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Linear Matrix Inequalities

A linear matrix inequality (LMI) has the form

M(p) = M0 + p1M1 + · · ·+ pNMN < 0

where M0,M1, . . . ,MN are given symmetric matrices, p =
[
p1 p2 . . . , pN

]T
is a column

vector of real scalar variables.

I the matrix inequality M(p) < 0 means that the left hand side is negative definite.

I An important property of LMIs is that the set of all solutions p is convex.

I LMIs can be used as constraints for the minimization problem

min
p

cT p subject to M(p) < 0

where the elements of the vector c in the linear cost function are weights on the

individual decision variables.
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Linear Matrix Inequalities

I the convex problem can be solved by efficient, polynomial-time interior-point methods.

I Several LMI constraints can be combined into a single constraint of type.

I for example the constraint

M1(p) < 0 and M2(p) < 0

is equivalent to the single LMI constraint

[
M1(p) 0

0 M2(p)

]
< 0
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Pole Region Constraints

I the condition that the poles of a system are located within a given region in the

complex plane can be formulated as an LMI constraint.

I the dynamic system ẋ(t) = Ax(t). This system is stable if an only if the matrix A has

all eigenvalues in the left half plane, which is true iff there exists a positive definite,

symmetric matrix P that satisfies the Lyapunov inequality

PAT +AP < 0

I This inequality is linear in the matrix variable P , and one can use LMI solvers to search

for solutions.

I assume that A is a 2 by 2 matrix and write the symmetric matrix variable P as

P =

[
p1 p2

p2 p3

]
= p1

[
1 0

0 0

]
+ p2

[
0 1

1 0

]
+ p3

[
0 0

0 1

]
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Pole Region Constraints

I the LMI represents a necessary and sufficient condition for the matrix A to have all

eigenvalues in the left half plane.

I one can express an arbitrary region D in the complex plane in terms of two matrix

L = LT and M as the set of all complex numbers that satisfy and LMI constraint.

D = {s ∈ C : L+Ms+MT s̄ < 0}

where s̄ denotes the complex conjugate of s.

I Such a region is called an LMI region.

Lecture 11: Linear Matrix Inequalities J 5/26 I }



Pole Region Constraints
Example: poles region constraint
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From Re s < αr, we have

s+ s̄

2
< αr

s+ s̄− 2αr < 0.
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Pole Region Constraints
Example: poles region constraint

and Im s > αl

s+ s̄

2
> αl

−s− s̄+ 2αl < 0.

Thus

Lv =

[
2αl 0

0 −2αr

]
, Mv =

[
−1 0

0 1

]

For the conic sector, a complex number s = x+ jy lies in the conic sector if and only if∣∣∣∣xy
∣∣∣∣ < tanβ =

sinβ

cosβ
and x cosβ < 0.

Rewrite the above conditions in the form

x2

y2
<

sin2 β

cos2 β
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Pole Region Constraints
Example: poles region constraint

we get

x2 cos2 β − y2 sin2 β < 0

x cosβ −
y2 sin2 β

x cosβ
< 0

By Schur’s complement we have

Mcs+M∗
c s̄ =

[
2x cosβ 2jy sinβ

−2jy sinβ 2x cosβ

]
< 0

Thus

Lc =

[
0 0

0 0

]
, Mc =

[
cosβ − sinβ

sinβ cosβ

]

The two constraints can be combined as

L =

[
Lc 0

0 Lv

]
, M =

[
Mc 0

0 Mv

]
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Constraints on the H∞ Norm

Consider the system with transfer function T (s) as state space realization

ẋ(t) = Ax(t) +Bw(t), x(0) = 0

z(t) = Cx(t) +Dw(t)

Assuming that T (s) is stable, the H∞ norm of the system is

∥T∥2∞ = max
w ̸=0

∫ ∞

0
zT (t)z(t)dt∫ ∞

0
wT (t)w(t)dt

, x(0) = 0.

It follows that ∥T∥∞ < γ is equivalent to

∫ ∞

0
(zT (t)z(t)− γ2wT (t)w(t))dt < 0

Holding true for all square integrable, non-zero w(t).
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Constraints on the H∞ Norm

Introduce a Lyapunov function V (x) = xTPx with P = PT > 0. Since x(0) = x(∞) = 0,

the constraint ∥T∥∞ < γ is enforced by the existence of a matrix P = PT > 0 such that

dV (x)

dt
+

1

γ
zT (t)z(t)− γwT (t)w(t) < 0

for all x(t), w(t); to turn into a LMI, substitute

dV (x)

dt
= xT (ATP + PA)x+ xTPBw + wTBTPx, z = Cx+Dw

To obtain

[
x

w

]T ATP + PA+ 1
γ
CTC PB + 1

γ
CTD

BTP + 1
γ
DTC −γI + 1

γ
DTD

[
x

w

]
< 0
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Constraints on the H∞ Norm

For ∥T∥∞ < γ the above must hold for all x and w, thus the block matrix must be negative

definite. The condition can be rewritten as[
ATP + PA PB

BTP −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

By Schur complement, we have

Theorem (Bound real lemma)

∥T∥∞ < γ if and only if there exists a positive definite, symmetric matrix P that satisfies the

linear matrix inequality

ATP + PA PB CT

BTP −γI DT

C D −γI

 < 0
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Constraints on the H∞ Norm

Using the congruence transformation and Q = P−1 ,

Q 0 0

0 I 0

0 0 I

ATP + PA PB CT

BTP −γI DT

C D −γI

Q 0 0

0 I 0

0 0 I

 < 0.

An equivalent form

QAT +AQ B QCT

BT −γI DT

CQ D −γI

 < 0
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Constraints on the H∞ Norm
Using cvx

sys = rss(3,3);

A = sys.a; B = sys.b; C = sys.c; D = sys.d;

n = size(A,1); nu = size(B,2); ny = size(D,1);

cvx_begin sdp

variable P(n,n) symmetric

variable gamma;

minimize gamma;

subject to

P > 0;

[A’*P + P*A, P*B, C’;

B’*P , -gamma*eye(nu), D’;

C, D, -gamma*eye(ny)] < 0;

cvx_end

display(P);
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Controller Design Using LMIs
Generalized Plant

P

K

z

vu

w

The generalized plant P (s) has a state space realization

ẋ(t) = Ax(t) +Bww(t) +Buu(t)

z(t) = Czx(t) +Dzww(t) +Dzuu(t)

v(t) = Cvx(t) +Dvww(t)
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Controller Design Using LMIs
H∞ State Feedback

State feedback u = Fx yields the closed-loop system

ẋ(t) = (A+BuF )x(t) +Bww(t)

z(t) = (Cz +DzuF )x(t) +Dzww(t)

Replacing the system matrices in Bounded real lemma by the closed-loop matrices and using

the variable transformation Y = FQ leads to the following result: a necessary and sufficient

condition for a state feedback controller to achieve a H∞-norm less than γ i s the existence

of matrices P = PT > 0 and Y that satisfy

QAT +AQ+ Y TBT
u +BuY Bw QCT

z + Y TDT
zu

BT
w −γI DT

zw

CzQ+DzuY Dzw −γI

 < 0, F = Y Q−1
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Controller Design Using LMIs
H∞ State Feedback

G(s) =

 A Bw Bu

Cz Dzw Dzu

I 0 0

 with (A,Bu) assumed to be stabilizable

minimize γ

subject to

Q = QT > 0QAT +AQ+ Y TBT
u +BuY Bw QCT

z + Y TDT
zu

BT
w −γI DT

zw

CzQ+DzuY Dzw −γI

 < 0

If this has a solution then

F = Y Q−1
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H∞ State Feedback Design
Using cvx

G = ss(A, [Bw, Bu], [Cz; Cv], [Dzw, Dzu; Dvw, zeros(nv,nu)]);

cvx_begin sdp

variable Q(n,n) symmetric;

variable Y(nu,n);

variable gamma;

minimize gamma;

subject to

Q > 0;

[Q*A’ + A*Q + Bu*Y + Y’*Bu’, Bw, Q*Cz’ +Y’*Dzu’;

Bw’ , -gamma*eye(nu,nu), Dzw’;

Cz*Q + Dzu*Y , Dzw, -gamma*eye(nv,nv)] < 0;

cvx_end

F = Y*inv(Q);

% check closed-loop poles

Aclp = A + Bu*F;

disp(eig(Aclp));
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Controller Design Using LMIs
Controller dynamics

The controller dynamics are represented by a state space model

ζ̇(t) = AKζ(t) +BKv(t)

u(t) = CKζ(t) +DKv(t)

The state space realization of the closed loop-system is

ẋc(t) = Acxc(t) +Bcw(t)

z(t) = Ccxc(t) +Dcw(t)

where

Ac =

[
A+BuDKCv BuCK

BKCv AK

]
, Bc =

[
Bw +BuDKDvw

BKDvw

]
,

Cc =
[
Cz +DzuDKCv DzuCK

]
, Dc = Dzw +DzuDKDvw
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Controller Design Using LMIs
H∞ Output Feedback

P (s) =

 A Bw Bu

Cz Dzw Dzu

Cv Dvw 0

 with (A,Bu) assumed to be stabilizable

and (Cv , A) assumed to be detectable

for output feedback (assume DK = 0):

u = K(s)y =

[
AK BK

CK 0

]
y

G(s) = Fl(P (s),K(s)) =

 A BuCK Bw

BKCv AK BKDvw

Cz DzuCK Dzw


G(s) =

[
Ac Bc

Cc Dc

]
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Controller Design Using LMIs
H∞ Output Feedback

The LMI condition is : AT
c P + PAc PBc CT

c

BT cP −γI DT c

Cc Dc −γI

 < 0

Partition P as:

P =

[
X R

RT ∗

]
and P−1 =

[
Y S

ST ∗

]

Define an inertia-preserving transform via:

PTY = TX where TY =

[
Y I

ST 0

]
, TX =

[
I X

0 RT

]
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Controller Design Using LMIs
H∞ Output Feedback

The matrices TX and TY can be used to transform the nonlinear constraint into a linear one.

This transformation is based on the fact that

TT
Y PAcTY = TT

XAcTY =

[
AY +BuC̃K A

ÃK XA+ B̃KCv

]

TT
Y PBc =

[
Bw

XBw + B̃KDvw

]
, CcTY =

[
CzY +DzuC̃K Cz

]

where

ÃK = RAKST +RBKCvY +XBuCKST +XAY

B̃K = RBK

C̃K = CKST

D̃K = DK

TT
Y PTY =

[
Y I

I X

]

Lecture 11: Linear Matrix Inequalities J 21/26 I }



Controller Design Using LMIs
H∞ Output Feedback

The LMI condition is :AT
c P + PAc PBc CT

c

BT cP −γI DT c

Cc Dc −γI

 < 0, and P > 0.

TT
Y 0 0

0 I 0

0 0 I

AT
c P + PAc PBc CT

c

BT
c P −γI DT

c

Cc Dc −γI

TY 0 0

0 I 0

0 0 I

 =


AY + Y AT + BuC̃K + C̃T

KBT
u ÃT

K + A Bw Y CT
z + C̃T

KDT
zu

∗ ATX + XA + B̃KCv + CT
v B̃T

K XBw + B̃KDvw CT
z

∗ ∗ −γI DT
zw

∗ ∗ ∗ −γI

 < 0
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Controller Design Using LMIs
H∞ Output Feedback

minimize γ

subject to :

[
Y I

I X

]
> 0


AY + Y AT + BuC̃K + C̃T

KBT
u ÃT

K + A Bw Y CT
z + C̃T

KDT
zu

∗ ATX + XA + B̃KCv + CT
v B̃T

K XBw + B̃KDvw CT
z

∗ ∗ −γI DT
zw

∗ ∗ ∗ −γI

 < 0

If this has a solution γ,X, Y, ÃK , B̃K and C̃K then

PP
−1

= I =⇒ RS
T

= I − Y X (solve for R and S)

Solve for AK , BK and CK from: ÃK = RAKST + RBKCvY + XBuCKST + XAY

B̃K = RBK

C̃K = CKST
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H∞ Output Feedback Design
Using cvx

G = ss(A, [Bw, Bu], [Cz; Cv], [Dzw, Dzu; Dvw, zeros(nv,nu)]);

cvx_begin sdp

variable X(n,n) symmetric;

variable Y(n,n) symmetric;

variable Ah(n,n); % Ah is a tilde A

variable Bh(n,n); % Bh is a tilde B

variable Ch(nu,n); % Ch is a tilde C

variable gamma;

minimize gamma;

subject to

[Y, eye(n,n);

eye(n,n), X] > 0;

[A*Y + Bu*Ch + Y*A’ + Ch’*Bu’, A+Ah’, Bw, Y*Cz’ + Ch’*Dzu’;

A’+Ah, X+A + A’*Y + Bh*Cv + Cv’*Bh’, X*Bw + Bh*Dvw, Cz’;

Bw’, Bw’*X + Dvw’*Bh’, -gamma*eye(nw,nw), Dzw’;

Cz*Y + Dzu*Ch, Cz, Dzw, -gamma*eye(nz,nz)] < 0;

cvx_end
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H∞ Output Feedback Design
Using cvx

% Reconstruct the controller by inverting the linearizing transform.

MNt = eye(n,n) - X*Y; % not symmetric

[Umn, Smn, Vmn] = svd(MNt);

sSmn = sqrt(diag(Smn)) % take the square roots

isSmn = 1./sSmn; % their inverse

M = Umn*diag(sSmn); N = Vmn*diag(sSmn);

% Calculate inverses

iM = diag(isSmn)*Umn’; iN = diag(isSmn)*Vmn’;

% Real use you should check whether the inverse is succeeded or not

DK = zeros(nu,nv);

BK = iN*Bh;

CK = Ch*(iM)’;

AK = iN*(Ah - Bh*Cv*X - Y*Bu*Ch - Y*A*X)*(iM)’;

K = ss(AK,BK,CK,DK);
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