Lecture 10: Input Disturbance

Dr.-Ing. Sudchai Boonto Assistant Professor

Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi **Thailand**

- \blacktriangleright The sensitivity S is the transfer function from an output disturbance to the controlled output.
- \triangleright when $|S|$ is made small at low frequencies, the closed-loop system has a built-in capability of good rejection of output disturbances.
- \blacktriangleright this is not guaranteed for disturbances occurring at the plant input.
- **In** from the previous Design 4, even the response to a reference step is excellent, the closed-loop system shows poor rejection of input disturbances.

- \blacktriangleright input disturbances are likely to occur
- \blacktriangleright in the present example, they could be caused by hysteresis and friction at the aircraft control surfaces.
- \blacktriangleright the design needs to be modified to improve its disturbance rejection.
- \triangleright Consider the transfer function from the input disturbance d to the controlled output y . We have (assuming $r = 0$)

$$
y=G(d-Ky)\quad \text{ thus }\quad (I+GK)y=Gd
$$

and

$$
y = (I + GK)^{-1}Gd = SGd
$$

- In the previous plot shows the singular values of the transfer function $SG -$ it clearly displays the resonant peak responsible for the poor response.
- \blacktriangleright the problem is that the pole-zero cancellations are not visible when examining the transfer function $S = (I + GK)^{-1}$ and $T = (I + GK)^{-1}GK$, but are visible in $SG = (I + GK)^{-1}G$.
- **In Considering the SISO version of this problem**

$$
G(s) = \frac{n_g(s)}{d_g(s)}, \qquad K(s) = \frac{n_k(s)}{d_k(s)}
$$

we have

$$
SG = \frac{G}{1+GK} = \frac{n_g d_k}{d_g d_k + n_g n_k}
$$

 \blacktriangleright a pole-zero cancellation means that the polynomials d_g and n_k have a common factor, so we can write

$$
d_g = \bar{d}_g \tilde{d}_g \quad \text{ and } \quad n_k = \bar{n}_k \tilde{d}_g
$$

where \tilde{d}_g contains the plant poles that are cancelled by controller zeros.

 \blacktriangleright we have

$$
SG = \frac{n_g d_k}{\tilde{d}_g (\bar{d}_g d_k + n_g \bar{n}_k)}
$$

which shows that the cancelled plant poles turn up as poles of the transfer function from *d* to *y*.

 \blacktriangleright to prevent such undersirable pole-zero cancellations, we can shape the transfer function *SG*.

- \blacktriangleright the weighting filter W_1 shapes SG , and the second filter W_2 shapes the transfer function from *d* to the controller output *u*.
- In the transfer function from d to u is

- \blacktriangleright this function has the same structure as the complementary sensitivity, only the loop gain *GK* is replaced by *KG*.
- ▶ Defining $z = \begin{bmatrix} z_1^T & z_2^T \end{bmatrix}^T$, we can compute the controller that minimizes the \mathcal{H}_∞ norm of the closed-loop transfer function from *d* to *z*.
- \blacktriangleright with the choices

$$
w_1(s) = \frac{\omega_1/M_1}{s + \omega_1} \quad \text{ and } \quad w_2(s) = \frac{c}{M_2} \frac{s + \omega_2}{s + c\omega_2}
$$

where we fix $c = 10^3$.

 \blacktriangleright the new design is

response to input disturbance $d(t) = \begin{bmatrix} \sigma(t) & 0 & 0 \end{bmatrix}^T$

Input Disturbance response to $r(t) = [\sigma(t) \quad 0 \quad 0]^T$

Singular values of *SG* and scaled constraint

Singular values of T_K and scaled constraint

- \blacktriangleright the plots show that the constraint on SG is active at low frequencies and the constraint on *T^K* at high frequencies.
- \blacktriangleright Since the reference input r has not been considered in the design, we would expect the tracking performance to be inferior to that in Design 4.
- \blacktriangleright it is confirmed by the response to a reference step input.
- \blacktriangleright We can shape the sensitivity *S* by shaping the sensitivity *SG* because *S* is contained a a factor in *SG*.

Reference

1 Herbert Werner "Lecture note on *Optimal and Robust Control*",

2012