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Descriptions of Linear Dynamical Systems

Let a finite dimensional linear time invariant (FDLTI) dynamical system
be described as follow:

where
» u(t) € R™ is called the system state
» x(to) is called the initial condition of the system
> y(t) € RP is the system output

» The A, B,C, and D are appropriately dimensioned real constant

matrices
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Descriptions of Linear Dynamical Systems

» A dynamical system with single-input (m = 1) and single-output
(p=1) is called a SISO (single-input and single-output) system;
» otherwise it is called a MIMO (multiple-input and multiple-output)

system.

» The corresponding transfer matrix from u to y is defined as

where U(s) and Y (s) are the Laplace transforms of u(t) and y(t)
with zero initial condition (z(0) = 0).

» We have G(s) = G(sI — A)"'B + D.
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Descriptions of Linear Dynamical Systems

The system can be written in a more compact matrix form:

;

to expedite calculations involving transfer matrices, we shall use the

A|B
C|D

MATLAB command:

A B
C D

X

following notation:

=C(sI-A)"'B+D

G = ss(A,B,C,D) % Construct state-space model
[A,B,C,D] = ssdata(G) % access to state-space data
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Descriptions of Linear Dynamical Systems

» Now given the initial condition z(ty) = 2 and the input u(t):

t
z(t) = A1) g +/ A7) Bu(r)dr
0

y(t) = Cx(t) + Du(t)
> If u(t) =0,Vt >0,
z(t) = A g(t))

» The matrix eA(=%) acts as a transformation from one state to
another, and thus eA(*=%1) = ®(¢,¢1) is usually called the state

transition matrix.

> see page 64.
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Descriptions of Linear Dynamical Systems

State-Transition matrix

» For LTI system, the state-transition matrix and the output are
At 1 o2, 1,33
(I)(t)ZE =I+At+§At +§At +
2 !
y(t) = CeMa(0) + / Ce**=7) Bu(r)dr + Du(t)
0
» For MIMO system, if the inputs are impulses then, the outputs are impulse response
9ij ():

9ij(t) = yi(t), where u(t) = {S(t) :;j , 2(0) =0

CeAtB+ D§(t) t>0

G(t) = : . : =
’ ' ’ 0 t<O0

gnyl(t) gnynu(t)

gui(t) - gin,(t) {
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Descriptions of Linear Dynamical Systems

Matlab Commands

G = ss(A,B,C,D) % create a constant system matrix
[y,x,t] = step(G(Yu,Iu)) 7% step response of input

% Iu to output Yu
[y,x,t] = initial(G,x_0) % initial response with

% initial conditions x_0

[y,x,t] = impulse(G(Yu,Iu)) % Impulse response of input
% Iu to output Yu
ly,x] = 1sim(G,U,T) % simulate time response of

% the system
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Descriptions of Linear Dynamical Systems

Example

Consider a system described by
T ) e R e e
] = B A ] o [563] - ]

where 1(t) is a unit step function. The state-transition matrix is

2!
2
0 14 (=3t)+ 307 4

B et ot _ o3t
- 0 673t

The impulse response is
(t) = 1 1]Jet et—e 31 0] [e? 4et
IO =11 —1|| o e 3t 0 4| |e7t 4det—8e 3t
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Descriptions of Linear Dynamical Systems

Example

The output (zero-state response) is g(t) * u(t)

yi(®)] [ e D) 4e=(t=7) 58(T) d
v2(t)] ~ Jy et 4e=(t=7) —ge=3(t=7)| |21(r)| VT

_ |: 8 —3et i|
= |8 —t 4 16 ,—3t
3 —3e "+ Fe

5
8
4
6
— —~ 3
Na Na
>4 s 2
2 1
0 0
0 1 2 3 4 5 0 1 2 3 4 5
Time (sec) Time (sec)
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Transfer function

» Taking the Laplace transform of the state and output equations
and assuming that all initial conditions are zero yields

Ax(s) + Bu(s)
Cz(s) + Du(s)

%
8
—
»
~—
|

<

—~
Va)

~—
|

> We have
y(s) = [C(sI — A)™'B + D] u(s) = G(s)u(s)
» Taking inverse Laplace transform
y(t) =L {C(sI — A)'B+ D} xu(t)
> Since
et =L {(sI = A7} = g(t) = LTHG(s)}
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Transfer function
Example

Given the system described by the state model,
) e g e et
] e el

the transfer function matrix is

SO I | e

1 4
s+l s+1
1 —4(s—1)

s+1 (s+1)(s+3)

Then

- GO S R |

4e~t — 8e~3t
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Poles and Zeros
SISO systems

> the transfer function of a SISO system is a ratio of polynomials in
s-domain, where all initial conditions are zero:

Cadj(s] — A)B + D det(sI — A)
det(sI — A)

G(s)=C(sI— A 'B+D=

> the roots of the numerator num(s) = 0 are called the system zeros.
Or the value of z; such that

G(Zl) =0

> the roots of the denominator den(s) = 0 are called the system
poles. Or the value of p; such that

|G(pi)| = oo
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Poles and Zeros

MIMO systems

> the transfer function of a MIMO system is a matrix of SISO
transfer functions.

> the system poles are defined as the union of the poles of each of
the SISO transfer functions.

» for state-space realization of the system, the poles are the
eigenvalues of the state matrix.

> the zoers of a MIMO system are the values of s such that the
transfer function matrix has less than full rank:

rank[G(s)] < min{n,,n,}
» for some system the output is zero for some nonzero input:

y(s) = 0= G(s)u(s).
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Poles and Zeros
MIMO systems

» then for the special case of square transfer functions, the zeros are
the values of s such that

det [G(s)] =0

The Laplace transform of the state model is

Rewriting

sI—A —-B
C D

8] _ [g] L det
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Poles and Zeros
Example

ol =[o 51
(1)
(1)

o e

el tlo A 6]
J« [ 2 00)
4
s+1
—s2 —8s+1

The poles are the solution of

s+ 1

det(sI — A) = det { 0

-2
s+ 3

(s+1)(s+3)

]=@+U@+$=&

p1 =—1 and p> = 3.
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Poles and Zeros

Example

The zeros are the solution of

-5 4
s+1 s+1 247512
det ) — sS4 Ts—12 =0,
1 —5° —8s+1 (s+1)(s+3)
s+1 (s+1)(s+3)
which are z; = —8.42 and z9 = 1.42. The better method that can be avoided the

poles-zeros cancellation is

s+1 -2 -1 0

0 s+3 0 —4 o
det 1 1 _1 0 =s“4+7s—12=0.

1 —1 0 —1

Matlab code:

sys = ss(A,B,C,D);
tzero(sys)
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Stability

Definition (BIBO Stability)

A system is bounded input/bounded output-stable if for every bounded

input,

|ui(t)| < My for all t and all ¢,
the output is bounded:

ly;(t)| < Ms for all ¢ and all 7,

provided that the initial conditions are zero.

Definition (stability)

A causal, linear, time-invariant system is stable if and only if all of its
poles have negative real parts.
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Internal Stability

a motivated example

Consider a system

r(t) o~ ul) s )

5 —

Lot
2 m(t) v(t)
Ls | e

v(t) is the measurement error. The transfer function Ty, (s) is

ye) _ G _ s
= —— =
u(s) 1+225  s+1
The transfer function Ty (s) is
u(s) _72 _ —s(s—1)
v(s)_l—i-%sil_ s(s+1)

which is stable. Actually, the control input of this system is unbounded if the measurement
error contains a constant bias.

Lecture i Systems Reviews <18/72 »



Internal Stability

> A linear feedback system is internally stable if all internal signals

and all possible outputs remain bounded given that all possible
inputs are bounded.

> Internal stability is evaluated by considering all of the possible
transfer functions associated with the feedback system.

u(t) e1(t)

G(s) ()

ya(t) ea(t) X _ua(t)

The inputs w1 (t) and uy(t) are applied to four possible outputs v (t),
ya(t), e1(t), and ex(t).
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Internal Stability

The eight possible transfer functions are

- [earie, oresne )

_ |Gyiwm Gyluz] [Ul} .
- K
[Gyour  Gyauz] [u2

)= [ e ][]

_ -Gelul Gelu21| |:u1i|
_Gezul G62u2 u2 ’

» the inputs can represent input disturbances, ooutput disturbances, reference inputs,
and measurement noise.

» the outputs represent the plant output, the controller output, the plant input, and the
controller input.
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Internal Stability

Definition (Internal Stability)

The feedback system consisting of the plant G(s) and the controller
K (s) is internally stable if each of the eight transfer functions are stable.

> Internal stability is a stronger condition than stability and will be
required when designing feedback systems.

> To check the internal stability, considering:

Sl | R
SRSEIGRTIE)
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Internal Stability

The transfer functions from u to y are then related to the transfer

(e L)

Since all of the transformation matrices relating Gy, to Gy,q; are
constants and therefore stable, the following result is obtained:

functions from u to e:

Gyl u1l Gyluz
Gy2u1 GyQ’uz

Gelul Geluz
G62u1 G62U2

Internal Stability

The feedback system consisting of the plant G(s) and the controller
K(s) is internally stable if and only if each of the four transfer functions
Geiuyr Geyugr Geguyr and Geyy, are stable.
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Similarity Transformations

» The state equations of a system are not unique. There are infinite
number of state representations of a given physical system.

» Similarity transformation can be used to generate special state
models that have nice algebraic and numerical properties. The
poles and zeros of the system are invariant under the operation.

Consider a system

A new state vector can be defined:
() =T z(t), and z(t) = TE(t)

where T is a constant, invertible transformation matrix.
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Similarity Transformations

» Since @(t) = TZ(t),

<

~—~
o~

N~—
I
Q

T#(t) + Dult

~—

» Multiplying both sides by 7! yields a state model in term of the
new state Z(t):

i(t) = (TYAT)E(t) + (T~ B)u(t)
y(t) = (CT)i(t) + Du(t).

> the new state model is generated by

A= T AT, B=T7'B; C=CT; D= D. J
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Similarity Transformations
example

Given

A s e R

vty =[4 -2 [i;gﬂ + 3u(t).

A new model has states that are the sum and difference of the original states:

ot R e ]

The transformation matrices are then

bk
—
Il
Loume—
[ —
I =
—
—
!
Il
Lom—
[SIEENIE
| N|=
(NI
|
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Similarity Transformations

example

Performing the similarity transformation yields the new model:

B[ ] E] e e
vy =1 3 [20)] + uto.

» The new state model has no coupling between states.
P> The state matrix is diagonal.

> The eigenvalues (poles) of the system are then simply the diagonal elements of the
state matrix.
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Controllability

Consider a system

#(t) = Az(t) + Bu(t), z(tog) = xo.

Definition (Controllability)
The dynamical system described above or the pair (A, B) is said to be
controllable if, for any initial state (0) = 29, t; > 0 and final state
x1, there exists a (piecewise continuous) input u(-) such that the
solution of the system satisfies x(t1) = 1. Otherwise, the system or the

pair (A, B) is said to be uncontrollable.
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Controllability

Example of an uncontrollable system

Consider
t1(t A0 t 1 0 2
n St B o T N A T
xg(t) 0 A $2(t) 1 0 3

From the solution of the state equation

1(8) = 2a(t) = /O M=)y (F)dr

It is clear that there are no such input wu(t) that will bring the system to
the final state x(ty).
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Controllability

The following are equivalent:

(i) (A, B) is controllable.
(ii) The matrix

t
We(t) == / eATBB* e Tdr
0

is positive definite for any t > 0.
(7i1) The controllability matrix

C(A,B)z[B AB A%?B ... A"*IB]
has full-row rank.

(iv) The matrix [A — A\, B] has full-row rank for all A in C.

v
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Controllability

(v) Let X\ and = be any eigenvalue and any corresponding left
eigenvector of A (i.e., ¥ A = x*)); then *B # 0.

(vi) The eigenvalues of A+ BF can be freely assigned (with the
restriction that complex eigenvalues are in conjugate pairs) by a

suitable choice of F.

> See page 65
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Stabilizability

Definition
An unforced dynamical system & = Ax is said to be stable if all the

eigenvalues of A are in the open left half plane; that is , Re A\(4) < 0.
A matrix A with such a property is said to be stable or Hurwitz.

Definition

The dynamical system, or the pair (A, B), is said to be stabilizable if
there exists a state feedback u = F'z such that the system is stable (i.e.,
A+ BF is stable).

It is more appropriate to call this stabilizability the state feedback
stabilizability to differentiate it from the output feedback stabilizability.
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Stabilizability

The following are equivalent:

(1) (A, B) is stabilizable.

(1) The matrix [A — A B] has full row rank for all Re A > 0.

(7i1) For all X\ and x such that x*A = xz*X and Re X > 0, 2*B # 0.
)

(iv) There exists a matrix I’ such that A+ BF' is Hurwitz.
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Observability

Consider a system

The dynamical system described above or by the pair (C, A) is said to

be observable if, for any t; > 0, the initial state x(0) = xo can be
determined from the time history of the input u(¢) and the output y(¢)
in the interval of [O,tl]. Otherwise, the system, or (C, A), is said to be
unobservable.

v
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Observability

The following are equivalent:

(1) (C,A) is observable.
(i1) The matrix

t
Wo(t) :=/ eA'TC*Celdr
0

is positive definite for any t > 0.
(i17) The observability matrix

O=|[C* (CA* (CA%)* - (CA YT

has full column rank.
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Observability

A— )
(iv) The matrix [ o ] has full column rank for all X in C.

(v) Let X\ and y be any eigenvalue and any corresponding right
eigenvector of A, i.e., Ay = Ay, then Cy # 0.

(vi) The eigenvalues of A+ LC' can be freely assigned by a suitable
choice of L.

(vii) (A*,C*) is controllable.

> See page 71

Lecture 2 : Linear Systems Reviews <435/72 »



Detectability

The system, or the pair (C, A), is detectable if A+ LC is stable for
some L.

The following are equivalent:

(1) (C,A) is detectable.

A— I
(i1) The matrix [ c ] has full column rank for all Re A > 0.

(7i1) For all X and x such that Az = Az and Re A > 0, Cz # 0.
(iv) There exists a matrix L such that A+ LC' is Hurwitz.
(v) (A*,C*) is stabilizable.
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Controllability and Observability
Matlab Code

Cc = ctrb(A,B); % Compute the controllability matrix
Oc = obsv(A,C); % Compute the observability matrix
Wc = gram(SYS,’c’); % Controllability gramian

We = gram(SYS,’0’); % Observability gramian
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Controllability and Observability Example

We are given the system described by the following state model:
] et e e
e A e v

The controllability test matrix is

1 0 -1 8
C_[o 4 0 —12]’

which has full rank (a rank of 2). The system is therefore controllable. The observability test
matrix is

1 1
1 -1
-1 -1\’
-1 5

O =

which has full rank (a rank of 2). The system is observable.
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State Feedback

Consider a system

#(t) = Az(t) + Bu(t), y(t) = Cz(t) + Du(t)

» A simple controller is u(t) = —Kx(t), where K is a vector of state
feedback gains.

» The closed-loop state equation is
#(t) = (A — BK)x(t)

» Closed-loop poles placement is one method to satisfy the
requirement.

det(sI — A+ BK) = (s —p1)(s —p2) - (s — pn,)
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State Feedback

Example

An ac motor is described by the state equation

o(t) = [g _11} 2(t) + m u(t),

where the two states are motor shaft angle and angle rate, and the control input is the
applied voltage. We want to have closed-loop poles at p1,2 = —2 £ 2j.

det[sI— A+ BK)]|=(s+2—-2j)(s+2+2j) =s>+4s+8

s -1

det |:k1 s+ 14 ko

] =% + (1 + ka)s + k1
Then k1 = 8 and kg = 3, the control input is

u(t)=—[8 3]a().

This can be done using a Matlab command K = -place(A,B, [-2+2j,-2-2j]).
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State Feedback

Example

1 —— Angle 1
—— Angle rate

0.5F

Amplitude

15 i i
0 0.5 1 15 2 25 3

Time (sec)

State feedback control of an ac motor. This method is useful only the
case that all states can be measured.

<«41/12»
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Observers and Observer-Based Controllers

Consider a system

x(t) = Az(t) + Bu(t), y(t) = Cxz(t) + Du(t).

Theorem
An observer exists iff (C, A) is detectable. Further, if (C,A) is
detectable, then a full-order Luenberger observer is give by

G=Aq+ Bu+ L(Cq+ Du —y)

T =q,

where L is any matrix such that A+ LC is stable.
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Observers and Observer-Based Controllers

» If (A, B) is controllable and state z is available for feedback, then
there is a state feedback u = F'z such that the closed-loop poles of
the system can be arbitrarily assigned.

» Similarly, if (C, A) is observable, then the system observe poles can
be arbitrarily placed so that the state estimator £ can be made to
approach z arbitrarily fast.

> |If the system states are not available for feedback so that the
estimated state has to be used. Hence, the controller has the

following dynamics:
&= (A+ LO)i+ Bu+ LDu — Ly

u=Fz.
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Observers and Observer-Based Controllers

> Then the total system state equations are give by

- wirdl

> Let e := x — & then the system equation becomes

:

» The closed-loop poles consist of two parts: the poles resulting from
state feedback A;(A + BF’) and the poles resulting from the state
estimation \;(A + LC).

A BF
—LC A+ BF+LC

A+ LC 0
—LC A+ BF

e

X
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Observers and Observer-Based Controllers

» If (A, B) is controllable and (C, A) is observable, then there exist
F and L such that the eigenvalues of A+ BF and A+ LC can be
arbitrarily assigned.

» The controller given above is called an observer-based controller

and is denoted as
u=K(s)y

and

A+ BF +LC+LDF | —L
K(s) = F % 0
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Observers and Observer-Based Controllers

> In general, if a system is stabilizable through feeding back the
output ¥, then it is said to be output feedback stabilizable.

> |t is clear that a system is output feedback stabilizable if and only if
(A, B) is stabilizable and (C, A) is detectable.
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Observers and Observer-Based Controllers

;B ﬁfl c y
LG
LY
#o i
B ”fl c
A
F

Assume D = 0.
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Observers and Observer-Based Controllers

Matlab Example

1 2 1
> let A= 1 ,B = ol and C = [1 0]. We shall design a state feedback

0
u = Fz such that the closed-loop poles are at {—2, —3}. This can be done by

choosing F' = [—6 —8] using
F = -place(A,B,[-2,-3]).
> If the states are not available for feedback and we want to construct an observer so

—21
that the observer poles are at {—10, —10}. The L = 5 can be obtained by using

L = -acker(A’,C’,[-10,-10])’

and the observer-based controller is given by
Axk =A+ BF+LC+ LDF, Bgx=-L, Cgx=F, Dg=0

and

_ —534(s + 0.6966)
" (s +34.6564)(s — 8.6564)
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Operations on Systems

el Y1
u G Y u Y
G Y2
(a) single block (b) parallel
u len z Gy Y u T z len Y
(c) cascade (d) negative feedback
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Operations on Systems

Consider the two LTI systems

B Al Bl . A2 B2
a-late] el

In parallel case: v = u; = ug and y = y1 + y» we then have

=1 Al [

y=|[C1 () [2] + (D1 + D2)u

A 0 B
Gi+Ga=| 0 A Bs
C1 Oy | D1+ Dy
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Block Diagrams
Interconnections

In cascade case: u = uy, y = y2, and z = y; = ug we have

331 . Al 0 Tl Bl u
i‘z B2Cl AQ ) BQDI
X1
y= [D2C'1 Cz} + Dy D1u
)
A 0 B,
G1G2 = B201 A2 BoDy

DyCy  Cy ‘ D3 Do
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Block Diagrams
Interconnections

In negative feedback case: u; =2z =u —y1, y = y1 we have

T = (Al - Bl(I+ Dl)_lCl)xl + Bl(I — (I—|— D)_1D1>u
y=(I+Dy) *Ciz1+ (I + D1) 'Du

(A — Bi(I + D1)"'C1 | Bi(I - (I + D)"'D,
(I+D)7'Ci | (I+D)'Dy

Sometimes feedback interconnections are ill-posed. In this example, this

would happen if the matrix I + D7 was singular.
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Block Diagrams

System Interconnections with MATLAB

Cascade: To create a system sys from the cascade connection of the
system sys1 whose output is connected to the input of sys2, we use a

command
sys = series(sysl,sys2) or sys = sys2*sysl

Parallel: To create a system sys from the parallel connection of the

systems sys1 and sys2, we use a command

sys = parallel(sysl,sys2) or sys = sysl + sys2
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Block Diagrams
System Interconnections with MATLAB

Feedback: The command
sys = feedback(sysl,sys2)

creates a system sys from the negative feedback interconnection of the
system sys1 in the forward loop, with the system sys2 in the backward
loop.

A positive feedback interconnection can be obtained using

sys = feedback(sysl, sys2, 1)
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State-Space Realizations of Transfer Matrices

Assume that G(s) is a real rational transfer matrix that is proper. Then
we call a state-space model (A, B, C, D) such that

A|B
C|D

A state-space realization (A, B, C, D) of G(s) is said to be a minimal
realization of G(s) if A has the smallest possible dimension.

a realization of G(s).

Definition

Definition

A state-space realization (A, B, C, D) of G(s) is minimal if and only if
(A, B) is controllable and (C, A) is observable.
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State-Space Realizations of Transfer Matrices
Controllable canonical form

Consider a SISO system

G(s) = Bis" 1+ Bas" 2+ - + P15 + Ba
s"Fars" 4t apis+ap

Rewritten as

Gls) = % and y(s) = b(s)%u(s) — b(s)u(s)

u(s) = (8" +a1s" 4+ ap_15 + an)v(s)
y(s) = (B1s" "+ Bas" 2 4 -+ Buois + Bn)u(s)

and

21 =0"V@), 2y =0 D(), .., 2pe1 = 0(F), @y = 0(t)

y(t) = 51371@) + ,82x2(t) +...+ /anll'nfl(t) + ,ann
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State-Space Realizations of Transfer Matrices
Controllable canonical form

Then a controllable canonical form or controller canonical form of the

system is
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1
0

—a9
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0
0

—Qp
0
0




State-Space Realizations of Transfer Matrices

Controllable canonical form example

3s% +6s+5
A system G(s) = B 127 13518 u(s) = (s3 4 252 4 3s)v(s), and

y(s) = (352 + 65+ 5)v(s). Then x5 = v(t), x2 = ¥(t) x1 = v(t) and

-2 -3 -8 1
x(t) = [ 1 0 0} x(t) + H u(t)
0 1 0 0

y(t)=1[3 6 5]

with a block diagram.

u(t) w() [T | ) T o) T o(t) -

y(t)
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State-Space Realizations of Transfer Matrices
Observable canonical form

Consider a SISO system

Brs" T+ Bas™ 2 4+ Bu15 + B
s"Fars" 4t apis+ap

G(s) =
Rewritten as

(s" +a1s" b an_1s+an)y(s) =
(Brs" !+ Bas™ 24+ Buo1s + B)uls)
ss[--[sy(s) + (a1y(s) — Bru(s))] + (a2y(s) — Bau(s))]
+ -t (an—1y(s) = Br—ru(s)] + (any(s) — Bru(s)) =0

Let y(t) = w1(t) then &, (t) = —any(t) + Bnu(t) = —anz1(t) + Brult),
En-1(t) = Tn(t) = (an-1y(t) + Bu1u(t)) = n(t) —an—121(t) + Bn1u(t)
and so all.
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State-Space Realizations of Transfer Matrices
Observable canonical form

Then an observable canonical form or observer canonical form of the

system is
[ ¢, 10 - 0] [ 5 ]
—as 01 -+ 0 B
Ao = : Do i B=| o
—ap1 0 0 - 1 Bn_1
| —an 0 0 -+ 0 i Bn |

C=[1 00 - o]
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State-Space Realizations of Transfer Matrices
Observable canonical form example

3s% +6s+5
A system G(s) = %, we have z1(t) = y(t) and

s[s [sy(s) + (2y(s) = 3u(s))] + (By(s) — 6u(s))] + (8y(s) — 5u(s)) = 0. Then
3(t) = —8x1(t) + Su(t), £2(t) = z3(t) — 3z1(t) + 6u(t), £1(t) = x2 — 2z1(t) + 3u(t) and

2 1 0 3
i) =[-3 0 1|z + |6|u)
8 0 0 5

y(t)=[1 0 o] (t)

with a block diagram

u(t)
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State-Space Realizations of Transfer Matrices
Matlab example

3s? +6s+5
A system Gs) = 3 5 1 35 + 8

Matlab Code
num = [3 6 5]; den = [1 2 3 8];

% controllable canonical form
[Ac,Bc,Cc,Dc] = tf2ss(num,den);

% observable canonical form
Ab = Ac’; Bb = Cc’; Cb = Bc’; Db = Dc;
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Solutions of State Equations

> Consider a SISO
z(t) = ax(t) + bu(t), z(0) = zo
» The solution to the problem
i at __ ,—at (; _ _ ,—at
(e%a) = e~ (&(t) — az(t)) = e~ bu
dt
Integration from O to ¢ and multiplication by e%? yields
t
z(t) = e“zo +/ ea(t_T)bu(T)d‘r
0
» MIMO version

t
z(t) = etz +/ eA(t_T)Bu(T)dT
0

> Note that 2 (e/t) = AeAt.
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Controllability

Proof

> (it) <> (i) Suppose Wc(t1) > 0 for some ¢ > 0, and let the input be defined as
u(r) = —B*eA M TIWI (1) (eA M xg — 21).
It is easy to verify that z(¢1) = z1 as follow:
a(ty) = e*rag — We(t) W (t1) (e oo — 21)
Therefore, the system (A, B) is controllable if the W¢(¢) is invertible. Thus it has full
rank and positive definite for any ¢t > 0.

To show that the controllability of (A, B) implies that Wc(t) > 0 for any t > 0,
assume that (A, B) is controllable but W,(¢) is singular for some t; > 0.

> Since eA*BB*eA™t > 0 for all ¢, there exists a real vector 0 # v € R™ such that
v e*B =0, telot]

.
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Controllability

Proof

> Let 2(t1) = z1 = 0, and then from the solution of the system, we have
t1
0 = eAl1 o +/ eA(tl_T)B'lL(T)dT.
0

Pre-multiply the above equation by v* to get
0 = v*eAtigy.

If we chose the initial state zg = e~ %1y, then v = 0, and this is contradiction. Hence,
We(t) cannot be singular for any ¢ > 0.

(it) <> (i%1) First assume that We(¢) > 0 for all ¢ > 0 but the controllability matrix
C(A, B) does not have full row rank. Then there exists a v € R™ such that

v*A'B=0, i=0,1,...,n—1

Hence v*eAtB = 0 for all t or, equivalently, v*W,(t) = 0 for all ¢; this is a
contradiction, and hence, the controllability matrix C(A, B) must be full row rank.

- CD
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Controllability

Proof

> Conversely, assume suppose C(A, B) has full row rank but Wc(t1) is singular for some
t1. Then there exists a vector v # 0 € R™ such that v*eA*B = 0 for all t € [0,1].
Therefore, set t = 0, and we have
v*B =0
» Next, evaluate the i-th derivative of veAtB=0att=0to get
v*A'B =0, i>0.
Hence, we have

v*[B AB A?B ... A"TIB] =0

or, in other words, the controllability matrix C does not have full row rank. This is
again a contradiction.

- CD
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Controllability

Proof
> (i3t) — (iv): Suppose, on the contrary, that the matrix
[a-x1 B

does not have full row rank for some A € C.

> Then there exists a vector x € C” such that
v [a=ar B =0
ie., A = Az* and 2*B = 0. However, this will result in
o [B AB . arB]=[e*B B - ahetB| =0

i.e., the controllability matrix C(A, B) does not have full row rank, and this is a
contradiction.

> (iv) — (v) This is obvious from the proof of (iz3) — (iv).
[ Back
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Controllability

Proof

> (v) — (4i%) Assume that (v) holds but rank C(A, B) = k < n. By using a
transformation T such that

B.

0

Ac A12
0 A:

TAT™ ! = TB =

)

with Az € R(n=Fk)x(n=k) | et X\; and 2z be any eigenvalue and any corresponding left
eigenvector of Az, i.e., z};Aa = A1z%. Then z*(TB) =0 and

is an eigenvector of TAT ! corresponding to the eigenvalue A1, which implies that
(TAT~1,TB) is not controllable. This is a contradiction since similarity

transformation does not change controllability.

» Back
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Controllability

Proof

> (vi) — (i) This follows the same arguments as in the proof of (v) — (iii) assume that
(vi) holds but (A, B) is uncontrollable. Then, there is a decomposition so that some
subsystems are not affected by the control, but this contradicts the condition (vi).

> (i) — (vi) We can construct a matrix F' so that the eigenvalues of A + BF are in the
desired locations.

[ Back
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Observability

Proof

Proof. First, we show the equivalence between condition (i) and (éi¢). Once this is done, the
rest will follow by the duality or condition (vii).

> (i) < (i17) Note that given the input u(t) and the initial condition zg, the output in
the time interval [0, ¢1] is given by

t
y(t) = CeMao + / Ce*t=7) Bu(r)dr + Du(t).
0

Since y(¢t) and u(t) are known, assuming u(t) = 0,Vt. Hence,
y(t) = CeAtzg, t € [0,t1]. From this equation, we have

C
] [
CA? =0
y(nfl)(o) CA:n—l

The observability matrix O has full column rank, there is a unique solution zg.

- CD
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Observability

Proof

> (i) — (i4i) Assume that (C, A) is observable but that the observability matrix does not
have full column rank, i.e., there is a vector zg such that Oxzg = 0 or equivalently
CA’zg = 0,Vi > 0 by the Cayley-Hamilton Theorem. Now suppose the initial state
x(0) = zq, then y(t) = Ce’tzg = 0. This implies that the system is not observable
since zg cannot be determined from y(t) = 0.

» Back
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