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Input Disturbance
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I The sensitivity S is the transfer function from an output disturbance to the controlled

output.

I when |S| is made small at low frequencies, the closed-loop system has a built-in

capability of good rejection of output disturbances.

I this is not guaranteed for disturbances occurring at the plant input.

I from the previous Design 4, even the response to a reference step is excellent, the

closed-loop system shows poor rejection of input disturbances.
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Input Disturbance
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Input Disturbance

I input disturbances are likely to occur

I in the present example, they could be caused by hysteresis and friction at the aircraft

control surfaces.

I the design needs to be modified to improve its disturbance rejection.

I Consider the transfer function from the input disturbance d to the controlled output y.

We have (assuming r = 0)

y = G(d−Ky) thus (I +GK)y = Gd

and

y = (I +GK)−1Gd = SGd
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Input Disturbance
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Input Disturbance

I the previous plot shows the singular values of the transfer function SG – it clearly

displays the resonant peak responsible for the poor response.

I the problem is that the pole-zero cancellations are not visible when examining the

transfer function S = (I +GK)−1 and T = (I +GK)−1GK, but are visible in

SG = (I +GK)−1G.

I Considering the SISO version of this problem

G(s) =
ng(s)

dg(s)
, K(s) =

nk(s)

dk(s)

we have

SG =
G

1 +GK
=

ngdk

dgdk + ngnk
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Input Disturbance

I a pole-zero cancellation means that the polynomials dg and nk have a common factor,

so we can write

dg = d̄g d̃g and nk = n̄kd̃g

where d̃g contains the plant poles that are cancelled by controller zeros.

I we have

SG =
ngdk

d̃g(d̄gdk + ngn̄k)

which shows that the cancelled plant poles turn up as poles of the transfer function

from d to y.
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Input Disturbance

I to prevent such undersirable pole-zero cancellations, we can shape the transfer function

SG.
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I the weighting filter W1 shapes SG, and the second filter W2 shapes the transfer

function from d to the controller output u.

I the transfer function from d to u is

TK = −(I +KG)−1KG
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Input Disturbance

I this function has the same structure as the complementary sensitivity, only the loop

gain GK is replaced by KG.

I Defining z =
[
zT1 zT2

]T
, we can compute the controller that minimizes the H∞

norm of the closed-loop transfer function from d to z.

I with the choices

w1(s) =
ω1/M1

s+ ω1
and w2(s) =

c

M2

s+ ω2

s+ cω2

where we fix c = 103.

I the new design is

ω1 M1 ω2 M2

10−3 10−7 5 0.25
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Input Disturbance
response to input disturbance d(t) =

[
σ(t) 0 0

]T
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Input Disturbance
response to r(t) =

[
σ(t) 0 0

]T
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Input Disturbance
Singular values of SG and scaled constraint
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Input Disturbance
Singular values of TK and scaled constraint
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Input Disturbance

I the plots show that the constraint on SG is active at low frequencies and the

constraint on TK at high frequencies.

I Since the reference input r has not been considered in the design, we would expect the

tracking performance to be inferior to that in Design 4.

I it is confirmed by the response to a reference step input.

I We can shape the sensitivity S by shaping the sensitivity SG because S is contained a

a factor in SG.
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