INC 692: The Overview of Optimal and Robust Control

Dr.-Ing. Sudchai Boonto Assistant Professor

Department of Control System and Instrumentation Engineering King Mongkut's Unniversity of Technology Thonburi Thailand

Systematic Control Design Process

- 1 Modeling a mathematic model
- 2 Analysis
- 3 Design a controller
- 4 Implementation

each step can be repeated.

Classical control course

- Modeling as a transfer function
 - Laplace transform
 - Mechanical, electrical, electromechanical systems
- Analysis
 - Time response, frequency response
 - Stability: Routh-Hurwitz criterion, Nyquist criterion
- Design
 - Root locus technique, frequency response technique
 - PID control, lead/lag compensator
- MATLAB simulation, laboratory experiments

- Feedback (speaker) amplifier design, Single Input Single Output (SISO)
- Frequency domain, **Graphical techniques**, trials and errors
- Emphasized design tradeoffs
 - Effects of uncertainty
 - Nonminimum phase systems
 - Performance vs. Robustness
- Problems with classical control Overwhelmed by complex systems
 - Highly coupled multiple input, multiple output systems
 - Nonlinear systems
 - Time-domain performance specifications

State-space control course

- Modeling as a state-space model
 - Differential or difference equation
 - Linear algebra
- Analysis
 - Stability, controllability, observability
 - Realization, minimality
- Design
 - State feedback, observer
 - LQR, LQG
- MATLAB simulation, laboratory experiments

Early Year:

- Wiener (1930's 1950's) Generalized harmonic analysis, cybernetics, filtering, prediction, smoothing
- Kolmogorov (1940's) Stochastic processes
- Linear and nonlinear programming (1940's -)

Optimal Control:

- Bellman's Dynamic Programming (1950's)
- Pontryagin's Maximum Principle (1950's)
- Linear optimal control (late 1950's and 1960's)
 - Kalman Filtering
 - Linear-Quadratic (LQ) regulator problem
 - Stochastic optimal control (LQG)

Brief history of control theory

- Classical control (-1950)
 - Transfer function
 - Frequency domain
- Modern control (1960-)
 - State-space model
 - Time domain
- Post(neo)-modern control (1980-)
 - Robust control
 - LPV control
 - etc.

Brief history of control theory

Figure 1.1: A picture history of control

Brief history of control theory

"You want proof? I'll give you proof!"

The true story of Post Modern Control System Engineers.

- We are not mad but want proofs.
- Improve performance of 5-10% would be the great success.

Motivation: ACC Benchmark problem

Two-cart (frictionless) system

Differential equations

$$m_1 \ddot{x}_1 = u(t) - k(x_1(t) - y(t))$$
$$m_2 \ddot{y} = -k(y(t) - x_1(t))$$

Transfer function

$$P(s) = \frac{y(s)}{u(s)} = \frac{k}{s^2(m_1m_2s^2 + k(m_1 + m_2))}$$

INC 692: The Overview of Optimal and Robust Control

ACC Benchmark problem

Step Response

ACC Benchmark problem Monte Carlo (random) sampling

- New assumption
 - Mass and spring constant are uncertain

$$k, m_1, m_2 \in [0.8, 1.2]$$

 $P(s) = \frac{k}{s^2(m_1m_2s^2 + k(m_1 + m_2))}$

For perturbations of these parameters, how will the CL stability and performance change?

ACC Benchmark problem Monte Carlo (random) sampling

ACC Benchmark problem

New assumption

Mass and spring constant are uncertain

$$k = 6 \pm 20\%, m_1, m_2 \in [0.8, 1.2]$$
$$P(s) = \frac{k}{s^2(m_1m_2s^2 + k(m_1 + m_2))}$$

For perturbations of these parameters, how will the CL stability and performance change?

ACC Benchmark problem

Open-loop frequency response

Closed-loop step response

- By Monte Carlo sampling, we can never be 100% sure that the closed-loop system is stable and performs well for any perturbation.
- Without random sampling, can we know if perturbed systems are always stable and have satisfactory performance for any perturbation?
- What is the "smallest" perturbation to violate stability and performance spaces?
- What are the worst-case perturbation and performance?
- For specified uncertainty and performance specs, can we design a controller which works robustly?

$$F - F_{\text{friction}} = m\ddot{x}$$

- Mass m varies between 100 ton to 250 ton
- Friction force F_{friction} is an unknown disturbance
- How to suppress the disturbance?
- How to design a robust controller, i.e. a controller that achieves stability and good performance for all values of m?

Consider a multi-input/multi-output (MIMO) system:

$$\begin{bmatrix} Y_1(s) \\ Y_2(s) \end{bmatrix} = G(s) \begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix} \quad \text{ with } \quad G(s) = \begin{bmatrix} \frac{1}{s+1} & \frac{4}{s+8} \\ \frac{0.5}{s+1} & \frac{1}{s+1} \end{bmatrix}$$

Suppose we neglect off-diagonal terms and choose the control structure

$$U_1(s) = K_1(s)(R_1(s) - Y_1(s))$$
 and $U_2(s) = K_2(s)(R_2(s) - Y_2(s))$, i.e.,

$$\begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix} = K(s) \begin{bmatrix} R_1(s) - Y_1(s) \\ R_2(s) - Y_2(s) \end{bmatrix} \text{ with } K(s) = \begin{bmatrix} K_1(s) & 0 \\ 0 & K_2(s) \end{bmatrix}$$

with $K_1(s) = 20$ and $K_2(s) = 18$.

INC 692: The Overview of Optimal and Robust Control

Why is the closed loop unstable? **ans:** G has zero in right half-plane, and controllers gains are too big

$$G(s) = \begin{bmatrix} \frac{1}{s+1} & \frac{4}{s+8} \\ \frac{0.5}{s+1} & \frac{1}{s+1} \end{bmatrix}$$

- How can we determine properties of MIMO systems?
- How should we design MIMO controllers for MIMO plants?

Bode plots are similar, differences only for large frequencies. Place poles far from stability border in left half-plane to be on safe side.

- What means "good robustness" "to be on safe side"?
- How to analyze robustness?
- How to achieve robustness systematically?

INC 692: The Overview of Optimal and Robust Control

Why is robust control important?

- A model is never precise!
 - Difficulty in identifying parameters and high frequency plant dynamics
 - Product variability
 - Uncertainty in disturbances, references, and measurement noise
- Without taking such uncertainties into account, we never know if the designed controller works in actual implementations.

Robust Controller Design Process

- 1 Modeling an uncertain model
- 2 Analysis
- 3 Design a controller
- 4 Implementation

each step can be repeated.

INC 692: The Overview of Optimal and Robust Control

Robust Controller Design Process

Main problems

- Modeling: Uncertainty modeling
 - Build a mathematical model of uncertainties in the plant and the disturbance signals.
- Analysis: Robustness analysis
 - Given an open-loop or closed-loop system, determine if the system satisfies robust stability and/or robust performance
- Design: Robust controller design
 - Design and controller guaranteeing robust stability and/or robust performance.

Robust Controller Design Process

Some terminologies

- A system (open-loop or closed-loop)
 - is nominally stable (NS) if it is stable with no model uncertainty.
 - satisfies nominal performance (NP) if it satisfies performance spaces with no model uncertainty.
 - is robustly stable (RS) if it is stable for any plant with specified model uncertainty.
 - satisfies robust performance (RP) if it satisfies performance specs for any plant with specified model uncertainty.

[1] Doyle, et al, "Design example using $\mu\text{-synthesis: space shuttle lateral axis FCS during reentry", IEEE CDC, 1986$

[2] Mu toolbox for MATLAB, user guide

INC 692: The Overview of Optimal and Robust Control

Aerodynamic coefficients: relation between forces/torques and sides slip/rudder/elevon angle

- Estimated from theoretical predications, numerical calculations, experiments in wind tunnels and/or flight tests
- Shuttle at e.g. Mach 0.9 → mixture of subsonic and supersonic flows
- Highly uncertain coefficients

- Each measurement is corrupted by noise
- The measurement noise becomes more severe with at higher frequencies
- Actuators have dynamics and saturations
- There are possibly time delays in control commands

Stability? Performance? of Real Life System

INC 692: The Overview of Optimal and Robust Control

Example 3: Hard Disk Drive Control

 Smaller devices with larger information density require smaller track width and lower tolerance in positioning of read/write heads

- Rotational speed of 15000 rpm., 30000 tracks per inch.
- Presence of parameter variations and uncertainties, nonlinearities and noise

Example 3: Hard Disk Drive Control

- All parameters of harddrive have bounded tolerances.
- t_d are torque disturbances
- $H_d(s)$ has uncertain resonances
- the output y is included a measurement noises

Example 4: Distillation Column

- Separation and purification of chemicals based on difference at boiling points of multicomponent liquids
- Difficult to control:
 - highly nonlinear process
 - high order models
 - linearized models often ill-conditioned
 - parametric gain uncertainties
 - time delays (up to 1 min at input)

Example 4: Distillation Column

Skogestad, et al., Robust Control of ill-conditioned plants: high purity distillation, IEEE TAC, 1988
Gu, Petkov, Konstantinov, Robust Control Design with MATLAB, Springer-Verlag, 2005

Conclusion

- Space shuttle reentry control: ensure robust stability (safety) and trajectory tracking in spite of complex physics (subsonic and supersonic aerodynamics),
- Harddrive control: pushing the performance of the devices to the limits, while accounting for tolerances in series device production
- Distillation column: increase efficiency of high order nonlinear system

Sources of uncertainty:

- Signal uncertainty:
 - noise, exogenous disturbances;
 - unknown reference tracking commands.
- Dynamic uncertainty:
 - unmodeled dynamics;
 - parametric variations;
 - operating point changes;
 - nonlinearities not captured by the linear model;
 - non-repeatable system behavior.
- Dynamic uncertainty is potentially destabilizing under feedback
- Robust control techniques: deal with uncertainty in a systematic way. We have to model the uncertainties.

$$G(s) = \frac{g}{s^2(1+s\theta)}, \qquad g \in [g_1, g_2], \quad \theta \in [\theta_1, \theta_2]$$
$$g = g_0 + \frac{g_2 - g_1}{2}\delta_g, \qquad g_0 = \frac{g_1 + g_2}{2}, \qquad |\delta_g| \le 1$$
$$\theta = \theta_0 + \frac{\theta_2 - \theta_1}{2}\delta_\theta, \qquad \theta_0 = \frac{\theta_1 + \theta_2}{2}, \qquad |\delta_\theta| \le 1$$

Nominal system: $G_0(s) = \frac{g_0}{s^2(1+s\theta_0)}$ A set of perturbed systems: $G(s) = \frac{g(\delta)}{s^2(1+s\theta(\delta))}$

Robust control models: set descriptions

The perturbations, Δ , are specified by a class

$$\mathcal{X}_{\Delta} := \{\Delta | \Delta \text{ is causal, stable, LTI } \}$$

Typical (additive) robust control models:

$$\mathcal{P} := \{ P_{\mathsf{norm}} + \Delta | \Delta \in \mathcal{X}_{\Delta}, \|\Delta\| \le 1 \}.$$

Example

Introduction to Stability Robustness

Uncertainties

- Unmodelled dynamics
- Time variance
- varying loads
- Manufacturing variance
- Limited identification
- Actuators and sensors

Goals:

- Stability
- Tracking
- Disturbance rejection
- Sensor noise rejection

Robustness

- Nominal plat: $g = g_0 = 1$, $\theta = 0$
- Controller : $k = 1, T_d = \sqrt{2}, \quad T_0 = 1/10$
- Perturbed plant: $g \in [\underline{g}, \overline{g}], \quad \theta \in [0, \overline{\theta}]$

Closed loop characteristic polynomial:

$$\mathcal{X}(s) = \theta T_0 s^4 + (\theta + T_0) s^3 + s^2 + g T_d s + g k \quad \text{ stable for all } g \text{ and } \theta?$$

- Routh-Hurwitz criterion, Kharitonov, Edge theorem, etc.
- Synthesis? Closed-loop performance?

Gain and Phase Margins (Nyquist Plot)

Gain and Phase Margins (Nyquist Plot)

Nominal and perturbed Nyquist plots

Control Systems

Classical Control

- Rules of thumb, gain and phase margins
- > All allowed perturbations on dynamics were not quantized
- Only stability margins are guarded, not performance
- Mostly for SISO systems
- For MIMO systms: LQR, LQG

Robust Control

- Provide strict and well defined criteria
- Clear descriptions for the allowed perturbations
- Not only stability but also performance robustness
- MIMO systems (ready to use tools, $\mathcal{H}_{\infty}, \mu$)

Reference

- A. Damen and S. Weiland, *Robust Control*, Lecture Notes, TU/e, 2002.
- S. Skogestad and I. Postelthwaite, *Multivariable Feedback* Control: Analysis and Design, 2nd Edition, Wiley.
- C. W. Scherer, *Theory of Robust Control*, Lecture Notes, Delft University of Technology, 2001.
- G. E. Dullerud and F. Paganini, A Course in Robust Control Theory: A Convex Approach, Springer, 1999.
- J. C. Doyle, B. A. Francis and A. R. Tannenbaum, *Feedback Control Theory*, McMillan, 1992.
- **6** R. Nagamune, *A Lecture note on Multivariable feedback control*