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Systematic Control Design Process

Disturbance

Input Output
Reference Controller — Actuator LI Plant P

Sensor |

Modeling a mathematic model
Analysis
Design a controller

Implementation

each step can be repeated.
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Classical control course

>

Modeling as a transfer function

» Laplace transform
» Mechanical, electrical, electromechanical systems

v

Analysis
» Time response, frequency response
» Stability: Routh-Hurwitz criterion, Nyquist criterion

v

Design
» Root locus technique, frequency response technique
» PID control, lead/lag compensator

v

MATLAB simulation, laboratory experiments
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Classical control course

Classical control in the 1930's and 1940's Bode, Nyquist, Nichols,...

v

Feedback (speaker) amplifier design, Single Input Single
Output (SISO)

Frequency domain, Graphical techniques, trials and errors

v

v

Emphasized design tradeoffs

» Effects of uncertainty
» Nonminimum phase systems
» Performance vs. Robustness

Problems with classical control — Overwhelmed by complex

v

systems
» Highly coupled multiple input, multiple output systems

» Nonlinear systems
» Time-domain performance specifications
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State-space control course

Modeling as a state-space model

v

» Differential or difference equation
» Linear algebra

> Analysis
» Stability, controllability, observability
> Realization, minimality
> Design
» State feedback, observer
» LQR, LQG
» MATLAB simulation, laboratory experiments
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State-space control course

The origins of modern control theory

Early Year:
> Wiener (1930's - 1950's) Generalized harmonic analysis,
cybernetics, filtering , prediction, smoothing
» Kolmogorov (1940’s) Stochastic processes
» Linear and nonlinear programming (1940's -)
Optimal Control:
» Bellman's Dynamic Programming (1950's)
» Pontryagin's Maximum Principle (1950's)
» Linear optimal control (late 1950’s and 1960's)

» Kalman Filtering
» Linear-Quadratic (LQ) regulator problem
» Stochastic optimal control (LQG)
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Brief history of control theory

» Classical control (-1950)
» Transfer function
» Frequency domain
» Modern control (1960-)
» State-space model
» Time domain
» Post(neo)-modern control (1980-)

» Robust control
» LPV control
> etc.
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Brief history of control theory

A0 — 50's — 60's — 70's —

B0's — D05 —

Figure 1.1: A picture history of control
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Brief history of control theory

"You want proof? I'll give you proof!”

The true story of Post Modern Control System Engineers.
» We are not mad but want proofs.

» Improve performance of 5-10% would be the great success.
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Motivation: ACC Benchmark problem

Two-cart (frictionless) system

u k
—» M1 NNV ma
m

Differential equations

muin = u(t) = k(z1(t) = y(t))
maf = —k(y(t) — z1(t))

Transfer function

Cyls) i
P(s) = u(s)  s2(mimaos® + k(my +ma))
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ACC Benchmark problem

Open-loop frequency response Closed-loop step response

Step Response

GM = 19.dB, PM = 71 deg
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ACC Benchmark problem

Monte Carlo (random) sampling

» New assumption

» Mass and spring constant are uncertain

k,mq,mgq € [0.8,1.2]
k
s2(mymas? + k(my +ma2))

P(s) =

» For perturbations of these parameters, how will the CL

stability and performance change?
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ACC Benchmark problem

Monte Carlo (random) sampling

Open-loop frequency response Closed-loop step response
Step Response
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Luckily it seems robust.
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ACC Benchmark problem

» New assumption

» Mass and spring constant are uncertain

k = 6 % 20%, my, my € [0.8,1.2]
k

P(s) = s2(mymgs® + k(my +my))

» For perturbations of these parameters, how will the CL

stability and performance change?
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ACC Benchmark problem

Open-loop frequency response Closed-loop step response

Step Response
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Not robustly stable!




Some thoughts

» By Monte Carlo sampling, we can never be 100% sure that
the closed-loop system is stable and performs well for any
perturbation.

» Without random sampling, can we know if perturbed systems
are always stable and have satisfactory performance for any
perturbation?

» What is the “smallest” perturbation to violate stability and
performance spaces?

» What are the worst-case perturbation and performance?

» For specified uncertainty and performance specs, can we

design a controller which works robustly?

INC 692: The Overview of Optimal and Robust Control < 16/47 »



RCEIRNTE

F — Fiiction = mi

» Mass m varies between
100 ton to 250 ton

> Friction force F¥iction iS

an unknown disturbance

» How to suppress the disturbance?

» How to design a robust controller, i.e. a controller that

achieves stability and good performance for all values of m?
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MIMO System Example

Consider a multi-input/multi-output (MIMO) system:

VS| _ o (] R e
o) =0 [ea] e 0= 38 7

Suppose we neglect off-diagonal terms and choose the control

structure

Ui(s) = K1(s)(R1(s) — Yi(s)) and Ua(s) = Ka(s)(Ra(s) — Ya(s)), i.e.,

with K (s) =20 and Kj(s) = 18.
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MIMO System Example

K gives nice response for G1; But: overall closed loop is

K> gives nice response for Goo unstable
Step response of closed loops Step response of closed loops
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G = GuKi/(14+ G Ky)
Gea = G K /(1 + GoaK>) G.=GK(I + GK)_I
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MIMO System Example

Why is the closed loop unstable?
ans: G has zero in right half-plane, and controllers gains are too

big
14
_ | s+1  s+48
Gis)=1%: "1
s+1  s+1

» How can we determine properties of MIMO systems?

» How should we design MIMO controllers for MIMO plants?
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MIMO System Example 2

Bode magnltude plot of pIant models

20
Real system: 0
1 1 <
G = . -20
<l (8) = 3T s £ 102 2
& -40
(o]
Approximation: =
-60
Gs) = —
- 1 -80 e
st 102 100 102

Frequency
Bode plots are similar, differences only for large frequencies. Place

poles far from stability border in left half-plane to be on safe side.
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MIMO System Example 2

Controller:

Step response of closed loops

30(s+1)

S

K(S) =

achieves

_ GK 30
1+ GK  s+30

Output

Ga (5)

i.e. pole at s =—30
but simulation of real : : :

closed loop shows 0 0.5 1 1.5 2
instability! Time

» What means “good robustness” “to be on safe side”?
» How to analyze robustness?

» How to achieve robustness systematically?
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Why is robust control important?

» A model is never precise!

» Difficulty in identifying parameters and high frequency plant
dynamics
» Product variability

» Uncertainty in disturbances, references, and measurement noise

» Without taking such uncertainties into account, we never
know if the designed controller works in actual

implementations.
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Robust Controller Design Process

Disturbance

Ref Input Output
eference Controller Actuator Plant

Sensor [

Modeling an uncertain model
Analysis
Design a controller

Implementation

each step can be repeated.
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Robust Controller Design Process

Main problems

> Modeling: Uncertainty modeling
» Build a mathematical model of uncertainties in the plant and
the disturbance signals.
> Analysis: Robustness analysis
» Given an open-loop or closed-loop system, determine if the
system satisfies robust stability and/or robust performance
» Design: Robust controller design

» Design and controller guaranteeing robust stability and/or
robust performance.
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Robust Controller Design Process

Some terminologies

» A system (open-loop or closed-loop)

» is nominally stable (NS) if it is stable with no model
uncertainty.

» satisfies nominal performance (NP) if it satisfies performance
spaces with no model uncertainty.

» is robustly stable (RS) if it is stable for any plant with
specified model uncertainty.

» satisfies robust performance (RP) if it satisfies performance

specs for any plant with specified model uncertainty.
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Example 2: Space Shuttle Reentry Control

=

‘ Center
of mass

B side slip angle

p| _ roll rate

r| yaw rate

9} bank angle

p

T .

, Ny = lateral acceleration

Ty
| ¢
[ Oele elevon surface angle
6rud | = |rudder surface angle
| dgust lateral wind gusts

[1] Doyle, et al, “Design example using p-synthesis: space shuttle lateral axis FCS

during reentry”, IEEE CDC, 1986
[2] Mu toolbox for MATLAB, user guide
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Example 2: Space Shuttle Reentry Control

p eele
- Orud
|-———————
- d,
0]  AircraftModel  |t—250

Aerodynamic coefficients: relation between forces/torques and
sides slip/rudder/elevon angle
» Estimated from theoretical predications, numerical
calculations, experiments in wind tunnels and/or flight tests
» Shuttle at e.g. Mach 0.9 — mixture of subsonic and
supersonic flows

» Highly uncertain coefficients
<« 28/47 »
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Example 2: Space Shuttle Reentry Control

dy  dy dy dy
noisy p Octe Ucle
-4 —————
LR et bud  tima
10Isy 1y n, B EEE——
noisy ¢ ) st
- — 0 | Aircraft Model  |t—2

v

Each measurement is corrupted by noise

v

The measurement noise becomes more severe with at higher
frequencies

v

Actuators have dynamics and saturations

v

There are possibly time delays in control commands
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Example 2: Space Shuttle Reentry Control

di dy dy  dy

‘9ele

A

Orud
-

s
Aircraft Model  |-—20

Uele

Controller

Urud

YvYvYYyY II;LT

Stability? Performance? of Real Life System
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Example 3: Hard Disk Drive Control

Spindle motor

Arm

Pivot cads

Platter

ol

]
U /
H i
@)
Voice coil motor
(VCM)

(©) /
\
~/}-— Read/write

> Smaller devices with larger
information density require
smaller track width and
lower tolerance in
positioning of read/write
heads

» Rotational speed of 15000
rpm., 30000 tracks per inch.

» Presence of parameter

variations and uncertainties,
nonlinearities and noise
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Example 3: Hard Disk Drive Control

Ky w
—>(£—> ¥
- e bt Y 1, t ‘
u kpa Glcals) ke SH (s) D L Rtpm ol g, LY
R

> All parameters of harddrive have bounded tolerances.
> tq are torque disturbances
» H,(s) has uncertain resonances

> the output y is included a measurement noises
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Example 4: Distillation Column

» Separation and purification of
chemicals based on difference at
boiling points of
multicomponent liquids

» Difficult to control:

> highly nonlinear process

> high order models

> linearized models often
ill-conditioned

> parametric gain uncertainties

> time delays (up to 1 min at
input)
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Example 4: Distillation Column

Overhead
vapour I\ Condensor
vr
™\ Condensor
holdup
Reflux
Distillate
L D.yp
Boilup
Reboiler
holdup W
I\ Reboiler
Bottom product W
B.xp

[1 ] Skogestad, et al., Robust Control of ill-conditioned plants: high purity distillation, IEEE TAC, 1988
[2 ] Gu, Petkov, Konstantinov, Robust Control Design with MATLAB, Springer-Verlag, 2005
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Conclusion

» Space shuttle reentry control: ensure robust stability
(safety) and trajectory tracking in spite of complex physics
(subsonic and supersonic aerodynamics),

» Harddrive control: pushing the performance of the devices
to the limits, while accounting for tolerances in series device
production

» Distillation column: increase efficiency of high order
nonlinear system
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Sources of uncertainty:

v

Signal uncertainty:

> noise, exogenous disturbances;
» unknown reference tracking commands.

» Dynamic uncertainty:

v

unmodeled dynamics;

> parametric variations;

» operating point changes;

» nonlinearities not captured by the linear model;

» non-repeatable system behavior.

» Dynamic uncertainty is potentially destabilizing under
feedback

v

Robust control techniques: deal with uncertainty in a
systematic way. We have to model the uncertainties.
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Parametric Uncertainty

€ k+Tys U _ g Yy _
1+Tps ™ s2(1+0s) >
g
=5 €01,
G(s) 21 +50) g €lg1,92], 0€[0h,09]
- +
9:90+%59, go=¥, 6] <1
0:904_@597 00:914-92’ 6ol < 1
2 2
Nominal system: Gy(s) = S —
s2(1 + sby)
9(9)

A set of perturbed systems: G(s) = m
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Robust control models: set descriptions

{Paorm + A}

The perturbations, A, are specified by a class
Xa = {A|A is causal, stable, LTI }
Typical (additive) robust control models:

P = {Poorm + A|A € Xa, |A] < 1}
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Example

ko

ﬁ 3I ReP(S) = 1+’7’Se S,
2<k,0,7<3
w=17,21,0.5,0.2,0.050.01
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Introduction to Stability Robustness

AP \l
T — e c U * ) ‘ Yy
[
‘ (actuator) \

Uncertainties

. Goals:
» Unmodelled dynamics
: . » Stability
> Time variance
. » Tracking
» varying loads
) . » Disturbance rejection
» Manufacturing variance
S - » Sensor noise rejection
> Limited identification
Robustness
> Actuators and sensors
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Parametric Uncertainty

e k+Tys u - g
1+Tos ™ s2(1+0s)

Y

» Nominal plat: g=go=1, 6=0
» Controller : k=1,T; =2, Ty=1/10

» Perturbed plant: g € [g,g], 6 € [0,0]
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Parametric Uncertainty

Nyquist Diagram Step Response

25

Imaginary Axis
s °
= 1=} o
S o ] =
Amplitude
o o
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—
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Blue: gg =1 Oy =0
Green: go = 1.3 =1
Red: gg = 2 =1
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Parametric Uncertainty

e k+Tys u - g
1+Tos ™ s2(1+0s)

Y

Closed loop characteristic polynomial:

X(s) = 9T034 + 0+ T0)33 +s2 4 gTy s + gk  stable for all g and 67

» Routh-Hurwitz criterion, Kharitonov, Edge theorem, etc.

» Synthesis? Closed-loop performance?
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Gain and Phase Margins (Nyquist Plot)
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Gain and Phase Margins (Nyquist Plot)

Tt VIm
N Re
—1 0 ‘
Lo (joo) Re
L(jow) L
Lo

Nominal and perturbed Nyquist plots
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Control Systems

Classical Control

» Rules of thumb, gain and phase margins

v

All allowed perturbations on dynamics were not quantized

v

Only stability margins are guarded, not performance

v

Mostly for SISO systems
For MIMO systms: LQR, LQG
Robust Control

v

Provide strict and well defined criteria

v

v

Clear descriptions for the allowed perturbations

v

Not only stability but also performance robustness

v

MIMO systems (ready to use tools, Hxo, 4)
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