

[
1 1
1 −1

] [
e−t e−t − e−3t

0 e−3t

] [
1 0
0 4

]
=

[
e−t 4e−t

e−t 4e−t − 8e−3t

]
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Descriptions of Linear Dynamical Systems
Example

The output (zero-state response) is g(t) ∗ u(t)

[
y1(t)
y2(t)

]
=

∫ t

0

[
e−(t−τ) 4e−(t−τ)

e−(t−τ) 4e−(t−τ) − 8e−3(t−τ)

] [
5δ(τ)
21(τ)

]
dτ

=

[
8− 3e−t

8
3
− 3e−t + 16

3
e−3t

]
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Transfer function

I Taking the Laplace transform of the state and output equations
and assuming that all initial conditions are zero yields

sx(s) = Ax(s) +Bu(s)

y(s) = Cx(s) +Du(s)

I We have

y(s) =
[
C(sI −A)−1B +D

]
u(s) = G(s)u(s)

I Taking inverse Laplace transform

y(t) = L−1
{
C(sI −A)−1B +D

}
∗ u(t)

I Since

eAt = L−1
{
(sI −A)−1

}
⇒ g(t) = L−1{G(s)}
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Transfer function
Example

Given the system described by the state model,[
ẋ1(t)
ẋ2(t)

]
=

[
−1 2
0 −3

] [
x1(t)
x2(t)

]
+

[
1 0
0 4

] [
u1(t)
u2(t)

]
[
y1(t)
y2(t)

]
=

[
1 1
1 −1

] [
x1(t)
x2(t)

]
,

the transfer function matrix is

G(s) =

[
G11(s) G12(s)
G21(s) G22

]
=

[
1 1
1 −1

] [
s+ 1 −2
0 s+ 3

]−1 [
1 0
0 4

]

=


1

s+ 1

4

s+ 1

1

s+ 1

−4(s− 1)

(s+ 1)(s+ 3)

 .

Then

g(t) = L−1 {G(s)} =
[
e−t 4e−t

e−t 4e−t − 8e−3t

]
.
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Poles and Zeros
SISO systems

I the transfer function of a SISO system is a ratio of polynomials in

s-domain, where all initial conditions are zero:

G(s) = C(sI −A)−1B +D =
C adj(sI −A)B +D det(sI −A)

det(sI −A)

I the roots of the numerator num(s) = 0 are called the system zeros.

Or the value of zi such that

G(zi) = 0

I the roots of the denominator den(s) = 0 are called the system

poles. Or the value of pi such that

|G(pi)| = ∞.
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Poles and Zeros
MIMO systems

I the transfer function of a MIMO system is a matrix of SISO

transfer functions.

I the system poles are defined as the union of the poles of each of

the SISO transfer functions.

I for state-space realization of the system, the poles are the

eigenvalues of the state matrix.

I the zoers of a MIMO system are the values of s such that the

transfer function matrix has less than full rank:

rank[G(s)] < min{ny, nu}

I for some system the output is zero for some nonzero input:

y(s) = 0 = G(s)u(s).
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Poles and Zeros
MIMO systems

I then for the special case of square transfer functions, the zeros are

the values of s such that

det [G(s)] = 0

The Laplace transform of the state model is

sx(s) = Ax(s) +Bu(s)

y(s) = 0 = Cx(s) +Du(s)

Rewriting[
sI −A −B

C D

][
x(s)

u(s)

]
=

[
0

0

]
⇒ det

[
sI −A −B

C D

]
= 0
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Poles and Zeros
Example

[
ẋ1(t)

ẋ2(t)

]
=

[
−1 2

0 −3

] [
x1(t)

x2(t)

]
+

[
1 0

0 4

] [
u1(t)

u2(t)

]
[
y1(t)

y2(t)

]
=

[
1 1

1 −1

] [
x1(t)

x2(t)

]
+

[
−1 0

0 −1

] [
u1(t)

u2(t)

]
,

the transfer function is

G(s) =


−s

s+ 1

4

s+ 1

1

s+ 1

−s2 − 8s+ 1

(s+ 1)(s+ 3)


The poles are the solution of

det(sI −A) = det

[
s+ 1 −2
0 s+ 3

]
= (s+ 1)(s+ 3) = 0,

p1 = −1 and p2 = −3.
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Poles and Zeros
Example

The zeros are the solution of

det


−s

s+ 1

4

s+ 1

1

s+ 1

−s2 − 8s+ 1

(s+ 1)(s+ 3)

 =
s2 + 7s− 12

(s+ 1)(s+ 3)
= 0,

which are z1 = −8.42 and z2 = 1.42. The better method that can be avoided the

poles-zeros cancellation is

det


s+ 1 −2 −1 0

0 s+ 3 0 −4
1 1 −1 0

1 −1 0 −1

 = s2 + 7s− 12 = 0.

Matlab code:

sys = ss(A,B,C,D);

tzero(sys)
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Stability

Definition (BIBO Stability)

A system is bounded input/bounded output-stable if for every bounded

input,

|ui(t)| < M1 for all t and all i,

the output is bounded:

|yj(t)| < M2 for all t and all j,

provided that the initial conditions are zero.

Definition (stability)

A causal, linear, time-invariant system is stable if and only if all of its

poles have negative real parts.
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Internal Stability
a motivated example

Consider a system

r(t) u(t) s

s− 1

2

s

y(t)

v(t)m(t)

−

v(t) is the measurement error. The transfer function Tyr(s) is

y(s)

u(s)
=

s
(s−1)

1 + 2
s

s
s−1

=
s

s+ 1

The transfer function Tvu(s) is

u(s)

v(s)
=

−2
s

1 + 2
s

s
s−1

=
−s(s− 1)

s(s+ 1)

which is stable. Actually, the control input of this system is unbounded if the measurement

error contains a constant bias.
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Internal Stability

I A linear feedback system is internally stable if all internal signals

and all possible outputs remain bounded given that all possible

inputs are bounded.

I Internal stability is evaluated by considering all of the possible

transfer functions associated with the feedback system.

u1(t) e1(t)
G(s)

K(s)

y1(t)

u2(t)e2(t)y2(t)

−

The inputs u1(t) and u2(t) are applied to four possible outputs y1(t),

y2(t), e1(t), and e2(t).
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Internal Stability

The eight possible transfer functions are[
y1
y2

]
=

[
(I +GK)−1G −(I +GK)−1GK

(I +KG)−1KG (I +KG)−1K

] [
u1

u2

]

=

[
Gy1u1 Gy1u2

Gy2u1 Gy2u2

] [
u1

u2

]
;

[
e1
e2

]
=

[
(I +KG)−1 −(I +KG)−1K

(I +KG)−1G (I +GK)−1

] [
u1

u2

]

=

[
Ge1u1 Ge1u2

Ge2u1 Ge2u2

] [
u1

u2

]
.

I the inputs can represent input disturbances, ooutput disturbances, reference inputs,

and measurement noise.

I the outputs represent the plant output, the controller output, the plant input, and the

controller input.
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Internal Stability

Definition (Internal Stability)

The feedback system consisting of the plant G(s) and the controller

K(s) is internally stable if each of the eight transfer functions are stable.

I Internal stability is a stronger condition than stability and will be

required when designing feedback systems.

I To check the internal stability, considering:[
e1
e2

]
=

[
u1
u2

]
+

[
−y2
y1

]
=

[
I 0

0 I

][
u1
u2

]
+

[
0 −I

I 0

][
y1
y2

]
[
y1
y2

]
=

[
0 I

−I 0

]([
e1
e2

]
−

[
I 0

0 I

][
u1
u2

])
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Internal Stability

The transfer functions from u to y are then related to the transfer

functions from u to e:[
Gy1u1 Gy1u2

Gy2u1 Gy2u2

]
=

[
0 I

−I 0

]([
Ge1u1 Ge1u2

Ge2u1 Ge2u2

]
−

[
I 0

0 I

])
.

Since all of the transformation matrices relating Geiuj to Gyiuj are

constants and therefore stable, the following result is obtained:

Internal Stability

The feedback system consisting of the plant G(s) and the controller

K(s) is internally stable if and only if each of the four transfer functions

Ge1u1 , Ge1u2 , Ge2u1 , and Ge2u2 are stable.
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Similarity Transformations

I The state equations of a system are not unique. There are infinite

number of state representations of a given physical system.

I Similarity transformation can be used to generate special state

models that have nice algebraic and numerical properties. The

poles and zeros of the system are invariant under the operation.

Consider a system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).

A new state vector can be defined:

x̃(t) = T−1x(t), and x(t) = T x̃(t)

where T is a constant, invertible transformation matrix.
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Similarity Transformations

I Since ẋ(t) = T ˙̃x(t),

T ˙̃x(t) = ATx̃(t) +Bu(t)

y(t) = CTx̃(t) +Du(t)

I Multiplying both sides by T−1 yields a state model in term of the

new state x̃(t):

˙̃x(t) = (T−1AT )x̃(t) + (T−1B)u(t)

y(t) = (CT )x̃(t) +Du(t).

I the new state model is generated by

A ⇒ T−1AT ; B ⇒ T−1B; C ⇒ CT ; D ⇒ D.
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Similarity Transformations
example

Given [
ẋ1(t)

ẋ2(t)

]
=

[
−3 1

1 −3

] [
x1(t)

x2(t)

]
+

[
2

0

]
u(t)

y(t) =
[
4 −2

] [x1(t)

x2(t)

]
+ 3u(t).

A new model has states that are the sum and difference of the original states:[
x̃1(t)

x̃2(t)

]
=

[
1 1

1 −1

] [
x1(t)

x2(t)

]
The transformation matrices are then

T−1 =

[
1 1

1 −1

]
; T =

[ 1
2

1
2

1
2
− 1

2

]
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Similarity Transformations
example

Performing the similarity transformation yields the new model:[
˙̃x1(t)
˙̃x2(t)

]
=

[
−2 0

0 −4

] [
x̃1(t)

x̃2(t)

]
+

[
2

2

]
u(t)

y(t) =
[
1 3

] [x̃1(t)

x̃2(t)

]
+ 3u(t).

I The new state model has no coupling between states.

I The state matrix is diagonal.

I The eigenvalues (poles) of the system are then simply the diagonal elements of the

state matrix.

Lecture 2 : Linear Systems Reviews J 26/72 I }



Controllability

Consider a system

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0.

Definition (Controllability)

The dynamical system described above or the pair (A,B) is said to be

controllable if, for any initial state x(0) = x0, t1 > 0 and final state

x1, there exists a (piecewise continuous) input u(·) such that the

solution of the system satisfies x(t1) = x1. Otherwise, the system or the

pair (A,B) is said to be uncontrollable.
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Controllability
Example of an uncontrollable system

Consider[
ẋ1(t)

ẋ2(t)

]
=

[
λ 0

0 λ

][
x1(t)

x2(t)

]
+

[
1

1

]
u(t), x0 =

[
0

0

]
, x(tf ) =

[
2

3

]

From the solution of the state equation

x1(t) = x2(t) =

∫ t

0
eλ(t−τ)u(τ)dτ

It is clear that there are no such input u(t) that will bring the system to

the final state x(tf ).
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Controllability

Theorem

The following are equivalent:

(i) (A,B) is controllable.

(ii) The matrix

Wc(t) :=

∫ t

0
eAτBB∗eA

∗τdτ

is positive definite for any t > 0.

(iii) The controllability matrix

C(A,B) =
[
B AB A2B · · · An−1B

]
has full-row rank.

(iv) The matrix [A− λI,B] has full-row rank for all λ in C.
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Controllability

Theorem

(v) Let λ and x be any eigenvalue and any corresponding left

eigenvector of A (i.e., x∗A = x∗λ); then x∗B ̸= 0.

(vi) The eigenvalues of A+BF can be freely assigned (with the

restriction that complex eigenvalues are in conjugate pairs) by a

suitable choice of F .

I Proof See page 65
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Stabilizability

Definition

An unforced dynamical system ẋ = Ax is said to be stable if all the

eigenvalues of A are in the open left half plane; that is , Reλ(A) < 0.

A matrix A with such a property is said to be stable or Hurwitz.

Definition

The dynamical system, or the pair (A,B), is said to be stabilizable if

there exists a state feedback u = Fx such that the system is stable (i.e.,

A+BF is stable).

It is more appropriate to call this stabilizability the state feedback

stabilizability to differentiate it from the output feedback stabilizability.
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Stabilizability

Theorem

The following are equivalent:

(i) (A,B) is stabilizable.

(ii) The matrix
[
A− λI B

]
has full row rank for all Reλ ≥ 0.

(iii) For all λ and x such that x∗A = x∗λ and Reλ ≥ 0, x∗B ̸= 0.

(iv) There exists a matrix F such that A+BF is Hurwitz.
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Observability

Consider a system

ẋ(t) = Ax(t) +Bu(t), x(t0) = 0

y(t) = Cx(t) +Du(t).

Definition

The dynamical system described above or by the pair (C,A) is said to

be observable if, for any t1 > 0, the initial state x(0) = x0 can be

determined from the time history of the input u(t) and the output y(t)

in the interval of
[
0, t1

]
. Otherwise, the system, or (C,A), is said to be

unobservable.
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Observability

Theorem

The following are equivalent:

(i) (C,A) is observable.

(ii) The matrix

Wo(t) :=

∫ t

0
eA

∗τC∗CeAτdτ

is positive definite for any t > 0.

(iii) The observability matrix

O =
[
C∗ (CA)∗ (CA2)∗ · · · (CAn−1)∗

]∗
has full column rank.
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Observability

Theorem

(iv) The matrix

[
A− λI

C

]
has full column rank for all λ in C.

(v) Let λ and y be any eigenvalue and any corresponding right

eigenvector of A, i.e., Ay = λy, then Cy ̸= 0.

(vi) The eigenvalues of A+ LC can be freely assigned by a suitable

choice of L.

(vii) (A∗, C∗) is controllable.

I Proof See page 71
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Detectability

Definition

The system, or the pair (C,A), is detectable if A+ LC is stable for

some L.

Theorem

The following are equivalent:

(i) (C,A) is detectable.

(ii) The matrix

[
A− λI

C

]
has full column rank for all Reλ ≥ 0.

(iii) For all λ and x such that Ax = λx and Reλ ≥ 0, Cx ̸= 0.

(iv) There exists a matrix L such that A+ LC is Hurwitz.

(v) (A∗, C∗) is stabilizable.
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Controllability and Observability
Matlab Code

Cc = ctrb(A,B); % Compute the controllability matrix

Oc = obsv(A,C); % Compute the observability matrix

Wc = gram(SYS,’c’); % Controllability gramian

Wc = gram(SYS,’o’); % Observability gramian
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Controllability and Observability Example

We are given the system described by the following state model:[
ẋ1(t)

ẋ2(t)

]
=

[
−1 2

0 −3

] [
x1(t)

x2(t)

]
+

[
1 0

0 4

] [
u1(t)

u2(t)

]
[
y1(t)

y2(t)

]
=

[
1 1

1 −1

] [
x1(t)

x2(t)

]
.

The controllability test matrix is

C =

[
1 0 −1 8

0 4 0 −12

]
,

which has full rank (a rank of 2). The system is therefore controllable. The observability test

matrix is

O =


1 1

1 −1
−1 −1
−1 5

 ,

which has full rank (a rank of 2). The system is observable.
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State Feedback

Consider a system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

I A simple controller is u(t) = −Kx(t), where K is a vector of state

feedback gains.

I The closed-loop state equation is

ẋ(t) = (A−BK)x(t)

I Closed-loop poles placement is one method to satisfy the

requirement.

det(sI −A+BK) = (s− p1)(s− p2) · · · (s− pnx)
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State Feedback
Example

An ac motor is described by the state equation

ẋ(t) =

[
0 1

0 −1

]
x(t) +

[
0

1

]
u(t),

where the two states are motor shaft angle and angle rate, and the control input is the

applied voltage. We want to have closed-loop poles at p1,2 = −2± 2j.

det [sI −A+BK)] = (s+ 2− 2j)(s+ 2 + 2j) = s2 + 4s+ 8

det

[
s −1
k1 s+ 1 + k2

]
= s2 + (1 + k2)s+ k1

Then k1 = 8 and k2 = 3, the control input is

u(t) = −
[
8 3

]
x(t).

This can be done using a Matlab command K = -place(A,B,[-2+2j,-2-2j]).
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State Feedback
Example
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Angle
Angle rate

State feedback control of an ac motor. This method is useful only the

case that all states can be measured.
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Observers and Observer-Based Controllers

Consider a system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t).

Theorem

An observer exists iff (C,A) is detectable. Further, if (C,A) is

detectable, then a full-order Luenberger observer is give by

q̇ = Aq +Bu+ L(Cq +Du− y)

x̂ = q,

where L is any matrix such that A+ LC is stable.
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Observers and Observer-Based Controllers

I If (A,B) is controllable and state x is available for feedback, then

there is a state feedback u = Fx such that the closed-loop poles of

the system can be arbitrarily assigned.

I Similarly, if (C,A) is observable, then the system observe poles can

be arbitrarily placed so that the state estimator x̂ can be made to

approach x arbitrarily fast.

I If the system states are not available for feedback so that the

estimated state has to be used. Hence, the controller has the

following dynamics:

˙̂x = (A+ LC)x̂+Bu+ LDu− Ly

u = Fx̂.
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Observers and Observer-Based Controllers

I Then the total system state equations are give by[
ẋ
˙̂x

]
=

[
A BF

−LC A+BF + LC

][
x

x̂

]
.

I Let e := x− x̂ then the system equation becomes[
ė
˙̂x

]
=

[
A+ LC 0

−LC A+BF

][
e

x̂

]
I The closed-loop poles consist of two parts: the poles resulting from

state feedback λi(A+BF ) and the poles resulting from the state

estimation λj(A+ LC).
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Observers and Observer-Based Controllers

I If (A,B) is controllable and (C,A) is observable, then there exist

F and L such that the eigenvalues of A+BF and A+ LC can be

arbitrarily assigned.

I The controller given above is called an observer-based controller

and is denoted as

u = K(s)y

and

K(s) =

[
A+BF + LC + LDF −L

F 0

]
.
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Observers and Observer-Based Controllers

I In general, if a system is stabilizable through feeding back the

output y, then it is said to be output feedback stabilizable.

I It is clear that a system is output feedback stabilizable if and only if

(A,B) is stabilizable and (C,A) is detectable.
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Observers and Observer-Based Controllers

u
B

ẋ ∫ x
C y

A

x0

L

C

ŷ

−

∫
A

F

x̂

x̂0

˙̂x
B

Assume D = 0.
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Observers and Observer-Based Controllers
Matlab Example

I Let A =

[
1 2

1 0

]
, B =

[
1

0

]
, and C =

[
1 0

]
. We shall design a state feedback

u = Fx such that the closed-loop poles are at {−2,−3}. This can be done by

choosing F =
[
−6 −8

]
using

F = -place(A,B,[-2,-3]).

I If the states are not available for feedback and we want to construct an observer so

that the observer poles are at {−10,−10}. The L =

[
−21
−51

]
can be obtained by using

L = -acker(A’,C’,[-10,-10])’

and the observer-based controller is given by

AK = A+BF + LC + LDF, BK = −L, CK = F, DK = 0

and

K(s) =
−534(s+ 0.6966)

(s+ 34.6564)(s− 8.6564)
.
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Operations on Systems

u
G

y

(a) single block

u

G1
y1

y

G2
y2

(b) parallel

u G1
z G2

y

(c) cascade

u z G1
y

−

(d) negative feedback
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Operations on Systems

Consider the two LTI systems

G1 =

[
A1 B1

C1 D1

]
, G2 =

[
A2 B2

C2 D2

]
.

In parallel case: u = u1 = u2 and y = y1 + y2 we then have[
ẋ1
ẋ2

]
=

[
A1 0
0 A2

] [
x1
x2

]
+

[
B1

B2

]
u,

y =
[
C1 C2

] [x1
x2

]
+ (D1 +D2)u

G1 +G2 =

 A1 0 B1

0 A2 B2

C1 C2 D1 +D2
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Block Diagrams
Interconnections

In cascade case: u = u1, y = y2, and z = y1 = u2 we have[
ẋ1

ẋ2

]
=

[
A1 0

B2C1 A2

][
x1

x2

]
+

[
B1

B2D1

]
u

y =
[
D2C1 C2

] [x1
x2

]
+D2D1u

G1G2 =


A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D2
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Block Diagrams
Interconnections

In negative feedback case: u1 = z = u− y1, y = y1 we have

ẋ1 = (A1 −B1(I +D1)
−1C1)x1 +B1(I − (I +D)−1D1)u

y = (I +D1)
−1C1x1 + (I +D1)

−1D1u

G =

[
(A1 −B1(I +D1)

−1C1 B1(I − (I +D)−1D1

(I +D1)
−1C1 (I +D1)

−1D1

]

Sometimes feedback interconnections are ill-posed. In this example, this

would happen if the matrix I +D1 was singular.
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Block Diagrams
System Interconnections with MATLAB

Cascade: To create a system sys from the cascade connection of the

system sys1 whose output is connected to the input of sys2, we use a

command

sys = series(sys1,sys2) or sys = sys2*sys1

Parallel: To create a system sys from the parallel connection of the

systems sys1 and sys2, we use a command

sys = parallel(sys1,sys2) or sys = sys1 + sys2
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Block Diagrams
System Interconnections with MATLAB

Feedback: The command

sys = feedback(sys1,sys2)

creates a system sys from the negative feedback interconnection of the

system sys1 in the forward loop, with the system sys2 in the backward

loop.

A positive feedback interconnection can be obtained using

sys = feedback(sys1, sys2, 1)
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State-Space Realizations of Transfer Matrices

Assume that G(s) is a real rational transfer matrix that is proper. Then

we call a state-space model (A,B,C,D) such that

G(s) =

[
A B

C D

]

a realization of G(s).

Definition

A state-space realization (A,B,C,D) of G(s) is said to be a minimal

realization of G(s) if A has the smallest possible dimension.

Definition

A state-space realization (A,B,C,D) of G(s) is minimal if and only if

(A,B) is controllable and (C,A) is observable.
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State-Space Realizations of Transfer Matrices
Controllable canonical form

Consider a SISO system

G(s) =
β1s

n−1 + β2s
n−2 + · · ·+ βn−1s+ βn

sn + a1sn−1 + · · ·+ an−1s+ an

Rewritten as

G(s) =
b(s)

a(s)
and y(s) = b(s)

1

a(s)
u(s) = b(s)v(s)

u(s) = (sn + a1s
n−1 + · · ·+ an−1s+ an)v(s)

y(s) = (β1s
n−1 + β2s

n−2 + · · ·+ βn−1s+ βn)v(s)

and

x1 = v(n−1)(t), x2 = v(n−2)(t), . . . , xn−1 = v̇(t), xn = v(t)

y(t) = β1x1(t) + β2x2(t) + . . .+ βn−1xn−1(t) + βnxn
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State-Space Realizations of Transfer Matrices
Controllable canonical form

Then a controllable canonical form or controller canonical form of the

system is

Ac =



−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, Bc =



1

0

0
...

0


Cc =

[
β1 β2 · · · βn−1 βn

]
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State-Space Realizations of Transfer Matrices
Controllable canonical form example

A system G(s) =
3s2 + 6s+ 5

s3 + 2s2 + 3s+ 8
, u(s) = (s3 + 2s2 + 3s)v(s), and

y(s) = (3s2 + 6s+ 5)v(s). Then x3 = v(t), x2 = v̇(t) x1 = v(t) and

ẋ(t) =

−2 −3 −8
1 0 0

0 1 0

x(t) +

10
0

u(t)

y(t) =
[
3 6 5

]
x(t)

with a block diagram.

u(t)
...
v (t) 1

s

v̈(t) 1

s

v̇(t) 1

s

v(t)
5

y(t)

−2

−3

−8

3

6
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State-Space Realizations of Transfer Matrices
Observable canonical form

Consider a SISO system

G(s) =
β1s

n−1 + β2s
n−2 + · · ·+ βn−1s+ βn

sn + a1sn−1 + · · ·+ an−1s+ an

Rewritten as

(sn + a1s
n−1 + · · ·+ an−1s+ an)y(s) =

(β1s
n−1 + β2s

n−2 + · · ·+ βn−1s+ βn)u(s)

s [s [· · · [sy(s) + (a1y(s)− β1u(s))] + (a2y(s)− β2u(s))]

+ · · ·+ (an−1y(s)− βn−1u(s)] + (any(s)− βnu(s)) = 0

Let y(t) = x1(t) then ẋn(t) = −any(t) + βnu(t) = −anx1(t) + βnu(t),

ẋn−1(t) = xn(t)−(an−1y(t)+βn−1u(t)) = xn(t)−an−1x1(t)+βn−1u(t)

and so all.

Lecture 2 : Linear Systems Reviews J 59/72 I }



State-Space Realizations of Transfer Matrices
Observable canonical form

Then an observable canonical form or observer canonical form of the

system is

Ao =



−a1 1 0 · · · 0

−a2 0 1 · · · 0
...

...
...

. . .
...

−an−1 0 0 · · · 1

−an 0 0 · · · 0


, B =



β1

β2
...

βn−1

βn


C =

[
1 0 0 · · · 0

]
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State-Space Realizations of Transfer Matrices
Observable canonical form example

A system G(s) =
3s2 + 6s+ 5

s3 + 2s2 + 3s+ 8
, we have x1(t) = y(t) and

s [s [sy(s) + (2y(s)− 3u(s))] + (3y(s)− 6u(s))] + (8y(s)− 5u(s)) = 0. Then

ẋ3(t) = −8x1(t) + 5u(t), ẋ2(t) = x3(t)− 3x1(t) + 6u(t), ẋ1(t) = x2 − 2x1(t) + 3u(t) and

ẋ(t) =

−2 1 0

−3 0 1

−8 0 0

x(t) +

36
5

u(t)

y(t) =
[
1 0 0

]
x(t)

with a block diagram

5

−8

1

s

1

s

6

−3

1

s

3

−2

x1(t) = y(t)ẋ3 x3 ẋ2 x2 ẋ1

u(t)
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State-Space Realizations of Transfer Matrices
Matlab example

A system G(s) =
3s2 + 6s+ 5

s3 + 2s2 + 3s+ 8

Matlab Code

num = [3 6 5]; den = [1 2 3 8];

% controllable canonical form

[Ac,Bc,Cc,Dc] = tf2ss(num,den);

% observable canonical form

Ab = Ac’; Bb = Cc’; Cb = Bc’; Db = Dc;
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Solutions of State Equations

I Consider a SISO

ẋ(t) = ax(t) + bu(t), x(0) = x0

I The solution to the problem

d

dt

(
eata

)
= e−at (ẋ(t)− ax(t)) = e−atbu

Integration from 0 to t and multiplication by eat yields

x(t) = eatx0 +

∫ t

0
ea(t−τ)bu(τ)dτ

I MIMO version

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ

I Note that d
dt
(eAt) = AeAt. Back
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Controllability
Proof

I (ii) ↔ (i) Suppose Wc(t1) > 0 for some t1 > 0, and let the input be defined as

u(τ) = −B∗eA
∗(t1−τ)W−1

c (t1)(e
At1x0 − x1).

It is easy to verify that x(t1) = x1 as follow:

x(t1) = eAt1x0 −Wc(t1)W
−1
c (t1)(e

At1x0 − x1)

Therefore, the system (A,B) is controllable if the Wc(t) is invertible. Thus it has full

rank and positive definite for any t > 0.

To show that the controllability of (A,B) implies that Wc(t) > 0 for any t > 0,

assume that (A,B) is controllable but Wc(t) is singular for some t1 > 0.

I Since eAtBB∗eA
∗t ≥ 0 for all t, there exists a real vector 0 ̸= v ∈ Rn such that

v∗eAtB = 0, t ∈ [0, t1].

I Back

Lecture 2 : Linear Systems Reviews J 65/72 I }



Controllability
Proof

I Let x(t1) = x1 = 0, and then from the solution of the system, we have

0 = eAt1x0 +

∫ t1

0
eA(t1−τ)Bu(τ)dτ.

Pre-multiply the above equation by v∗ to get

0 = v∗eAt1x0.

If we chose the initial state x0 = e−At1v, then v = 0, and this is contradiction. Hence,
Wc(t) cannot be singular for any t > 0.

I (ii)↔ (iii) First assume that Wc(t) > 0 for all t > 0 but the controllability matrix
C(A,B) does not have full row rank. Then there exists a v ∈ Rn such that

v∗AiB = 0, i = 0, 1, . . . , n− 1

Hence v∗eAtB = 0 for all t or, equivalently, v∗Wc(t) = 0 for all t; this is a
contradiction, and hence, the controllability matrix C(A,B) must be full row rank.

I Back
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Controllability
Proof

I Conversely, assume suppose C(A,B) has full row rank but Wc(t1) is singular for some
t1. Then there exists a vector v ̸= 0 ∈ Rn such that v∗eAtB = 0 for all t ∈

[
0, t1

]
.

Therefore, set t = 0, and we have

v∗B = 0

I Next, evaluate the i-th derivative of v∗eAtB = 0 at t = 0 to get

v∗AiB = 0, i > 0.

Hence, we have

v∗
[
B AB A2B · · · An−1B

]
= 0

or, in other words, the controllability matrix C does not have full row rank. This is
again a contradiction.

I Back
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Controllability
Proof

I (iii)→ (iv): Suppose, on the contrary, that the matrix[
A− λI B

]
does not have full row rank for some λ ∈ C.

I Then there exists a vector x ∈ Cn such that

x∗
[
A− λI B

]
= 0

i.e., x∗A = λx∗ and x∗B = 0. However, this will result in

x∗
[
B AB · · · An−1B

]
=

[
x∗B λx∗B · · · λn−1x∗B

]
= 0

i.e., the controllability matrix C(A,B) does not have full row rank, and this is a

contradiction.

I (iv)→ (v) This is obvious from the proof of (iii)→ (iv).

I Back
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Controllability
Proof

I (v)→ (iii) Assume that (v) holds but rank C(A,B) = k < n. By using a

transformation T such that

TAT−1 =

[
Āc Ā12

0 Āc̄

]
, TB =

[
B̄c

0

]

with Āc̄ ∈ R(n−k)×(n−k). Let λ1 and xc̄ be any eigenvalue and any corresponding left

eigenvector of Āc̄, i.e., x∗
c̄ Āc̄ = λ1x∗

c̄ . Then x∗(TB) = 0 and

x =
[
0 xc̄

]∗
is an eigenvector of TAT−1 corresponding to the eigenvalue λ1, which implies that

(TAT−1, TB) is not controllable. This is a contradiction since similarity

transformation does not change controllability.

I Back
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Controllability
Proof

I (vi)→ (i) This follows the same arguments as in the proof of (v)→ (iii) assume that

(vi) holds but (A,B) is uncontrollable. Then, there is a decomposition so that some

subsystems are not affected by the control, but this contradicts the condition (vi).

I (i)→ (vi) We can construct a matrix F so that the eigenvalues of A+BF are in the

desired locations.

I Back
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Observability
Proof

Proof. First, we show the equivalence between condition (i) and (iii). Once this is done, the

rest will follow by the duality or condition (vii).

I (i)← (iii) Note that given the input u(t) and the initial condition x0, the output in

the time interval [0, t1] is given by

y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t).

Since y(t) and u(t) are known, assuming u(t) = 0,∀t. Hence,

y(t) = CeAtx0, t ∈ [0, t1]. From this equation, we have


y(0)

ẏ(0)
...

y(n−1)(0)

 =



C

CA

CA2

...

CAn−1

x0

The observability matrix O has full column rank, there is a unique solution x0.

I Back
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Observability
Proof

I (i)→ (iii) Assume that (C,A) is observable but that the observability matrix does not

have full column rank, i.e., there is a vector x0 such that Ox0 = 0 or equivalently

CAix0 = 0,∀i ≥ 0 by the Cayley-Hamilton Theorem. Now suppose the initial state

x(0) = x0, then y(t) = CeAtx0 = 0. This implies that the system is not observable

since x0 cannot be determined from y(t) = 0.

I Back
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