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Feedback System with Uncertainty

where
» N is a nominal plant

> A is possibly a diagonal matrix with real and dynamic uncertainties.
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Feedback System with Uncertainty

Terminologies

> Nominal stability (NS): Feedback system is internally stable when A = 0.
> Robust stability (RS): Feedback system is internally stable for any norm-bounded A.

Nominal performance (NP): Feedback system is stable and satisfies certain
performance for A = 0.

> Robust performance (RP): Feedback system is stable and satisfies certain performance
for any norm-bounded A.

Model sets:
Gp(s) e{G(s) + Al [[All <~}
G(s) = Nominal plant

A = unknown, but bounded

perturbation (i/o operator) {G(s) + A}

Typically, A is stable, causal and satisfies, ||A|lcc < 7.
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Norminal Stability

> Analysis: Given a controller K, check if the feedback (FB) system above is internally
stable.

» Synthesis: Design K such that the feedback system is internally stable.
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Robust Stability

> Analysis: Given nominally internally stabilizing controller K, check if the feedback
system above is internally stable for all stable structured A with ||Aljoc <1

» Synthesis: Design K such that the feedback system is robustly internally stable.
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Structure of an Uncertainty

An uncertainty is called structured if it has a fixed structure, e.g.,
» Some components are zero
»> Some components are real, or dynamic uncertainty

» Some components are the same uncertainty

61

A= 6315
Au(s)
As(s)

where each §; and Aj(s) represents a specific source of uncertainty
> 61, 02, 63 €R,

> Au(s), As(s) € Hoo are set of stable functions
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LFT Representation

For analysis and synthesis purpose, we use an LFT representation by extracting K:

o
A
N N
— K
T L o

—K is redefined as K
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Robust Stability Condition

> Assume that fixed M (s) and a structured uncertain A(s) are stable

> FB system below is internally stable for any structured A with ||A]lcc < 1

A

if and only if

det(I — M (jw)A(jw)) # 0, Yw
VA : structured | [|Afloo < 1

» This condition is impractical to check because it involves uncertain A.
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Robust Stability Condition

Special case

> Assume that a fixed M (s) and an unstructured uncertain A(s) are stable.

> FB system below is internally stable for any unstructured A with ||A|lec < 1 if and
only if

Moo <1

> This condition is practical because the condition is without A.
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Remarks on Robust Stability

» For unstructured uncertainty,

> Analysis is a computation of Ho, norm of a system.
> We study the Bounded Real Lemma
> In MATLAB, use norm(sys,inf)

> Robust stabilization is by Hoo controller design

> In MATLAB, use hinfsyn(sys)

> For structured uncertainty
> Analysis is by p-analysis

> Robust stabilization is by p-synthesis.
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Robust Performance

> Analysis: Given robustly internally stabilizing K, check if the feedback system below
satisfies performance for all stable structured A with ||Alloc <1

> [WsS|leo <1

> Synthesis: Design K such that the feedback system satisfies robust performance.
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LFT Representation

» For analysis and synthesis purpose, we use an LFT representation by attracting K:

A
" uA N
w [N lez
Ws
w G z
r > u up N y
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u v
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Nominal Performance Condition

» Analysis: Given a nominally stabilizing K, check if

1Tzerlloo <1

> Synthesis: Design a nominally stabilizing K such that

1Tzorlloo <1

N

d r

L___I
w z

T G Zs
u e
K
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Robust Performance Condition

» Analysis: Given a robustly stabilizing K, check if

||Tzs7‘||oo < 17VA
A : Structured , ||Allo <1

» Synthesis: Design a robustly stabilizing K such that the above condition is satisfied.

N
L
ua YA
w G z
(<]
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Robust Performance Condition

Reducing robust performance to robust stability

» Robust performance problems are equivalent to robust stability problems with

augmented uncertainty

A Aaug
[ 1
(ON YA | 1
— Ap T
1 1
1 1
L
w G z 1 A ]
I I vz
u v
K r G Zs
u e
K
ITzorlloo <1
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Remarks on NP and RP

» For nomianl performance

> Analysis is computation for Ho norm of a system

> Controller design for nominal performance is by H o controller design

» For robust performance
> Analysis is by p-analysis
> Robust stabilization by p-synthesis
> Same difficulty as the difficulty for robust stability analysis and robust

stabilization for structured uncertainty.
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Uncertain system

Example 1

G(s) = T—— (1L+W(HAE) by =51+0.15), se[-L1]
b—s—}— 1
wis) = 2E200) ) <1
10

Uncertain system

clc; clear all;

bw = ureal(’bw’,5, ’Percentage’,10);
Gnom = tf(1,[1/bw 11);

W = makeweight(0.05,9,10);
Delta = ultidyn(’Delta’,[1 1]);
G = Gnom* (1+WxDelta) ;
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Uncertain system

Example 1

Bode Diagram
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Uncertain system

Example 1

» Pl controllers

xi = 0.707;
wn = 3;
K1 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);

wn = 7.5;
K2 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);

» Complementary sensitivity functions

T1
T2

feedback(G*K1,1);
feedback(G*K2,1);
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Uncertain system

Example 1

Step Response

Amplitude
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Uncertain system

Example 1

» Robust stability analysis

[stabmargl,destabul,reportl] = robuststab(T1)

stabmargl = LowerBound: 4.0323
UpperBound: 4.0323
DestabilizingFrequency: 4.0938
reportl = Uncertain system is robustly stable to
modeled uncertainty.
—-— It can tolerate up to 4037 of the modeled
uncertainty.
—-— A destabilizing combination of 4037 of the
modeled uncertainty was found.
-- This combination causes an instability at 4.09
rad/seconds.
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Uncertain system

Example 1

» Robust stability analysis

[stabmarg2,destabu2,reportl] = robuststab(T2)

stabmarg2 = LowerBound: 1.2616
UpperBound: 1.2616
DestabilizingFrequency: 9.8187
reportl = Uncertain system is robustly stable to
modeled uncertainty.
-— It can tolerate up to 1267 of the modeled
uncertainty.
—- A destabilizing combination of 1267 of the
modeled uncertainty was found.
-- This combination causes an instability at 9.82
rad/seconds.
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Uncertain system

Example 1

> Sensitivity peak analysis

S1 = feedback(1l,G*K1);
S2 = feedback(1l,G*K2);
[maxgainl,wcul] = wcgain(S1);
[maxgain2,wcu2] = wcgain(S2);
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Uncertain system

Example 1

>> maxgainl

maxgainl =
LowerBound: 1.8778
UpperBound: 1.8779
CriticalFrequency: 3.0583

>> maxgain2

maxgain2 =
LowerBound: 4.5400
UpperBound: 4.5402
CriticalFrequency: 13.1431

bodemag(S1.NominalValue, ’b’ ,usubs(S1,wcul),’b’);
hold on, grid on

bodemag (S2.NominalValue, ’r’ ,usubs (S2,wcu2),’r’);
hold off
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Uncertain system
Example 1
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Uncertain system

Example 2

0 p . 10
-p 0 0 1 Wi(s)A1(s)
= |l
G(s) i | oo | < (1+ |:
-p 1,0 O
p=10(1+0.15), &€[-1,1]
s+20-0.1
Wi(s) = ———, [A1]leo <1
50
+45-0.2
Wa(s) = 252 [ Agflee <1
50
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Uncertain system

Example 2

p = ureal(’p’,10,’Percentage’,10);
A= [0 p; -p 0]; B = eye(2);
C=101p; -p1l;

H = ss(A,B,C,[0 0; 0 01);

W1l = makeweight(0.1,20,50);

W2 = makeweight(0.2,45,50);

Deltal = ultidyn(’Deltal’,[1 1]);
Delta2 ultidyn(’Delta2’,[1 1]);

G = Hxblkdiag(1+W1*Deltal, 1+W2*Delta2);
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Uncertain system
Example 2
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Uncertain system

Example 2
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Uncertain system

Closed-loop robust analysis

> Wa(s) —m22

Ug

K > G > Wi(s) —»21
- u
Li=KP, S;=(1+L)"', T,=I-5,
Lo=KP, So = (1+ Lo)~ 1, To=1-15,

>> load mimoKexample
>> F = loopsense(G,K)
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Uncertain system

Closed-loop robust analysis

The transmission of disturbances at the plant input to the plant output

Bode Diagram

From: du(1) From: du(2)
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Uncertain system

Worst-Case Gain Analysis

Bode magnitude of the nominal output sensitivity function.

bodemag(F.So,’b’ ,F.S0.NominalValue, ’r’,{le-1 1003})

Bode Diagram

From: dy(1) From: dy(2)

Magnitude (dB)
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Uncertain system

Worst-Case Gain Analysis

» Nominal peak gain (largest singular value)
PeakNom =
1.1317

freq =
7.0483

» Worst-case gain

e D

[maxgain,wcu] = wcgain(F.So)
maxgain =
LowerBound: 2.1459
UpperBound: 2.1466
CriticalFrequency: 8.4435
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Uncertain system

Worst-Case Gain Analysis

» The analysis indicates that the worst-case gain is somewhere between 2.1 and 2.2. The
frequency where the peak is achieved is about 8.5.

» We can replace the values of Deltal, Delta2 and p that achieve the gain of 2.1, using
usubs

step(F.To.NominalValue, ’r’ ,usubs(F.To,wcu),’b’,5)

» The perturbed response, which is the worst combination of uncertain values in terms of
output sensitivity amplification, does not show significant degradation of the command
response.

> The setting time is increased by about 50%, from 2 to 4, and the off-diagonal coupling
is increased by about a factor of about 2, but is still quite small.
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Uncertain system

Worst-Case Gain Analysis

Step Response

From: dy(1) From: dy(2)

Amplitude
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SISO Robust Stability

RS with multiplicative uncertainty

: Gy,
E ’—r wr —el Af T E
- = 5 o
The loop transfer function is
LpZGPKZGK(I—F’LUIAI):L-F’UJILAI, |A[(jw)| S I,Vw

» the system is NP and L, is stable

RS <« System stable VL,

<> Lp should not encircle the point —1, VL,
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SISO Robust Stability

RS condition
Im
A
- » Re
/
[1+ L(jw)|

L)

[wr L]

» | —1— L|=|1+ L] is the distance from the point -1 to the center of the disc
representing Ly, and |wy L] is the radius of the disc.
RS & |wiLl<P+L, Yo o |“LElc1 v
w
I ) 1+L )

S |wiT| <1, YVw & |wT|e <1
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SISO Robust Stability

Example

Consider the following nomianl plant and Pl-controller

3(—2 1 12.7 1 10 0.33
Gls) = 224D e = g 2T (g = 105083
(55 + 1)(10s + 1) 12.7s (10/5.25)s + 1
Kq =113, K2 = 0.31
10 .
_l/w]

Magnitude

10 10 107 10 10
Frequency
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SISO Robust Stability

M A-Structure

Consider a transfer function of the A output to A input of the feedback system with
multiplicative uncertainty. We have

wiK(1+GK) G =wT=M

2 » The Nyquist stability condition then
determines RS if and only if the “loop
transfer function” M A does not encircle
-1 for all A.

> M
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SISO Robust Stability

M A-Structure

RS & |1+ MA|>0, VYw, VA <1

The condition is most easily violated (the worst case) when A is selected at each frequency

such that [A| = 1 and the terms M A and 1 have opposite signs (point to the opposite
direction). We therefore get

RS & 1-|M({w)|>0, VYw
& | M@w)| <1, VYw =|wT|<1
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SISO Robust Performance

Nominal performance

B Re

L(jw)

NP & |wpS|<1l Yw <& |wp|<|1+L] Yw
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SISO Robust Performance

Robust performance

For robust performance we need the previous condition to be satisfied for all possible plants,
that is, including the worst-case uncertainty.

RP & |wpSp| <1 VS, Vw
& Jwp|<|1+Ly| VLp,Vw

This corresponds to requiring |§/d| < 1 VAj, where we consider multiplicative uncertainty,
and the set of possible loop transfer functions is

Ly = GpK = L(l +w1AI) =L+wrLA;

d
wr Ay
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SISO Robust Performance

Robust performance

Im
/‘\ A
A > Re
[wp(jw)|
— L(jw)
1+ L(jw)]

[wrL|

For RP we must require that all possible L, (jw) stay outside a disc of radius |wp (jw)|
centered on -1. Since L, at each frequency stays within a disc of radius w;L centered on L,
we see that the condition for RP is that the two discs, with radii |wp| and |wyL|, do not

overlap.

<«13/71»
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SISO Robust Performance

Robust performance

Since their centers are located a distance |1 + L| apart, the RP-condition becomes

RP & |wp|+ |wil| < |14+ L|, Yw
< |lwp(I+ L) Y+ |w LA+ L)Y <1, Yw

or in other words

RP & max(lwpS|+ |wiT]) <1
w

2: Robust Stability and Robust Perfor e Analysis and Synthesis
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SISO Robust Performance

Example

Consider robust performance of the SISO system in Figure, for which we have

0.1 (s) s
i wyu(s) =1
u us+1

<1, Vw; wp(s)=0.25+

)
S

Q>

RP@'

-2
E:I

> Derive a condition for robust performance (RP).
» For what values of ry, is it impossible to satisfy the robust performance condition?

> Let 7, = 0.5, consider two cases for the nominal loop transfer function: 1)

GK1(s) =0.5/s and 2) GKa(s) = % ijr: For each system, sketch the magnitudes

of S and its performance bound as a function of frequency. Does each system satisfy

robust performance?
<« 45/71 »
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SISO Robust Performance

Example

a) the requirement for RP is |lwpSp| < 1,V.Sp, Yw, where the possible sensitivity are given
by

o 1 s
L 1+GK+quu N 1+1UuAuS

The condition for RP then becomes

’LUPS

RP = —_—
‘ 14+ wyAyS

<1, VAu,Vw

A simple analysis shows that the worst case corresponds to selecting A, with
magnitude 1 such that the term w, A, S is purely real and negative, and hence we have

RP & |wpS|<1l—|w,S|, Vw

& |wpS|+ |wu S| <1, Yw
1
& |S(w)| < - —, VYw
SG < G + Ta Gl
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SISO Robust Performance

Example

b) Since any real system is strictly proper we have |S| =1 at high frequencies and
therefore we must require |wy (jw)| + |wp(jw)| < 1 as w — co. With the weight
given, this is equivalent to r,, + 0.25 < 1. Therefore, we must at least require
ry < 0.75 for RP, so RP cannot be satisfied if r, > 0.75.

10 . . .
Y _
/7k el + ol
10
©
3 51|
S
&
=
107" E
10’2 L L L
10 107" 10° 10' 10°
Frequency
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SISO Robust Performance

Example

c) Design S yields RP, while S2 does not. This is seen by checking the RP-condition
graphically as shown in Figure above; |S1| has a peak of 1 while |S2| has a peak of
about 2.45.
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General Control Configuration with Uncertainty

The uncertain perturbations in a block diagonal matrix,

o1

A = diag{d;, A;} =

where each §;, A; represents a specific source of uncertainty

Aj = input uncertainty
3

parametric uncertainty where §; is real.
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General Control Configuration with Uncertainty

A |-
UA Yya
> A |
W ——————— G —————2
- ua ya
w v > |:N11 N12:|
w z
K | — W af[N21 N[ —=2

Figure: General control configuration Figure: N A-structure for robust
performance analysis

N = Fi(P,K) 2 P11 + PoK(I — PyoK) 1Py
F = Fu(N,A) 2 Nag + Noy A(I — N11A) "INy

<50/71 »

Lecture 12: Robust Stability and Robust Performance Analysis and Synthesis



General Control Configuration with Uncertainty

M A-structure for robust stability analysis

Y
S

To analyze robust stability of M, we can rearange the system into the M A-structure where
M = N is the transfer function from the output to the input of the perturbations.
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Obtaining P, N and M

T T
The inputs are [uA w u] and outputs [yA z v] . By writing down the equations

we get

0 0 Wr 0 0
P=|WpG Wp WpG|, Pu1= l: :| s

w.

-G -1 -G WeG We

Py = [—G —I] , P =-G.
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Obtaining P, N and M

Find N from N = F;(P, K) or directly from the system we get

N -WiKG(I+KG)~! —-W;K(I+GK)™!
T | WeGUI +EKG)! Wp(I+ GK)~?

The upper left block, Ni; is the transfer function from ua to ya. This is the transfer
function M for M A-structure for evaluating robust stability. Thus, we have

M=-W;KGI+KG)™! = -W;T;
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Robust Stability of the M A-Structure

Consider the uncertain N A-system for which the transfer function from w to z is given by

Fu(N,A) = Nog + Not A(I — N11A) "1 Nyo

> Suppose the system is nominally stable (with A = 0), that is, N is stable (which
means that the whole of N, and not only N2 must be stable).

> The only possible source of instability is the feedback term (I — Nj1A)~1,

> The nominal stability (NS), the stability of the system is equivalent to the stability of
the M A-structure where M = Nq;1.
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Robust Stability of the M A-Structure

Theorem (Determinant stability condition)

For a fixed stable M (s), the M A-structure system is internally stable for any structured A
with ||Allec < 1 if and only if

Nyquist plot of det(I — MA(s)) does not encircle the origin YA (1)
& det(] — MA(jw)) #0, VA (2)
o N(MA)#1, Vi, Vw, VA 3)

Proof:

»  The first condition is simply the generalized Nyquist Theorem applied to a positive
feedback system with a stable loop transfer function M A.
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Robust Stability of the M A-Structure

> (1) = (2): This is obvious sine by “encirclement of the origin” we also include the
origin itself.

> (2) < is proved by proving not(1) = not(2): First note that with A =0,
det I — MA =1 at all frequencies. Assume there exists a perturbation A’ such that
the image of det(I — M A’(s)) encircles the origin as s traverses the Nyquist
D-contour. Because the Nyquist contour and its map is closed, there then exists
another perturbation in the set, A’ = eA’ with € € [0, 1], and an w’ such that
det(I — MA" (jw')) = 0.

> (3) is equivalent to (2) since det(f — A) =[], Ai(I — A) and \;(J — A) and
Al —A)=1-X(A).
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Robust Stability of the M A-Structure

Theorem (Spectral radius condition for complex perturbations)

Assume that the nominal system M ((s) and the perturbations A(s) are stable. Consider the
class of perturbations, A, such that if A’ is an allowed perturbation then so is cA’ where c is
any complex scalar such that |c| < 1. Then the M A-system is stable for all allowed
perturbations if and only if

p(MAGW)) < 1, Ve,¥A (@)
or equivalently

RS <& mAaxp(MA(jw))<1, Vw
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RS for Complex Unstructured Uncertainty

Theorem (RS for Unstructured Perturbations)

Assume that the nominal system M(s) is stable (NS) and that the perturbations A(s) are
stable. Then the M A-system is stable for all perturbations A satisfying ||Al|ec < 1 if and
only if

o(M@w)) <1, Vw & [[M[eo <1

Proof: We can show that
det(I — MA) #0, Yw,VA & MN(MA)<1, ViVw,VA
For A that A < 1, we have

mAaxp(MA) = mgx&(MA) = max a(M)a(A) = (M)

Then RS & F(M(jw)) <1, Vw.
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RS with Structured Uncertainty

> Consider the presence of structured uncertainty, where A = diag{A;} is block
diagonal. The test for robust stability is changed to

RS if o(M(jw)) <1, Vw

Here we write “if” rather than "if and only if” since this condition is only sufficient for
RS when A has “no structure”.

> To take the advantage of the fact that A = diag{A;} is structured to obtain an
RS-condition which is tighter than the unstructured one. We can use the
block-diagonal scaling matrix

D = diag{d;I;}

where d; is a scalar and I; is an identity matrix of the same dimension as the A;.
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RS with Structured Uncertainty

» Moreover we have AD = DA. This means the RS condition must also apply if we
replace M by DM D~ and we have

RS if &(DMD ') <1, Yw

Same Uncertainty

S
&
3

5]

1
S
[S)

New M : DM D!
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Structured Singular Value p

The structured singular value (p) is a function which provides a generalization of the singular
value, &, and the spectral radius, p. p© can be used to get necessary and sufficient conditions
for RS and RP.

Definition (Structured Singular Value)

Let M be a given complex matrix and let A = diag{A;} denote a set of complex matrices
matrices with 5(A) < 1 and with a given block-diagonal structure. The real non-negative
function (M) , called the structured singular value, is defined by

-1
u(M) & (mAin {km|det(I — km MA) =0, &(A)< 1})

If no such structured A exists then p(M) = 0.

Lecture 12: Robust Stability and Robust Performance Analysis and Synthesis <61/71 »



RS and RP with Structured Uncertainty

Theorem (RS for block-diagonal perturbations)

Assume that the nominal system M and the perturbations A are stable. Then the
M A-system is stable for all allowed perturbations with G(A) <1, Vw, if and only if

wM(jw)) <1, Vo

Theorem (RP for block-diagonal perturbations)

Rearrange the uncertain system into the N A-structure. Assume nominal stability such that
N is stable. Then

RS & pa(N@w)) <1, Vw.
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(-Synthesis

> At present there is no direct method to synthesize a u-optimal controller. However, for
complex perturbations a method known as D K-iteration is available.

» The method combines Ho-synthesis and p-analysis, and often yields good results.

» The idea is to find the controller that minimizes the peak value over frequency of this
upper bound, namely

min min |[DND ™! ||eo
K DeD

by alternating between minimizing || DN (K)D™1||o with respect to either K or D
(while holding the other fixed).

Lecture 12: Robust Sta Performance Analysis and Synthesi: <63/71



D K -iteration

The D K-iteration proceeds as follows:

K-step: Synthesize and Hoo controller for the scaled problem,
min IDN(K)D ™| with fixed D(s)

D-step: Find D(jw) to minimize at each frequency (DN D~ (jw)) with fixed N.

Fit the magnitude of each element of D(jw) to a stable and minimum phase transfer
function D(s) and go to Step 1.
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D K -iteration

Example

Consider a two-input, two-output system with transfer function matrix

_k1 0.05

Ty1s+1 0.1s+1

0.1 ko
0.35+1 Tos—1

where the coefficients k1 and k2 have nominal values 12 and 5, respectively, and relative
uncertainty 15%, and the time constants T} and T have nominal values 0.2 and 0.7,
respectively, and relative uncertainty 20%

Ws(s) zs
n Wk (s) 2K
u
T K(s) G(s) Y
- e
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D K -iteration

Example

The closed-loop system is described by

z="Tpw, z= |:z5:| , w= |:r:|
2K d

The performance weighting and control weighting functions are

wg(s) 0 w(s) 0
144 = ) w. - )
5(s) [ o (S)} < (5) [ S
where
s+ 10 0.001s + 1
—05 , —01 s
ws(s) sto3 VKO 0.0001s + 1
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D K -iteration

Example

clc; clf;

s = tf(s?);

k1 = ureal(’k1’,12,’Percentage’,15);
k2 = ureal(’k2’,5,’Percentage’,15);
T1 = ureal(’T1’,0.2,’Percentage’,20);
T2 = ureal(’°T2’,0.7,’Percentage’,20);

G = [ k1/(Ti*xs+1), -0.05/(0.1*s+1);
0.1/(0.3*s+1), k2/(T2*s-1)]1;

ws = 0.5%(s+10)/(s+0.3);

wk = 0.1%(0.001%s+1)/(0.0001*s+1);

WS = [ws O ; O wsl;

WK = [wk 0 ; O wk];

systemnames = ’ G WS WK’;
inputvar = ’[r{2}; d{2}; u{2}]’;
outputvar = ’[WS; WK; r-G-d]’;
input_to_G = [ u ]1’;
input_to_WS = ’[ r-G-d 1°;
input_to_WK = [ u 17%;

% e = r-G-d

sysIC = sysic;

nmeas = 2;

2;

fv = logspace(-3,3,100);

opt = dkitopt(’FrequencyVector’, fv,

ncont

’DisplayWhileAutoIter’,’on’,
’NumberOfAutoIterations’,3)
[K,CL,BND,INFO] = dksyn(sysIC,nmeas,...

ncont,opt) ;
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D K -iteration

Example

Iteration Summary

Iteration #
Controller Order
Total D-Scale Order
Gamma Acheived
Peak mu-Value

1.682
1.567

20
12
0.988
0.987

22
14
0.884
0.884
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D K -iteration

Example

Closed-loop robust performance
0.9 T T T

—— p-upper bound
—— p-lower bound

0.891

0.88[

0.87f

0.86

0.85[

0.84 |

0.83 | . . . .
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D K -iteration

Example

From in1 to out1

0.8

0.6

Amplitude

0.4

0.2

1 2
Time (seconds)

Fromin1 to out2

0.01

0.008

0.006

Amplitude

0.004

0.002

P

1 2
Time (seconds)

Amplitude

Amplitude

-0.01

From in2 to out1

2 3 4
Time (seconds)

From in2 to out2

a

1 2 3 4

Time (seconds)

Synthes
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