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Objective

▶ Understand the interior-Point Methods
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The Primal-Dual Advantage

▶ The Simplex method is a cornerstone of optimization theory. It operates by
navigating the boundary of the feasible region ( a geometry shape called a
polytope). It begins at one corner (vertex) and systematically moves along the
edges to adjacent corners that improve the objective function, continuing until
an optimal vertex is found.

▶ The number of vertices in a plytope can be astronomically large. In the
worst-case scenario, the Simplex method might visit an exponential number of
these vertices, making it prohibitively slow for certain large-scale problems

▶ The primal-dual interior-point method takes a fundamentally different
approach. Instead of crawling along the outside edges, it cuts directly through
the middle (the interior) of the feasible region.

▶ It follows a smooth, curved route called the central path that leads from a
starting point inside the region directly toward the optimal solution.
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The Primal-Dual Advantage

▶ Superior Scalability: The number of iterations required by a primal-dual
method is not as sensitive to the number of vertices. Its performance scales
much better for problems with hundreds of thousands of variables and
constraints, often making it dramatically faster than Simplex.

▶ Polynomial-Time Complexity: From a theoretical standpoint, interior-point
methods are polynomial-time algorithms. This provides a mathematical
guarantee that their runtime does not explode exponentially as the problem
size increases, unlike the worst-case behavior of the Simplex method.

▶ Foundation of Modern Optimization: The core idea of using Newton’s method to
solve relaxed optimality conditions extends beautifully to more complex
problems, such as Second-Order Cone Programming (SOCP) and Semidefinite
Programming (SDP). This makes the primal-dual framework the foundation for a
wide range of state-of-the-art optimization solvers.
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Duality : The Lagrangian

Consider an optimization problem in the standard form:

minimize cT x

subject to Ax = b

x ≥ 0

Where A ∈ Rp×n , c ∈ Rn , and b ∈ Rp .
To derive the dual, we form the Lagrangian, which incorporates the constraints into
the objective function using Lagrange multipliers λ ∈ Rp (for Ax = b) and µ ∈ Rn

(for x ≥ 0, also known as dual slack variables):

Definition: Lagrangian of primal function

L(x,λ,µ) = cT x + λT (Ax − b)− µT x, with µ ≥ 0

Note: (x ≥ 0 ⇒ −x ≤ 0)
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Duality : The Lagrangian

The Lagrange dual function is defined as

q(λ,µ) = inf
x
L(x,λ,µ)

To find this infimum, we take the gradient with respect to x and set it to zero:

∇xL(x,λ,µ) = c + ATλ− µ = 0

▶ Lagrangian is

L(x,λ,µ) = cT x + λT (Ax − b)− µT x = −bTλ+ (c + ATλ− µ)T x

▶ L is affine in x, hence (The linear function is bounded from below only when it
is identically zero. Then q(λ,µ) = −∞ except when c + ATλ− µ = 0)

q(λ,µ) = inf
x
L(x,λ,µ) =

−bTλ, c + ATλ− µ = 0

−∞, otherwise
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Duality : Standard form LP

The condition c + ATλ− µ = 0, must hold for the infimum to be bounded.
Rearranging, we get −ATλ+ µ = c. When this hold, the Lagrangian becomes
L(λ,µ) = −bTλ. The dual problem is to maximize this function subject to the
derived constraints.

Dual Problem

maximize
λ,µ

−bTλ

subject to −ATλ+ µ = c

µ ≥ 0
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions

The standard-form LP problem

minimize
x

f(x) = cT x

subject to Ax = b, x ≥ 0
(1)

The dual problem is

maximize
λ

h(λ) = −bTλ

subject to − ATλ+ µ = c, λ ≥ 0 (or) ATλ+ c ≥ 0

(2)

▶ Under what conditions will the solutions of these problems exist?
▶ How are the feasible points and solutions of the primal and dual related?
▶ µ ≥ 0
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions

▶ An LP problem is said to be feasible if its feasible region is not empty. The
problem in (1) is said to be strictly feasible if there exists and x that satisfies
−λT A + µ = c with x ≥ 0

▶ The LP problem in (2) is said to be strictly feasible if there exist λ and µ that
satisfy −λT A + µ = c with µ ≥ 0.

▶ It is known that x∗ is a minimizer of the problem in (1) if and only if there exist
λ∗ and µ∗ ≥ 0 such that

−ATλ∗ + µ∗ = c

Ax∗ = b

x∗
i µ

∗
i = 0 for 1 ≤ i ≤ n

x∗ ≥ 0, µ∗ ≥ 0

(3)

▶ A set {x∗,λ∗,µ∗} satisfying (3) is called a primal-dual solution. The set
{x∗,λ∗,µ∗} is a primal-dual solution if and only if x∗ solves the primal and
{λ∗,µ∗} solves the dual.
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions

Theorem: Existence of a primal-dual solution

A primal-dual solution exists if the primal and dual problems are both feasible.

Proof: If point x is feasible for the LP problem and {λ,µ} is feasible for the LP
problem, then set

−λT b ≤ −λT b + µT x = −λT Ax + µT x

= (−ATλ+ µ)T x = cT x

Since f(x) = cT x has a finite lower bound in the feasible region, there exists a set
{x∗,λ∗,µ∗} that satisfies (3). This x∗ solves the problem in (1). From above condition
h(λ) has a finite upper bound and {λ∗,µ∗} solves the problem in (2). Consequently,
the set {x∗,λ∗,µ∗} is a primal-dual solution.
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Primal-Dual Solutions and Central Path: Primal-Dual Solutions

Theorem: Strict feasibility of primal-dual solutions

If the primal and dual problems are both feasible, then

1. solutions of the primal problem are bounded if the dual is strictly feasible:

2. solutions of the dual problem are bounded if the primal is strictly feasible:

3. primal-dual solutions are bounded if the primal and dual are both strictly
feasible.

Proof: see reference 5.
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Primal-Dual Solutions and Central Path: Primal-Dual Solutions

Duality gap From (3), we observe that

cT x∗ = [(µ∗)T − (λ∗)T A]x∗ = −(λ∗)T Ax∗ = −(λ∗)T b ⇒ f(x∗) = h(λ∗)

If we define the duality gap as

δ(x,λ) = cT x + bTλ

Then the above equations imply that δ(x,λ) is always nonnegative with δ(x∗,λ∗) = 0.
For any feasible x and λ, we have

cT x ≥ cT x∗ ≥ −bTλ∗ ≥ −bTλ

cT x − cT x∗ ≥ 0 ≥ −bTλ∗ − cT x∗ ≥ −bTλ− cT x∗ =⇒ 0 ≤ cT x − cT x∗ ≤ δ(x,λ)

It indicates that the duality gap can serve as a bound on the closeness of f(x) to
f(x∗).
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Primal-Dual Solutions and Central Path: Central Path

One of the important concept related to the primal-dual solutions is central path. By
using (3), set {x,λ,µ} with x ∈ Rn , λ ∈ Rp , and µ ∈ Rn is a primal-dual solution if it
satisfies the KKT conditions

Ax = b with x ≥ 0

−ATλ+ µ = c with µ ≥ 0

Xµ = 0

(4)

where X = diag{x1, x2, . . . , xn} The centeral path for a standard form LP problem is
defined as a set of vectors {x(τ),λ(τ),µ(τ)} that satisfy the conditions

Ax = b with x > 0

−ATλ+ µ = c with µ > 0

Xµ = τe (xiµi = τ)

(5)

where τ is a strictly positive scalar parameter, and e = [1 1 · · · 1]T
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Primal-Dual Solutions and Central Path: Central Path

▶ For each fixed τ > 0, the vectors in the set {x(τ),λ(τ),µ(τ)} satisfying (5) can
be viewed as sets of points in Rn , Rp , and Rn , respectively.

▶ When τ varies, the corresponding points form a set of trajectories called the
central path.

▶ By comparing (5) with (3), it is obvious that the centeral path is closely related to
the primal-dual solutions. Every point on the central path is strictly feasible.

▶ The central path lies in the interior of the feasible regions of the problems in (1)
and (2) and it approaches a primal-dual solution as τ → 0.

▶ Given τ > 0 , let {x(τ),λ(τ),µ(τ)} be on the central path. From (5), the duality
gap δ[x(τ,λ(τ)] is given by

δ[x(τ),λ(τ)] = cT x(τ) + bTλ(τ) = [−λT (τ)A + µT (τ)]x(τ) + bTλ(τ)

= µT (τ)x(τ) = nτ

The central path converges linearly to zero a τ → 0. The objective function
cT x(τ), and bTλ(τ) approach the same optimal value.
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Primal-Dual Solutions and Central Path: Central Path

Example:

Sketch the central path of the LP problem

minimize
x

f(x) = −2x1 + x2 − 3x3

subject to x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Solution: With c = [−2 1 − 3]T , A = [1 1 1], and b = 1, (5) become

x1 + x2 + x3 = 1

−λ+ µ1 = −2

−λ+ µ2 = 1

−λ+ µ3 = −3

x1µ1 = τ, x2µ2 = τ, x3µ3 = τ

where xi > 0 and µi > 0 for i = 1, 2, 3. 15 / 29



Primal-Dual Solutions and Central Path
Central Path

From above equations, we have

µ1 = −2 + λ µ2 = 1 + λ µ3 = −3 + λ

Hence µi > 0 for 1 ≤ i ≤ 3 if λ > 3. If we assume that λ > 3, then

1

λ− 2
+

1

λ+ 1
+

1

λ− 3
=

1

τ

i.e.,

1

τ
λ3 −

(
4

τ
+ 3

)
λ2 +

(
1

τ
+ 8

)
λ+

(
6

τ
− 1

)
= 0

The central path can be constructed by finding a root of above equation that satisfies
λ > 3.
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Primal-Dual Solutions and Central Path : Central Path
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Primal-Dual Solutions and Central Path : Central Path

We cannot set τ = 0 directly. When we set τ = 0, the key KKT condition becomes:

Xµ = 0 =⇒ xiµi = 0 ∀i

▶ It Creates a Discontinuous Jump: A step tries to jump from the current interior
point directly to a solution on the boundary where many xi and µi are zero.
This is a huge, highly non-linear jump. The step will almost certainly overshoot,
resulting in negative values for some xi or µi , whichis infeasible and breaks the
algorithm.

▶ The Problem Becomes Non-Smooth: The conditions xiµi = 0 represents a set
of axes–a shap with a sharp corner at the origin. The method relies on using
derivatives to find the next step, and this doesn’t work well at shap corners.
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Primal-Dual Interior Methods: Path-Following Method

We need to find τk to make {xk,λk,µk} approach the minimizer vertex. In this
lecture, we introduce the method that simultaneously solves the primal and dual LP
problems and has emerged as the modest efficient interior-point method for the LP
problems.

▶ Consider the standard form LP problem in (1) and its dual (2). Let
wk = {xk,λk,µk} where xk is strictly feasible for the primal and {λk,µk} is
strictly feasible for the dual.

▶ We need to find the increment vector δw = {δx, δλ, δµ} such that the next
iterate wk+1 = {xk+1,λk+1,µk+1} = {xk + δx,λk + δλ,µk + δµ} remains
strictly feasible and approaches the central path defined by (2) with
τ = τk+1 > 0.

▶ The path-following method, a suitable δw is obtained as a first-order
approximate solution of (5).
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Primal-Dual Interior Methods: Path-Following Method

If wk+1 satisfies (5) with τ = τk+1 , then

Perturbation:

A(xk + δx) = b

−AT (λk + δλ) + (µk + δµ) = c

X̃(µk + δµ) = τk+1e

Condition for wk+1

Aδx = 0

−AT δλ + δµ = 0

∆Xµk +Xδµ +∆Xδµ = τk+1e − Xµk

where

X = diag{x1, x2, . . . , xn}, X̃ = diag{x1 + (δx)1, x2 + (δx)2, . . . , xn + (δx)n},

∆X = diag{(δx)1, (δx)2, . . . , (δx)n}, X̃ = X +∆X

By neglecting the ∆Xδµ and let ∆Xµk = Mδx (we need to find δx) , where
M = diag{(µk)1, (µk)2, . . . , (µk)n}, we have

Aδx = 0, −AT δλ + δµ = 0, Mδx + Xδµ = τk+1e − Xµk (6)
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Primal-Dual Interior Methods: Path-Following Method

Solving (6) for δw , we obtain

δλ = −YAy

δµ = AT δλ

δx = −y − Dδµ

D = M−1X, Y = (ADAT )−1, y = xk − τk+1M−1e

(7)

where

M−1Xµk =


1/(µk)1

. . .
1/(µk)n



(xk)1

. . .
(xk)n



(µk)1
...

(µk)n


= xk
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Primal-Dual Interior Methods : Path-Following Method

Primal-dual path-following algorithm for the LP problem

1. Input A and a strictly feasible w0 = {x0,λ0,µ0}. Set k = 0 and ρ >
√
n

(n is the dimension of x), and initialize the tolerance ε for the duality gap.

2. If µT
k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue with

Step 3

3. Set τk+1 =
µT

k xk
n+ρ

and compute δw = {δx, δλ, δµ} using (7).

4. compute step size αk as follow:

αk = (1− 10−6)αmax, αmax = min(αp, αd)

where

αp = min
i with (δx)i<0

[
−

(xk)i
(δx)i

]
, αd = min

i with (δµ)i<0

[
−
(µk)i

(δµ)i

]
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Primal-Dual Interior Methods: Path-Following Method Example

Example:

Sketch the central path of the LP problem

minimize
x

f(x) = −2x1 + x2 − 3x3

subject to x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Solution: Find an initial w0 on the central path by using the method described in the
previous example with τ0 = 5. The vector w0 obtained is {x0,λ0,µ0} with

x0 =

0.3445060.285494

0.370000

 , λ0 = 16.513519, µ0 =

14.51351917.513519

13.513519



With ρ = 7
√
n and ε = 10−6 , the algorithm will converges after eight iterations to the

solution x∗ =
[
0.000000 0.000000 1.000000

]
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A nonfeasible-Initialization: Path-Following Method

If wk+1 satisfies (5) with τ = τk+1 , then

Perturbation:

A(xk + δx) = b

−AT (λk + δλ) + (µk + δµ) = c

X̃(µk + δµ) = τk+1e

Condition for wk+1

Aδx = rp

−AT δλ + δµ = rd
Mδx + Xδµ = τk+1e − Xµk

where rp = b − Axk and rd = c + ATλk − µk are the residuals for the primal and
dual constraints, respectively.

δλ = −Y(Ay + ADrd + rp)

δµ = AT δλ + rd

δx = −y − Dδµ

(8)
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Nonfeasible-Initialization Primal-Dual Path-Following Method

Nonfeasible-initialization Primal-dual path-following algorithm for the LP prob-
lem

1. Input A, b, c, and w0 = {x0, λ0, µ0}. Set k = 0 and ρ >
√
n (n is a

dimension of x), and initialize the tolerance ε for the duality gap.

2. If µT
k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue with

Step 3

3. Set τk+1 =
µT

k xk
n+ρ

and compute δw = {δx, δλ, δµ} using (8).

4. compute step size αk as follow:

αk = (1− 10−6)αmax αmax = min(αp, αd)

where

αp = min
i with (δx)i<0

[
−

(xk)i
(δx)i

]
, αd = min

i with (δµ)i<0

[
−
(µk)i

(δµ)i

]
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Nonfeasible-Initialization Primal-Dual Path-Following Method
Example

Example:

Sketch the central path of the LP problem

minimize
x

f(x) = −2x1 + x2 − 3x3

subject to x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Solution: The vector w0 , which is not feasible, is {x0,λ0,µ0} with

x0 =

0.40.3

0.4

 , λ0 = −0.5, µ0 =

1.00.5

1.0



With ρ = 7
√
n and ε = 10−6 , the algorithm will converges after eight iterations to the

solution x∗ =
[
0.000000 0.000000 1.000000

]
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Nonfeasible-Initialization Primal-Dual Path-Following Method
Example
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Nonfeasible-Initialization Primal-Dual Path-Following Method
Example

% min -2x1 + x2 - 3x3
% s.t. x1 + x2 + x3 = 1
% x1, x2, x3 >= 0

c = [-2; 1; -3]; % Objective function vector (c'x)
Aeq = [1 1 1] % Equality constraint matrix (Aeq*x = beq)
beq = 1; % Equality constraint vector
lb = [0; 0; 0]; % Lower bounds (x >= 0)
ub = []; % No upper bounds

options = optimoptions('linprog', 'Algorithm',...
'interior-point', 'Display', 'iter');

[x_opt, fval, exitflag, output] = linprog(c, [], [],...
Aeq, beq, lb, ub, options);

disp(x_opt');
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