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The Important of Models
Simulation : Study the system outputs for the given inputs

Chemical plant Thermal study
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The Important of Models
Design : Compute the system parameters to have a desired output for a given input

Design a electrical, mechanical or chemical installations
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The Important of Models
Prediction : Forecast the future values for the output

Weather forecasting, Flood forecasting (Too sad to use a picture in
Thailand)
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The Important of Models
Control : Model-based controller design

Pole placement controller design for tracking and disturbance
rejection
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Constructing Models

First principle method

• The Newton’s Law

• The law of conservation of energy

• KVL, KCL, etc.

System identification
Based on input/output measured data

• Parametric model

• Nonparametric model
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Physical modeling

. ..

..

−
.

v

.

+

.

R

.

L

.

M

.

e = Keθ̇

.

T

.

θ

. bθ̇

Assume

T = Ki, e = Kθ̇

Based on Newton’s law and KVL

Jθ̈ + bθ̇ = Ki
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Physical modeling cont.
Arm-driven inverted pendulum, Kajiwara, H. et al. 1999
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System Identification

. .. .. u(k). System. y(k)

Apply a specific input u(k) and measure the output y(k) and

represent it as a function of preceding values of input and output.

y(k) = G (u(k), u(k − 1), u(k − 2), . . . , y(k − 1), y(k − 2), . . .)

. ..

Transfer function representation

G(z) =
bz

z2 + a1z + a2
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System Identification
Arm-driven inverted pendulum, Kajiwara, H. et al. 1999
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Physical or Identified Model?

Physical Models

G(s) =
K

s((Js+ b)(Ls+R) +K2)

4 Direct relation with physical parameters

6 Need complete process knowledge

6 Physical parameters should be known

6 High order, approximative
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Physical or Identified Model?

Identified Models

G(z) =
bz

z2 + a1z + a2

4 Appropriate for controller design

4 Simple and efficient

6 Limited validity (operating point, type of input), sensors,
measurement noise

6 Unknown model structure

..
System Identification ◀ 12/23 ▶ ⊚



Type of models

• Dynamic/Static

• SISO/MIMO

• Deterministic/Stochastic

• Linear/Nonlinear

• Time-invariant/Time-varying

• Causal/Noncausal

• Zero initial condition/Nonzero initial condition
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Type of representations

• Input/Output representation

• State-space representation

• Time-domain representation

• Frequency-domain representation

• Continuous-time representation

• Discrete-time representation

.

.

.

Input/output time-domain continuous-time representation:

y(k) = H(u(k)), −∞ < τ ≤ t

State-space time-domain discrete-time representation:

x(k + 1) = f(x(k), u(k), k), x(k0) = x0

y(k) = g(x(k), u(k), k)
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System Identification

To-be-identified system

. ..

..u . G0

. y.

v

u(k) is the discrete-time input which can be freely chosen

y(k) is the discrete-tie output which can be measured and is made

up of

• a contribution due to u(k) i.e. G0u(k)

• a contribution independent of u(k) i.e. the disturbance v(k)
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System Identification procedure
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Identification Criterion

Measure the distance between a data set {u, y}t=1,...,N and a

particular model.

In this course, we will emphasis on two criteria

• Prediction Error Method (PEM) delivering a discrete-time

transfer function as model of G0

• Empirical Transfer Function Estimate (ETFE) delivering an

estimate of the frequency response of G0
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Identification Criterion

Why those

• PEM is the most used method in practice and the one

delivering the most tools to validate a model

• ETFE is used to have the first idea of the system and

facilitate the use of PEM

Other criteria: subspace identification, instrumental variable

methods, Maximum likelihood method, . . .
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Model set

Complexity of models (order, number of parameters) to be

determined. We will talk these topics later.
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Experiment Design

• Choice of the type of excitation signal

• sum of sinusoids (multisine)

• realization of (filtered) white noise or alike

• which frequency content?

• which duration?

Experiment design is very important since it has a direct influence

on the quality of the model.
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Model Validation

• comparing the actual output of the system with the output

predicted by the model

• determining the uncertainty of the system e.g. in the

frequency domain
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History

• basic principle least square (LS) from Gauss (1809)

• development based on theories of

• stochastic processes

• statistics

• strong growth in sixties and seventies Åström and Bohin

(1965), Åström and Eykhoff (1971)

• brought to technological tools in nineties (Matlab Toolboxes

for either time-domain of frequency domain), as well as to

professional industrial control packages (Aspen, SMOC-PRO,

IPCOS, Tai-Ji Control, AdaptX, ...)
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