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Systematic Control Design Process

Reference
Controller Actuator

Input
Plant

Disturbance

Output

Sensor

−

1 Modeling a mathematic model

2 Analysis

3 Design a controller

4 Implementation

each step can be repeated.
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Classical control course

I Modeling as a transfer function

I Laplace transform

I Mechanical, electrical, electromechanical systems

I Analysis

I Time response, frequency response

I Stability: Routh-Hurwitz criterion, Nyquist criterion

I Design

I Root locus technique, frequency response technique

I PID control, lead/lag compensator

I MATLAB simulation, laboratory experiments
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Classical control course
Classical control in the 1930’s and 1940’s Bode, Nyquist, Nichols,...

I Feedback (speaker) amplifier design, Single Input Single

Output (SISO)

I Frequency domain, Graphical techniques, trials and errors

I Emphasized design tradeoffs

I Effects of uncertainty

I Nonminimum phase systems

I Performance vs. Robustness

I Problems with classical control – Overwhelmed by complex

systems

I Highly coupled multiple input, multiple output systems

I Nonlinear systems

I Time-domain performance specifications
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State-space control course

I Modeling as a state-space model

I Differential or difference equation

I Linear algebra

I Analysis

I Stability, controllability, observability

I Realization, minimality

I Design

I State feedback, observer

I LQR, LQG

I MATLAB simulation, laboratory experiments
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State-space control course
The origins of modern control theory

Early Year:

I Wiener (1930’s - 1950’s) Generalized harmonic analysis,

cybernetics, filtering , prediction, smoothing

I Kolmogorov (1940’s) Stochastic processes

I Linear and nonlinear programming (1940’s -)

Optimal Control:

I Bellman’s Dynamic Programming (1950’s)

I Pontryagin’s Maximum Principle (1950’s)

I Linear optimal control (late 1950’s and 1960’s)

I Kalman Filtering

I Linear-Quadratic (LQ) regulator problem

I Stochastic optimal control (LQG)
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Brief history of control theory

I Classical control (-1950)

I Transfer function

I Frequency domain

I Modern control (1960-)

I State-space model

I Time domain

I Post(neo)-modern control (1980-)

I Robust control

I LPV control

I etc.
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Brief history of control theory

Figure: From Kemlin Zhou bookINC 692: The Overview of Optimal and Robust Control J 8/47 I }



Brief history of control theory

The true story of Post Modern Control System Engineers.

I We are not mad but want proofs.

I Improve performance of 5-10% would be the great success.
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Motivation: ACC Benchmark problem

Two-cart (frictionless) system

m1 m2

x1 x2 = y

u k

Differential equations

m1ẍ1 = u(t)− k(x1(t)− y(t))

m2ÿ = −k(y(t)− x1(t))

Transfer function

P (s) =
y(s)

u(s)
=

k

s2(m1m2s2 + k(m1 +m2))
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ACC Benchmark problem

Open-loop frequency response
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ACC Benchmark problem
Monte Carlo (random) sampling

I New assumption

I Mass and spring constant are uncertain

k,m1,m2 ∈ [0.8, 1.2]

P (s) =
k

s2(m1m2s2 + k(m1 +m2))

I For perturbations of these parameters, how will the CL

stability and performance change?
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ACC Benchmark problem
Monte Carlo (random) sampling

Open-loop frequency response
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Luckily it seems robust.
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ACC Benchmark problem

I New assumption

I Mass and spring constant are uncertain

k = 6± 20%,m1,m2 ∈ [0.8, 1.2]

P (s) =
k

s2(m1m2s2 + k(m1 +m2))

I For perturbations of these parameters, how will the CL

stability and performance change?
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ACC Benchmark problem

Open-loop frequency response
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Not robustly stable!
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Some thoughts

I By Monte Carlo sampling, we can never be 100% sure that

the closed-loop system is stable and performs well for any

perturbation.

I Without random sampling, can we know if perturbed systems

are always stable and have satisfactory performance for any

perturbation?

I What is the “smallest” perturbation to violate stability and

performance spaces?

I What are the worst-case perturbation and performance?

I For specified uncertainty and performance specs, can we

design a controller which works robustly?
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Real life

F − Ffriction = mẍ

I Mass m varies between

100 ton to 250 ton

I Friction force Ffriction is

an unknown disturbance

I How to suppress the disturbance?

I How to design a robust controller, i.e. a controller that

achieves stability and good performance for all values of m?
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MIMO System Example

Consider a multi-input/multi-output (MIMO) system:[
Y1(s)

Y2(s)

]
= G(s)

[
U1(s)

U2(s)

]
with G(s) =

[
1

s+1
4

s+8
0.5
s+1

1
s+1

]

Suppose we neglect off-diagonal terms and choose the control

structure

U1(s) = K1(s)(R1(s)− Y1(s)) and U2(s) = K2(s)(R2(s)− Y2(s)), i.e.,

[
U1(s)

U2(s)

]
= K(s)

[
R1(s)− Y1(s)

R2(s)− Y2(s)

]
with K(s) =

[
K1(s) 0

0 K2(s)

]

with K1(s) = 20 and K2(s) = 18.
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MIMO System Example

K1 gives nice response for G11

K2 gives nice response for G22

But: overall closed loop is

unstable
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Gc1 = G11K1/(1 +G11K1)

Gc2 = G22K2/(1 +G22K2) Gc = GK(I +GK)−1
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MIMO System Example

Why is the closed loop unstable?

ans: G has zero in right half-plane, and controllers gains are too

big

G(s) =

[
1

s+1
4

s+8
0.5
s+1

1
s+1

]

I How can we determine properties of MIMO systems?

I How should we design MIMO controllers for MIMO plants?
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MIMO System Example 2

Real system:

Greal(s) =
1

s+ 1
· 1

(0.1s+ 1)2

Approximation:

G(s) =
1

s+ 1

Frequency

M
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n
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e

Bode magnitude plot of plant models
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Bode plots are similar, differences only for large frequencies. Place

poles far from stability border in left half-plane to be on safe side.
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MIMO System Example 2

Controller:

K(s) =
30(s+ 1)

s

achieves

Gcl(s) =
GK

1 +GK
=

30

s+ 30

i.e. pole at s = −30
but simulation of real
closed loop shows
instability! Time

O
u
tp
u
t

Step response of closed loops
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I What means “good robustness” “to be on safe side”?

I How to analyze robustness?

I How to achieve robustness systematically?
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Why is robust control important?

I A model is never precise!

I Difficulty in identifying parameters and high frequency plant

dynamics

I Product variability

I Uncertainty in disturbances, references, and measurement noise

I Without taking such uncertainties into account, we never

know if the designed controller works in actual

implementations.
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Robust Controller Design Process

Reference
Controller Actuator

Input
Plant

Disturbance

Output

Sensor

−

1 Modeling an uncertain model

2 Analysis

3 Design a controller

4 Implementation

each step can be repeated.
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Robust Controller Design Process
Main problems

I Modeling: Uncertainty modeling

I Build a mathematical model of uncertainties in the plant and

the disturbance signals.

I Analysis: Robustness analysis

I Given an open-loop or closed-loop system, determine if the

system satisfies robust stability and/or robust performance

I Design: Robust controller design

I Design and controller guaranteeing robust stability and/or

robust performance.
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Robust Controller Design Process
Some terminologies

I A system (open-loop or closed-loop)

I is nominally stable (NS) if it is stable with no model

uncertainty.

I satisfies nominal performance (NP) if it satisfies performance

spaces with no model uncertainty.

I is robustly stable (RS) if it is stable for any plant with

specified model uncertainty.

I satisfies robust performance (RP) if it satisfies performance

specs for any plant with specified model uncertainty.
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Example 2: Space Shuttle Reentry Control

x =


β
p
r
ϕ

 =


side slip angle

roll rate
yaw rate

bank angle



y =


p
r
ny

ϕ

 , ny = lateral acceleration

u =

 θele
θrud
dgust

 =

elevon surface angle
rudder surface angle
lateral wind gusts


[1] Doyle, et al, “Design example using µ-synthesis: space shuttle lateral axis FCS
during reentry”, IEEE CDC, 1986

[2] Mu toolbox for MATLAB, user guide
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Example 2: Space Shuttle Reentry Control

Aircraft Model
dgust

θrud

θelep

r
ny

θ

p

Aerodynamic coefficients: relation between forces/torques and
sides slip/rudder/elevon angle

I Estimated from theoretical predications, numerical
calculations, experiments in wind tunnels and/or flight tests

I Shuttle at e.g. Mach 0.9 −→ mixture of subsonic and
supersonic flows

I Highly uncertain coefficients
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Example 2: Space Shuttle Reentry Control

Aircraft Model
dgust

θrud

θele

d1 d2 d3 d4

uele

urud

noisy p

noisy r
noisy ny

noisy θ

p

r
ny

θ

I Each measurement is corrupted by noise

I The measurement noise becomes more severe with at higher
frequencies

I Actuators have dynamics and saturations

I There are possibly time delays in control commands

INC 692: The Overview of Optimal and Robust Control J 29/47 I }



Example 2: Space Shuttle Reentry Control

Aircraft Model
dgust

θrud

Controller

θele

d1 d2 d3 d4

uele

urud

p

r
ny

θ

Stability? Performance? of Real Life System
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Example 3: Hard Disk Drive Control

I Smaller devices with larger
information density require
smaller track width and
lower tolerance in
positioning of read/write
heads

I Rotational speed of 15000
rpm., 30000 tracks per inch.

I Presence of parameter
variations and uncertainties,
nonlinearities and noise
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Example 3: Hard Disk Drive Control

u kPA Gvca(s) kt
tm td Hd(s)

th 1
Js

R·tpm
s

ky
y

ωkb

−

Rs

ic

−

td

I All parameters of harddrive have bounded tolerances.

I td are torque disturbances

I Hd(s) has uncertain resonances

I the output y is included a measurement noises
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Example 4: Distillation Column

I Separation and purification of
chemicals based on difference at
boiling points of
multicomponent liquids

I Difficult to control:
I highly nonlinear process
I high order models
I linearized models often

ill-conditioned
I parametric gain uncertainties
I time delays (up to 1 min at

input)
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Example 4: Distillation Column

[1 ] Skogestad, et al., Robust Control of ill-conditioned plants: high purity distillation, IEEE TAC, 1988

[2 ] Gu, Petkov, Konstantinov, Robust Control Design with MATLAB, Springer-Verlag, 2005
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Conclusion

I Space shuttle reentry control: ensure robust stability
(safety) and trajectory tracking in spite of complex physics
(subsonic and supersonic aerodynamics),

I Harddrive control: pushing the performance of the devices
to the limits, while accounting for tolerances in series device
production

I Distillation column: increase efficiency of high order
nonlinear system
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Sources of uncertainty:

I Signal uncertainty:

I noise, exogenous disturbances;

I unknown reference tracking commands.

I Dynamic uncertainty:

I unmodeled dynamics;

I parametric variations;

I operating point changes;

I nonlinearities not captured by the linear model;

I non-repeatable system behavior.

I Dynamic uncertainty is potentially destabilizing under

feedback

I Robust control techniques: deal with uncertainty in a

systematic way. We have to model the uncertainties.
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Parametric Uncertainty

e k+Tds
1+T0s

u g
s2(1+θs)

y

−

G(s) =
g

s2(1 + sθ)
, g ∈ [g1, g2] , θ ∈ [θ1, θ2]

g = g0 +
g2 − g1

2
δg , g0 =

g1 + g2

2
, |δg | ≤ 1

θ = θ0 +
θ2 − θ1

2
δθ, θ0 =

θ1 + θ2

2
, |δθ| ≤ 1

Nominal system: G0(s) =
g0

s2(1 + sθ0)

A set of perturbed systems: G(s) =
g(δ)

s2(1 + sθ(δ))
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Robust control models: set descriptions

∥∆∥

Pnorm

{Pnorm +∆}

The perturbations, ∆, are specified by a class

X∆ := {∆|∆ is causal, stable, LTI }

Typical (additive) robust control models:

P := {Pnorm +∆|∆ ∈ X∆, ∥∆∥ ≤ 1}.
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Example

Re-2 -1 0 1 2 3

Im

-3

-2

-1

0

1

P (s) =
k

1 + τs
e−θs,

2 ≤ k, θ, τ ≤ 3

ω = 7, 2, 1, 0.5, 0.2, 0.05, 0.01
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Introduction to Stability Robustness

r e
C

u
P

∆P

y

n

−

(actuator)

Uncertainties

I Unmodelled dynamics

I Time variance

I varying loads

I Manufacturing variance

I Limited identification

I Actuators and sensors

Goals:

I Stability

I Tracking

I Disturbance rejection

I Sensor noise rejection

Robustness
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Parametric Uncertainty

e k+Tds
1+T0s

u g
s2(1+θs)

y

−

I Nominal plat: g = g0 = 1, θ = 0

I Controller : k = 1, Td =
√
2, T0 = 1/10

I Perturbed plant: g ∈ [g, g], θ ∈ [0, θ]
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Parametric Uncertainty
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Parametric Uncertainty

e k+Tds
1+T0s

u g
s2(1+θs)

y

−

Closed loop characteristic polynomial:

X (s) = θT0s
4 + (θ + T0)s

3 + s2 + gTds+ gk stable for all g and θ?

I Routh-Hurwitz criterion, Kharitonov, Edge theorem, etc.

I Synthesis? Closed-loop performance?
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Gain and Phase Margins (Nyquist Plot)
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Gain and Phase Margins (Nyquist Plot)

Nominal and perturbed Nyquist plots
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Control Systems

Classical Control

I Rules of thumb, gain and phase margins

I All allowed perturbations on dynamics were not quantized

I Only stability margins are guarded, not performance

I Mostly for SISO systems

I For MIMO systms: LQR, LQG

Robust Control

I Provide strict and well defined criteria

I Clear descriptions for the allowed perturbations

I Not only stability but also performance robustness

I MIMO systems (ready to use tools, H∞, µ)
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