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Magnetic-Ball Suspension System

-0+
R, L v
o
y @
The lifting force :
i3 (t)
f) =K
y(t)
KVL : di(t)
i
Ri(t) + L =v(t
it) + L— = = v(t)
Newton's Law: ) "
PV RO
dt? y(t)

Lecture 1 Classical Feedback Control <2/27 »




Magnetic-Ball Suspension System

The differential equation model

R(t)—i—Ld() v(t)

Pyt _ P
dt2 = —Kw + Mg

Selecting x1(t) = i(t), x2(t) = y(t), x3(t) = y(t) and u(t) = v(t), the state-space model is

—R.
#1(0) M
E2(t)| = x3(t)
; Ka3(t)
#3(t) ~ S
y = z2(t)

Linearize the system around an operating point with y(¢) = yo.

Lecture 1 Classical Feedback Control <3/27 »



Magnetic-Ball Suspension System

Linearization

Definition

A triple of constant vectors [uo ) yo] € R™ x R is said to be an operating point of the
system if

f(zo,u0) =0
9(z0,u0) = Yo
up — Rx1o
T =0, x30 =0
Km%o
=0, Tog =
Mz g 20 = Yo
This gives
Mgyq
10 =40
R Mgyo -~ K
ug = K T20| = Yo , Yo = Yo
30 0
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Magnetic-Ball Suspension System

Linearization

The physical meaning of an operating point is that if the system has initial condition z¢ and
a constant input ug is applied, then the state and output will stay at constant values zg and
Yo, respectively, for all time, i.e.,

u(t) =uo, (0)==z0 = z(t) ==z0, y(t)=yo.
Since f and g are sufficiently smooth, we can conclude that
u(t) — ug, (0) — zo are small = x(t) — zo, y(t) — yo are small.
Denote (t) = u(t) — uo, Z(t) = z(t) — zo and §(t) = y(t) — yo-

Z(t) = AZ(t) + ba(t), G(t) = ci(t) + di(t)

a=Y B=2
Ox z=z0,u=u07 Ou T=xT0,U=uQg

=% p=%
Ox T=T(,U=uQ ' ou T=x0,u=uQ
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Magnetic-Ball Suspension System

Linearization

Mgyo
K

a(t) = u(t) —uo =u(t) — R

) z1(t) — 4/ Mayo )
E(t) = z(t) —xo0 = za(t) —yo | O =y(t) —yo
z3(t)
The linearized model of the deviation variables is
R
-7 0 0 %
#(t) = 0 0 Lz +|o|a®)
_ gK 9
2 Myo o 0 0

gt)y=1[0 1 0]&(t)+ [0]a(t)
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Magnetic-Ball Suspension System

Transfer Function

Transfer Function

G(s) = 58 C(sI—A)"'B+D
s+ & o ol"! 1
G(s)=[0 1 0] 0 -1 0
—2 yo _% s 0

~2y/ 37y T —2/guK

( )( )_\/M(Ls'i‘R)(yoSQ—g)
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Feedback Control

One degree-of-freedom controller

Ym

3—=0

Objectives:
» Closed-loop stability
» Reference tracking
> Disturbance rejection
| 4

Noise response

<8/2T »



Feedback Control

One degree-of-freedom controller

Ym

3—0

The input to the plant is
u=K(s)(r—y—n)
The control error e is defined as

e=y—r
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Feedback Control

Closed-loop transfer functions

The plant model : y = G(s)u + G4(s)d
For one-degree-of-freedom controller
y=GK(r—y—n)+Gud
or
(I +GK)y=GKr+Gqd— GKn

hence

y=(I+GK) '\GKr+ (I +GK) 1 Gyd— (I+GK)"'GKn

T S T

e=y—r=—-Sr+SGgd—Tn

u=KSr— KSGysd— KSn
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Feedback Control

Closed-loop transfer functions

Loop transfer function :

Sensitivity function :
S(s)=(I+GK)'=1+L)*

Complementary sensitivity function :
T(s)=(I+GK)"'GK =(I+L)"'L

S is the closed-loop transfer function from the output disturbances to the outputs.

T is the closed-loop transfer function from the reference signals to the outputs.

S+T=(I+L)'+U+L0D)L=1
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Feedback Control

Sensitivity

Sensitivity to plant gain changes

relative closed-loop response change

S(s) = .
relative open-loop response change
_ dT(s)/T(s)

dG(s)/G(s)

An change of a percent in the open-loop plant DC gain gives a change of a.S(0) percent in
the closed-loop DC gain.

Performance requirements

Reference tracking T(s)~1
Noise rejection Ts) <1
Disturbance rejection S(s)Gy(s) <1
Low plant sensitivity Ss) <1
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Feedback Control
Why feedback?

Ym

—0

O
!
“Perfect” control can be obtained, even without feedback (K = 0) by
Kp(s) = G (s); Ka(s) = G71(5)Ga(s)
Let u = K,r — K4d and we get

y=G(G r —GT1Ggd) + Gagd =7
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Feedback Control
Why feedback?

Ym

f

The fundamental reasons for using feedback control are therefore the presence of
> Signal uncertainty — unknown disturbance (d)
> Model uncertainty (A)
» An unstable plant — unstable plants can only be stabilized by feedback.
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Closed-loop Stability

Inverse response process

3(—2s+1)
(55 + 1)(10s + 1)
proportional gain K, the step responses of the closed-loop system y(t) are shown below:

Consider a system G(s) = . If we close the feedback loop using a

Time[sec]

> Check the closed-loop poles That is the roots of 1+ L(s) = 1+ KG(s). The system is
stable if and only if all roots are in left half plane (LHP).

> Use Bode’ stability condition: Stability < |L(jwiso)| < 1.
> Use Nyquist' stability criterion.
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Bode plot

margins
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Nyquist plot

margins
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Closed-loop performance

25} L(jw) = G(jw)K (jw)

Magnitude
a n

051

rad/sec

—0.1s . 1
5e K(s) = 0.5s +
(s+1)(0.1s+1) s
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Closed-loop performance

Bandwidth

25} L(jw) = G(jw)K (jw)

Magnitude
o

rad/sec

> (Closed-loop) bandwidth wp : Frequency at which |S(jw)| = —3dB = 1//2
> Crossover frequency w. : Frequency at which |L(jw)| = 1.

> if PM < 90° then wp < we < wpT
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Loop shaping

» the classical loop-shaping approach is to shape the magnitude of the loop transfer
function L(s) = G(s)K(s) via the designed controller K (s).

» Trade-offs in terms of L

e=y—r=—I+L)'r+{T+L)"'Ged— (I +L)"'Ln
N—— N—— N———

S S T

> Performance, good disturbance rejection: needs large controller gains, i.e. L
large.

» Good command following, Stabilization of unstable plant: L large

> Reduce measurement noise, Nominal stability, Robust stability: L small.

> We need a large loop gain (|L| > 1) at low frequencies below crossover, and a small
gain (|L| < 1) at high frequencies above crossover.
> Define he gain crossover frequency, w., where |L(jwe)| = 1.
> We desire a slope of 20 dB/dec (or 1 in log-log scale) around crossover, and
large roll-off at high frequencies. The desired slope at lower frequencies depends
on the nature of the disturbance or reference signal.
> Define the system type that is the number of pure integrators in L(s).
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Loop shaping

Example
3(—2 1 -2 1
Consider G(s) = _ 8241 and L(s) = 3K (z2s+1)
(5s+1)(10s + 1) s(2s+1)(0.33s 4+ 1)
g
Za0° 8
E
g
=
107 :
10 10
-90
o -180F
2
=
A 70t
-360 -2 ‘*1 ‘0 1
10 10 10 10

Frequency [rad/s|

The slope of |L| is -1 up to 3 rad/s where it changes to -2.
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Loop shaping

Example

1 1 1
0.05 (10s+1)(5s+ 1)

The controller corresponding to the loop-shape is K(s) = 5+ D033+ 1)
s(2s .33s

15 |
y(t)
u(t) |
05 ‘ ‘ ‘ ‘
10 20 30 40 50

Time|[sec]

Response to step input of the loop-shaping design.
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Disturbance rejection

Example

d(t)

0.5
() u(t) 1 200 1)
k() (0055 + 1)2 105 +1 -
i 110s+1 0.1s+1 L. . L
Using a controller Ko(s) = 110s+10ds+1 , which is for reference tracking objective we
s 200 0.01s+1
have

Tracking response

Distrubance response
15 15
1 1
= =
=05 =05
0 0
o o5 1 15 2 25 3 o o5 1 15 2 25 3
Time[sec] Time[sec]
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Disturbance rejection

Example

Same problem but this time we concentrate on disturbance rejection. The controller is then
s+2 0.05s+1
K3(s) =05 * +

——— . We have
s 0.005s +1

Tracking response

Distrubance response
15 15
1 1
—_ —_
= =
=05 =05
0 0
0 05 1 15 2 25 3

0 0.5 1 15 2 25 3

Time[sec] Time[sec|

> reference tracking is not good: large overshoot.

» disturbance rejection is good.

> to solve both objectives simultaneous, one can use a two-degree-of-freedom controller.

Lecture 1 Classical Fee

<2427



Two-degrees-of-freedom control

3—=0)

> We use the same feedback controller as in previous example.
0.55 41 1
0.655 +10.03s +1°

» K, can be used to improve the tracking reference separately from the disturbance
rejection

» Here K, =

GK 1
71" T, =Gg——
14+ GKy 1+ GKy
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Two-degrees-of-freedom

control
Tracking response Distrubance response
15 15
1 1
— —
fatd =
=05 =05
0 0
o 05 1 15 2 25 3 0o 05 1 15 2 25 3
Time[sec] Time[sec|

» Finally, we are able to satisfy all requirement using a two-degree-of-freedom controller
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