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Linear Matrix Inequalities

A linear matrix inequality (LMI) has the form
M(p) = Mo +p1Mi+---+pnvMy <0

. . . T .
where Mo, M1, ..., My are given symmetric matrices, p = [pl P2 .. .,pN] is a column
vector of real scalar variables.

> the matrix inequality M (p) < 0 means that the left hand side is negative definite.
» An important property of LMIs is that the set of all solutions p is convex.

» LMls can be used as constraints for the minimization problem
min ¢”'p subject to M(p) < 0
I3

where the elements of the vector c in the linear cost function are weights on the
individual decision variables.
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Linear Matrix Inequalities

» the convex problem can be solved by efficient, polynomial-time interior-point methods.
> Several LMI constraints can be combined into a single constraint of type.

> for example the constraint
Mi(p) <0 and Ma(p) <O
is equivalent to the single LMI constraint

{M ip) 0

0 M (p)} <0
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Pole Region Constraints

> the condition that the poles of a system are located within a given region in the
complex plane can be formulated as an LMI constraint.

> the dynamic system @(t) = Az(t). This system is stable if an only if the matrix A has
all eigenvalues in the left half plane, which is true iff there exists a positive definite,
symmetric matrix P that satisfies the Lyapunov inequality

PAT + AP <0

» This inequality is linear in the matrix variable P, and one can use LMI solvers to search
for solutions.

> assume that A is a 2 by 2 matrix and write the symmetric matrix variable P as
1 2 1 0 0 0

P= p b2y 1
P2 P3 0 0 0 1

+ p2 + D3

0 1
1 0
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Pole Region Constraints

» the LMI represents a necessary and sufficient condition for the matrix A to have all
eigenvalues in the left half plane.

P one can express an arbitrary region D in the complex plane in terms of two matrix
L = LT and M as the set of all complex numbers that satisfy and LMI constraint.

D={seC:L+Ms+ MT5<0}

where § denotes the complex conjugate of s.

> Such a region is called an LMI region.
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Pole Region Constraints

Example: poles region constraint
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From Re s < a;, we have
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Pole Region Constraints

Example: poles region constraint

and Ims > o

s+ 35
2
—s5—54+ 20 <O0.

> o

Thus

2t 0 [-1 0
L”_{o 72aT]’ M”_[o 1]

For the conic sector, a complex number s = x + jy lies in the conic sector if and only if

sin B
cos 3

T
‘f‘<tan5: and zcosfB <O0.
Yy

Rewrite the above conditions in the form
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Pole Region Constraints

Example: poles region constraint

we get

z2cos? B —y2%sin? 8 <0

By Schur's complement we have

- | 2xcospB 2jysin 8
Mes + Me _|:72jysin5 2x cos B <0

Thus

o o __[cosB —sing
LC_[O 0}’ Mc_[sin,@ cosﬁ}

The two constraints can be combined as
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Constraints on the H, Norm

Consider the system with transfer function T'(s) as state space realization

#(t) = Axz(t) + Bw(t), z(0)=0
z(t) = Cx(t) + Dw(t)

Assuming that T'(s) is stable, the Hoo norm of the system is

oo
2T ()2 (t)dt
IT)3 = max ~2e—————, 2(0) =0.

wEO W T (#)w(t)dt
0

It follows that ||T'||oc < 7 is equivalent to

/000 T () 2(t) — v?wT (t)w(t))dt < 0

Holding true for all square integrable, non-zero w(¢).
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Constraints on the H, Norm

Introduce a Lyapunov function V(z) = 27 Pz with P = PT > 0. Since x(0) = x(c0) = 0,
the constraint ||T'||oo < 7 is enforced by the existence of a matrix P = PT > 0 such that

dV (z)
dt

+ %ZT(t)z(t) —ywT (H)w(t) <0

for all z(t),w(t); to turn into a LMI, substitute

dV (z)
dt

=zT(ATP + PA)x + 2T PBw + wT BT Pz, z=Cz+ Dw
To obtain

|:$:|T [ATP +PA+3CTC PB+3CTD
w

<0
BTp+ DTC —~I + iDTD} [“’]
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Constraints on the H, Norm

For || T||cc < 7 the above must hold for all  and w, thus the block matrix must be negative
definite. The condition can be rewritten as

[ATP-i—PA PB} 1[CT

BTP  —y1| T} DT] [c pl<o

By Schur complement, we have

Theorem (Bound real lemma)

[|T)lco < 7 if and only if there exists a positive definite, symmetric matrix P that satisfies the
linear matrix inequality

ATp+PA PB CT
BTP —yI DT | <0
C D —~I
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Constraints on the H, Norm

Using the congruence transformation and Q = P!,

Q 0 0
[O I 0:|
0 0 I

An equivalent form

BTP —I DT

ATP+PA PB CT7[Q
C D —I

o
O ~N O
~N O O

0

BT —~I DT

QAT +AQ B QCT
cQ D —~I
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Constraints on the H, Norm

Using cvx

sys = rss(3,3);
A = sys.a; B = sys.b; C = sys.c; D = sys.d;
n = size(A,1); nu = size(B,2); ny = size(D,1);

cvx_begin sdp
variable P(n,n) symmetric
variable gamma;

minimize gamma;

subject to
P > 0;
[A’*P + PxA, PxB, C’;
B’*P , -gamma*eye(nu), D’;
C, D, -gammax*eye(ny)] < 0;
cvx_end
display(P);
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Controller Design Using LMls

Generalized Plant

The generalized plant P(s) has a state space realization

@(t) = Ax(t) + Byw(t) + Buul(t)
2(t) = Cza(t) + Dzww(t) + Dzuu(t)
o(t) = Cya(t) + Dyww(t)
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Controller Design Using LMls

H oo State Feedback

State feedback u = F'z yields the closed-loop system

i(t) = (A + BuF)z(t) + Buw(t)
2(t) = (C: + DzuF)a(t) + Dzww(t)

Replacing the system matrices in Bounded real lemma by the closed-loop matrices and using
the variable transformation Y = F'Q leads to the following result: a necessary and sufficient
condition for a state feedback controller to achieve a Hoo-norm less than v i s the existence
of matrices P = PT > 0 and Y that satisfy

QAT + AQ+YTBT +B,Y B. QCI+YTDT,
BT —I DT, <0, F=YQ™!
C.Q+ DY D.w —~I
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Controller Design Using LMls

H oo State Feedback

A | By Bu
G(s)=| Cs | Dzw Dy with (A, By ) assumed to be stabilizable
I 0 0
minimize 7y
subject to
Q=Q">0
QAT + AQ+Y"BT +B,Y B, QCT+YTDT,
BT —~I DT, <0
CZQ + Dqu Dzw —’YI

If this has a solution then

F=vQ !
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‘H., State Feedback Design

Using cvx

G = ss(A, [Bw, Bul, [Cz; Cv], [Dzw, Dzu; Dvw, zeros(nv,nu)l);

cvx_begin sdp
variable Q(nm,n) symmetric;
variable Y(nu,n);
variable gamma;

minimize gamma;

subject to
Q > 0;
[Q*A° + A*Q + BuxY + Y’*Bu’, Bw, Q*Cz’ +Y’*Dzu’;
Bw’ , -gamma*eye (nu,nu), Dzw’;
Cz*Q + DzuxY , Dzw, -gammaxeye (nv,nv)] < 0;
cvx_end
F = Y*xinv(Q);

% check closed-loop poles
Aclp = A + BuxF;
disp(eig(Aclp));
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Controller Design Using LMIs

Controller dynamics

The controller dynamics are represented by a state space model

C(t) = A ((t) + Bro(t)
u(t) = O ((t) + Drv(t)

The state space realization of the closed loop-system is

Ze(t) = Acze(t) + Bew(t)
2(t) = Cexe(t) + Dew(t)

where

A = A+ ByDgC, B,Cg B. — By + BuD g Dyw
¢ BKCU AK ’ ¢ BKD'uw ’

Ce= [Cz + D2uDgCy DzuCK] y D¢ = Dzw+ DzuDg Dyw
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Controller Design Using LMIs

Hoo Output Feedback

A | Bw  Bu with (A, B,,) assumed to be stabilizable
P(s)=| C., | Dsw Dy and (Cy, A) assumed to be detectable
Cyv | Dow 0

for output feedback (assume Dy = 0):

Ak | Bk

u=K(s)y= [ e | 0

A B.Cxk By
G(s) = Fi(P(s), K(s)) = | BkCo Ak | BkDovw
Cz DzuCK | Dzw

Ac | Be

G(s) =
(s) C. D,
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Controller Design Using LMIs

Hoo Output Feedback

The LMI condition is :

C
BTcP —yI DTc¢| <0

ATpP+PA. PB. CT
Ce D, —oI

Partition P as:

X R 1Y S
po[X Tl
Define an inertia-preserving transform via:
Y I I X
PTY = TX where Ty = [ST 0] s TX = [0 RT]
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Controller Design Using LMIs

Hoo Output Feedback

The matrices T'x and Ty can be used to transform the nonlinear constraint into a linear one.
This transformation is based on the fact that

TIPATy =TT ATy = ~
YTy T AX Ay Ax XA+ BrC,

AY + B.Ck A ]

By

P - i
Ty PB, = [XBw chop| Gy =[ey 4Dl c]

where

A = RAgST + RBiCoY + XBu,Cr ST + XAY

By = RBg
Crx = CgST
Dy = Dg
Y I
TEPTy = [1 X]
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Controller Design Using LMIs

Hoo Output Feedback

The LMI condition is :

ATpP+PA. PB. CT
BTcP —yI DT¢| <0, and P > 0.
Ce. D, —~I
¢ 0 0] [ATP+PA. PB. CF][Iy 0 O
0 I 0 BTPp —yI DT 0 I o=
0 0 I C. D. —~IJ] |0 o0 I
Ay +vAT 4+ B, Cx + CEBT AL + A By ycT + ¢k pl,
* ATX + XA+ B Cy + CF'BE  XBuw + Bx Dyw cr
* * —~I T
* * * —~1
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Controller Design Using LMIs

Hoo Output Feedback

minimize 0%
. Y I
subject to : [I X] >0
AY +YAT 4+ B, Ci + CEBT AL 4+ A Buw ycT 4+ ¢k pl,
* ATX + XA+ BgCy + CTBE XBy + BxDyw cr <o
* * —~1 DZw
* * * —~1

If this has a solution v, X, Y, A, Bx and C g then
PPl =1 . RST =1—-vYX  (solve for R and S)
Solve for Ay, By and Cg from: A = RAgST + RBKCy,Y + XBy,Cxr ST + XAY

Bx = RBg
Ck =CgST
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Hoo Output Feedback Design

Using cvx

G = ss(A, [Bw, Bul, [Cz; Cv], [Dzw, Dzu; Dvw, zeros(nv,nu)l);
cvx_begin sdp

variable X(m,n) symmetric;

variable Y(n,n) symmetric;

variable Ah(n,n); % Ah is a tilde A
variable Bh(n,n); % Bh is a tilde B
variable Ch(nu,n); % Ch is a tilde C

variable gamma;

minimize gamma;
subject to

[Y, eye(n,n);
eye(n,n), X] > 0;

[A*Y + BuxCh + Y#A’ + Ch’*Bu’, A+Ah’, Bw, Y*Cz’ + Ch’*Dzu’;
A’+Ah, X+A + A’*Y + Bh*Cv + Cv’*Bh’, X*Bw + Bh*Dvw, Cz’;
Bw’, Bw’*X + Dvw’*Bh’, -gamma*eye(nw,nw), Dzw’;
Cz*Y + DzuxCh, Cz, Dzw, -gammaxeye (nz,nz)] < 0;
cvx_end
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Hoo Output Feedback Design

Using cvx

% Reconstruct the controller by inverting the linearizing transform.
MNt = eye(n,n) - X*Y; % not symmetric
[Umn, Smn, Vmn] = svd(MNt);

sSmn = sqrt(diag(Smn)) % take the square roots
isSmn = 1./sSmn; % their inverse

M = Umn*diag(sSmn) ; N = Vmn*diag(sSmn) ;

% Calculate inverses

iM = diag(isSmn)*Umn’; iN = diag(isSmn)*Vmn’;

% Real use you should check whether the inverse is succeeded or not

DK = zeros(nu,nv);

BK = iN*Bh;

CK = Ch*(iM)’;

AK = iN*(Ah - Bh*Cv*X - Y*Bu*xCh - Y*A*X)*(iM)’;

K = ss(AK,BK,CK,DK);

Lecture Inequalities



Reference

Herbert Werner " Lecture note on Optimal and Robust Control’,
2012

Roy Smith "Lecture note on Robust Control & Convex

Optimization", 2012

Lecture 11: Linear Matrix Inequalities <26/26 »



