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Identifiability



General Concepts

The ability to identify a unique model for a given system depends on
three critical aspects:

• Model: Whether there exists a unique mapping between the
model and the parameters being estimated — Model
Identifiability

• Experimental conditions: Whether the input has generated the
requisite information required to distinguish between two
candidate models — Input Identifiability (Informative enough,
rich enough)

• Estimation method: Whether the estimation method is capable
of estimating the “true” parameters if infinite samples are
available, which is termed as an asymptotic property of the
estimator. The technical term is consistency.

We will discuss the theoretical definition of the identifiability later.
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Uniqueness

Consider fitting the model y[k, θ] = θ1θ2u[k] to a given data, where
u[k] and y[k] are the input and output of a system, while θ̂ = [θ1 θ2]

T

is the parameter vector to be identified.

The prediction of this model to a given input is

ŷ[k, θ̂] = θ1θ2u[k]

The two different parameter values of θ̂1 and θ̂2 produce identical
predictions. Then, we have

ŷ[k, θ̂1] = ŷ[k, θ̂2] ≠⇒ θ̂1 = θ̂2

The model (predictor) space is not one-to-one. Formally, the model
is said to be not (globally) identifiable. Consequently, it is not
possible to arrive at a unique estimate of θ̂.

3



Uniqueness

On the other hand, if the model is re-parametrized in terms of a
single parameter β = θ1θ2, then the model is identifiable at all
points in the β space.

The above example suggests that re-parametrization of a model, in
this case from a higher dimensional to a lower-dimensional
parameter space, can improve identifiability for that model.
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good information

Consider a linear time-invariant (LTI) system governed by the
following input-output relationship (3rd-order finite impulse
response system):

y[k] = b1u[k − 1] + b2u[k − 2] + b3u[k − 3],

with b1 = 1, b2 = 0.6, and b3 = 0.3. Suppose a sinusoidal input of the
form u[k] = sin(2π(0.1)k) = sin(ω0k) is applied to the system. Under
this input, we have

y[k] = b1 sin(ω0(k − 1)) + b2 sin(ω0(k − 2)) + b3 sin(ω0(k − 3))

=

(
b1 +

b2
2 cosω0

)
sin(ω0k − ω0) +

(
b3 +

b2
2 cosω0

)
sin(ω0k − 3ω0)

= b̃1 sin(ω0k − ω0) + b̃3 sin(ω0k − 3ω0)
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good information

Thus, a 3-parameter model manifests as a 2-parameter model when
viewed through the lens of a mono-frequency input. Unfortunately,
it is not possible to uniquely recover b1, b2, and b3 from b̃1 and b̃3.

• the above example is formally termed as loss of identifiability
due to insufficient information, which here is due to lack of
sufficient input excitation.

• The input that contains enough frequency components is
u[k] = sin(ω0k) + sin(ω1k).

Note:

b2 sin(ω0k − 2ω0 + ω0) = b2 sin(ω0k − 2ω0) cosω0 + b2 sinω0 sin(ω0k − 2ω0)

b2 sin(ω0k − 2ω0 − ω0) = b2 sin(ω0k − 2ω0) cosω0 − b2 sinω0 sin(ω0k − 2ω0)

b2 sin(ω0k − ω0)+b2 sin(ω0k − 3ω0) = 2b2 sin(ω0k − 2ω0) cosω0
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Signal-to-noise ratio

The stochastic effects in the measurements may be too high to
detrimental to model quality.

• Choosing sampling rates much faster than the pace at which
outputs change can bring in more noise than actual process
variation.

The Signal-to-noise ratio (SNR) is defined by

SNR =
Variance of signal
Variance of noise

• The term signal refers to the true response of the system.

• Having a high SNR is critical to obtaining reliable parameter
estimates, regardless of the estimation method.

• The lower the SNR, the more ambiguous is the estimate of the
input-output model. 7



Effect of SNR on Parameter Estimation

Assuming the relationship between the output y[k] and the input
u[k] of a system is known to be

y[k] = b1u[k] + b0,

where b1 = 5 and b0 = 2. The input and the measured output
ym[k] = y[k] + v[k] is available, where the measurement error v[k] is
assumed to be random. The best linear fit and the parameter
estimates fro two different settings of SNR = σ2

y/σ
2
v , namely (i)

SNR = 100 and (ii) SNR = 10 obtained from N = 200 samples of
(ym[k], u[k]) data.

• The estimates do not vary significantly with the change in SNR,
the errors in b̂i. The σb̂i

in the estimates increase roughly by a
factor of three.

• The increase is theoretically given by
√

100/10 = 3.162. The
lower the SNR, the lower the reliability (confidence) of the
resulting parameter estimate. 8



Effect of SNR on Parameter Estimation
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Effect of SNR on Parameter Estimation
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Overfitting

Overfitting occurs when the model is trained to capture the local
feature of the data rather than the global characteristics.

• the situation arises when one misconstrues the stochastic
effects in the data as a part of the deterministic (input-output)
effects, i.e., when the chance variations in the response are
attributed to the changes in the input variables.

• This situation occurs when the user over-specifies the
complexity of the deterministic portion in a bid to explain the
output as accurately as possible.

• the benefit from increasing the complexity of the deterministic
model is the improved fit on the training data, i.e., lower
prediction error.

• the reduction in the bias (of the prediction) comes with the risk
of high standard errors (variance) in the model (parameter)
estimates. 11



Overfitting
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It is clear that a polynomial fit can capture the relationship
reasonably well.
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Overfitting

The true model used for data generation is

y[k] = 1.2 + 0.4u[k] + 0.3u2[k] + 0.2u3u[k] + v[k],

where v[k] is an ideal random noise (unpredictable stochastic signal)
such that the SNR is set to 10.
The predictor (fitted polynomial) is

ŷ[k] = a0 + a1u[k] + a2u
2[k] + a3u

3[k] + . . .+ anu
n[k].

From the orthogonality, we know that the more terms the more
accurate.
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Overfitting
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Here, the sum squared error of residual is drafted against the order
of the polynomial.
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Overfitting
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The best approximation:

ŷ[k] = 1.183 + 0.384u[k] + 0.314u2[k] + 0.198u3[k]
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Overfitting

• The fourth and fifth order models negligibly lower residual
norms on the training data and therefore fail miserably on the
test data.

• In fact the fifth-order model produces unstable predictions.

• The instability of predictions is one of the perils in overfitting,
which can be avoided by examining the errors in parameter
estimates of these models in conjunction with plot.

• There exist no strict rules that can completely prevent the
overfitting phenomenon.
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Example



Example: Liquid Level System

The model for simulation is

dh(t)

dt
+

1

Ac
Cv

√
h(t) =

1

Ac
Fi(t)

Fo(t) = Cv

√
h(t)

Here Cv is the valve coefficient at the output. The quantity Ac is the
cross-sectional area of the cylindrical tank. The system is brought to
a steady state before exciting it with the designed input. With the
operating conditions set to Fi(t) = 4.5 cu. ft. /min., Cv = 1.5 and
Ac = 0.5 ft2, the nominal level is 9 ft.
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Example: Liquid Level System
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The input is PRBS with sampling of Ts = 1 min. The output is added
by noise for realistic simulation such that the output SNR is st to a
value of 10.
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Data Visualization and Preliminary Analysis

A First step:

• see any drifts, outliers, etc.

• From the previous plot, there is no any polynomial trends and
other anomalies of concern (such as outliers, missing data).

• Steady-state can be determined experimentally before
introducing changes to the input. When such experiments have
not been performed , an alternative is to use the average of the
readings as a nominal operating point.

• A simple mean centering operation of the input-output data is
used to generate the required deviation variables.

y[k] = ỹ[k]− ȳ; u[k] = ũ[k]− ū,

where variables with ˜ are absolute-valued and the quantities
under the bar are average of the respective variables. 19



Spectral analysis

• It is useful to examine the frequency content of the output
signal so as to obtain insights into the filtering nature of the
process.

• The spectral plot consisting of a plot of power vs. frequency is
used for this purpose.

• High power in a frequency band implies the strong presence of
those frequency component
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Spectral Analysis
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Most of the input power has been packed in the low- to
mid-frequency band. This is in fac a part of the input design strategy
because liquid level systems are low-pass filters. 21



Partitioning the data

For the modelling purpose, the data is partitioned into two sets:

• one partition consisting of the first N = 1500 samples for
training the model.

• the second set consisting of the remainder of the data, used in
cross-validation of the model.

• Both data sets are expressed in terms of deviation variables
with the nominal operating point determined from the training
data.
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Building Non-Parametric Models

The non-parametric models provide insights into several important
(deterministic) process characteristics with minimal assumptions:

• Time-delay: The impulse response (cross-correlation) method
is the classical approach for delay estimation.

• Gain: Step response coefficients are ideally suited for
estimating gain.

• Time-constant: Step response is naturally suited for estimating
the time-constant parameter.
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Impulse Response estimates

The impulse response (IR) estimates are obtained by fitting a
finite-length impulse response (FIR) model:

y[k] ≈
M∑
l=0

g[l]u[k − l]

to the data using the least squares method.

• Whe the system has a delay of D samples, then the first D of IR
coefficients are identically zero.

• The corresponding estimated coefficients will be however small
non-zero values.

• In practice, a test of significance is performed wherein the
estimated coefficients lower than a statistically determined
threshold are termed as insignificant.
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Spectral Analysis
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The decaying nature of the IR estimates is a clear indication that the
sampled-data system is stable, which agrees very well with our
physical knowledge of the process. 25



Step response model

Estimates of unit step response coefficients are obtained from the IR
coefficients using a simple relationship

ys[k] =
k∑

n=1

g[n]
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Step response estimates
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Step response model

The resulting estimates:

• a first-order (or an overdamped higher-order) dynamics with a
gain of approximately 3.7 units.

• If the system is approximated as a first-order process, the
time-constant is about 7 samples (minutes)

• the system is stable.
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Building Parametric Models



Building Parametric Models

The objective is to identify a difference equation (DE) model for the
deterministic process from the given data. The user need to give a
suitable value of the dalay-time and order of the DE form.

The first-order difference equation with a delay of 1 unit sample for
the deterministic process is

x[k] + a1x[k − 1] = b1u[k − 1],

where x[k] denotes the unobserved true discrete-time
(deterministic) response of the process.
The parameters θ = [a1 b1]

T are estimated such that the sum
squared one-step ahead prediction errors is minimized,

min
θ

N−1∑
k=0

(x[k]− x̂[k|k − 1])
2
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Building Parametric Models

where

x̂[k|k − 1] = −a1x[k − 1] + b1u[k − 1]

is the prediction of x[k] given the knowledge of x[·] and u[·] until the
(k − 1)th instant.
However, this is only possible when the true response is known. In
reality, only a measurement of x[k] is available. Therefore, it is
natural re-write the minimization in terms of the measurement
prediction error:

min
θ

N−1∑
k=0

(y[k]− ŷ[k|k − 1])
2
,

where ŷ[k|k − 1] is the prediction of the measurement y[k] given the
knowledge of measurements and inputs until the (k − 1)th instant.
Later, we will use ŷ[k] to denote ŷ[k|k − 1]. 29



Building Parametric Models

To construct the overall model for y[k], we first assume that
stochastic effects, collectively denoted by v[k], are additive

y[k] = x[k] + v[k]

Naturally, the (one-step ahead) prediction of the measurement is

ŷ[k] = x̂[k] + v̂[k],

where v̂[k] is the (one-step ahead) prediction of the disturbances
and noise.

• the deterministic signal x[k] is modeled by the difference. A
model for v[k] is required to complete the picture.

• Different models exist depending on the assumptions made on
the predictability of v[k], leading to different descriptions for
y[k].
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Output-error model

A simple assumption is that the error in the measurement is
absolutely unpredictable given any amount of past. For zero-mean
noise this mean

v̂[k] = 0

From the first-order model, we have

ŷ[k] = x̂[k] = −a1x[k − 1] + b1u[k − 1].

The unknown variables are a1, b1, and x[k − 1] (never know because
of noise). It is clear that the predictor is non-linear in unknowns
(a1x[k − 1]). Since the white-noise error directly enters the output,
the model producing the predictor above is termed as the
output-error model.
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equation-error model

The assumption is that v[k] is predictable, but with the additional
requirement of a linear predictor for the measurement. From the
idea, we have

y[k] = −a1y[k − 1] + b1u[k − 1] + v[k] + a1v[k − 1]︸ ︷︷ ︸
w[k]

ŷ[k|k − 1] = −a1y[k − 1] + b1u[k − 1] + ŵ[k|k − 1]

In order to have a linear predictor for the measurement y[k − 1], we
require ŵ[k|k − 1] = 0 meaning w[k] is the white-noise signal e[k]. It
follows that

ŷ[k] = −a1y[k − 1] + b1u[k − 1]

v̂[k] = −a1v[k − 1]

leading to a first-order auto-regressive predictor for v[k]. 32



equation-error model

Since the error in the difference equation for the measurement is
white, we call this description as equation-error model, specifically
the auto-regressive eXogenous (ARX) model.

Notice that the model for the measurement error has a coefficient
identical to the one for the deterministic response. A major
implication of this method is that the deterministic and noise
process share the same dynamics.
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Goodness of the model

The prediction error, technically termed as residual, serves as the
key quantity of interest in assessing the goodness of the model. It is
formally defined as

ε[k] = y[k]− ŷ[k]

A good model should not leave behind residuals (from training) that
offer further scope for predictions, while avoiding overfitting.
Consequently, the following have to be fulfilled:

• the residuals cannot be explained (predicted) by the input (test
for the deterministic model).

• the residuals cannot be predicted using its own past, i.e., it is
truly unpredictable (test for the stochastic model), and

• the errors in parameter estimates are small or negligible
relative to the estimates themselves (test for
over-parametrization).
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Prediction Analysis
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Here, the output-error model fares better than its equation-error
counterpart in this respect.
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Correlating residuals with inputs

• The foregoing prediction analysis puts the models in close
contest.

• To test whether these model leave behind any unexplained
input effects, the correlation between the residuals and the
lagged (time-shifted) inputs are computed for each of these
models. This test is also known as cross-correlation function.

• A significan correlation between residuals ε[k] and input u[k] at
positive lags directly implies that the effects of input on the
process response have not been completely explained.
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Correlating residuals with inputs
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It is clear that the residuals from the first-order ARX model are
significantly correlated with inputs implying that it has not managed
to adequately capture the deterministic effects.
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Correlating residuals with inputs
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For ARX, we can improve it by using fifth-order model. In this case,
the OE model is the winner in two respects, namely, parameter
estimation error and parsimony.
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Test for noise model

The next step is to access the stochastic part of the model has
satisfactorily explained the random effects. This can be done by
plotting the auto-correlation function of the residuals.

• It is essentially the correlation between any two samples
separated in time by a lag l.

• Any predictability in the sequence manifests as non-zero
correlation at a noon-zero lab l.
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Cross-Validation

A good model is one which yields good predictions on a fresh data
set.
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Fitness Test

A common measure of goodness-of-predictions is the normalized
root mean square (NRMS) measure of fit:

%Rf = 1− ∥y − ŷ∥2
∥y − ȳ∥2

× 100

In this example we have

Rf = 98.98%

41



Final Model

Based on the results of the model assessment tests, namely, the
residual analysis, analysis of errors in estimates and
cross-validation, the first-order OE model with a delay of unit
sample is deemed as the most appropriate:

y[k] = x[k] + e[k]

x[k] = −â1x[k − 1] + b̂1u[k − 1]

â1 = −0.8826(±0.0019), b̂1 = 0.4621(±0.0052)

Another from of the model is a transfer function (TF) operator form:

y[k] = G(q−1)u[k] +H(q−1)e[k],

where G(q−1) and H(q−1) are known as plant and noise models,
respectively.
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Final Model

The last OE model in the TF form is written as:

y[k] =
0.4621q−1

1− 0.8826q−1
u[k] + e[k]
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