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» Understand the interior-Point Methods
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The Primal-Dual Advantage

» The Simplex method is a cornerstone of optimization theory. It operates by
navigating the boundary of the feasible region ( a geometry shape called a
polytope). It begins at one corner (vertex) and systematically moves along the
edges to adjacent corners that improve the objective function, continuing until
an optimal vertex is found.

» The number of vertices in a plytope can be astronomically large. In the
worst-case scenario, the Simplex method might visit an exponential number of
these vertices, making it prohibitively slow for certain large-scale problems

» The primal-dual interior-point method takes a fundamentally different
approach. Instead of crawling along the outside edges, it cuts directly through
the middle (the interior) of the feasible region.

» |t follows a smooth, curved route called the central path that leads from a
starting point inside the region directly toward the optimal solution.
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The Primal-Dual Advantage

» Superior Scalability: The number of iterations required by a primal-dual
method is not as sensitive to the number of vertices. Its performance scales
much better for problems with hundreds of thousands of variables and
constraints, often making it dramatically faster than Simplex.

» Polynomial-Time Complexity: From a theoretical standpoint, interior-point
methods are polynomial-time algorithms. This provides a mathematical
guarantee that their runtime does not explode exponentially as the problem
size increases, unlike the worst-case behavior of the Simplex method.

» Foundation of Modern Optimization: The core idea of using Newton's method to
solve relaxed optimality conditions extends beautifully to more complex
problems, such as Second-Order Cone Programming (SOCP) and Semidefinite
Programming (SDP). This makes the primal-dual framework the foundation for a
wide range of state-of-the-art optimization solvers.
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Duality : The Lagrangian

Consider an optimization problem in the standard form:

minimize ¢’x

subject to Ax=Db

x>0

Where A € RP*™ ¢ € R", and b € RP.

To derive the dual, we form the Lagrangian, which incorporates the constraints into
the objective function using Lagrange multipliers A € RP (for Ax = b) and p € R™
(for x > 0, also known as dual slack variables):

Definition: Lagrangian of primal function

L& p) =cTx+AT(Ax —b) — uTx, with u >0

Note: (x>0 = —x<0)
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Duality : The Lagrangian

The Lagrange dual function is defined as
q(A, p) = InfL(x, A, p)
To find this infimum, we take the gradient with respect to x and set it to zero:
Vil(x, A p)=c+ATA—p=0
» lagrangian is
LA p) =clx+ AT (Ax —b) — pPx = bTA+ (c+ ATA — p)Tx

» [ is affine in x, hence (The linear function is bounded from below only when it
is identically zero. Then g(X, ) = —oo except when ¢ + AT — = 0)

—bTA, c+ATAN—p=0
g\, p) =inf L(x, A\, p) =
* —o00, otherwise
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Duality : Standard form LP

The condition ¢ + AT X — p = 0, must hold for the infimum to be bounded.
Rearranging, we get —AT X\ + p = ¢. When this hold, the Lagrangian becomes
L(X, 1) = =bT X The dual problem is to maximize this function subject to the
derived constraints.

Dual Problem

maximize —bL A
Ap

subject to —ATA+p=c
pn=0
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions

The standard-form LP problem

minimize f(x) = ¢’ x
X

subject to Ax=b, x>0

The dual problem is

max;mize h(A\) = —bTX

subjectto —ATA+pu=c, A>0(r)ATA+c>0

» Under what conditions will the solutions of these problems exist?
» How are the feasible points and solutions of the primal and dual related?
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions

» An LP problem is said to be feasible if its feasible region is not empty. The
problem in (1) is said to be strictly feasible if there exists and x that satisfies
ATA+ p=cwithx>0

» The LP problem in (2) is said to be strictly feasible if there exist A and p that
satisfy —ATA + p = ¢ with u > 0.

> Itis known that x* is a minimizer of the problem in (1) if and only if there exist
A* and pu* > 0 such that

“ATX N 4 p*=c
Ax* =Db
zip; =0for1 <i<n

x>0, pu*>0

> Aset {x*, A\*, p*} satisfying (3) is called a primal-dual solution. The set
{x*, A", u*} is a primal-dual solution if and only if x* solves the primal and
{\*, u*} solves the dual.
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions

Theorem: Existence of a primal-dual solution

A primal-dual solution exists if the primal and dual problems are both feasible.

Proof: If point x is feasible for the LP problem and {A, p} is feasible for the LP
problem, then set

ATb < Ao+ pTx = - ATAx+ puTx
= (7AT)\ + p)Tx =cTx

Since f(x) = ¢T'x has a finite lower bound in the feasible region, there exists a set
{x*, \*, u*} that satisfies (3). This x* solves the problem in (1). From above condition
h(\) has a finite upper bound and {\*, u*} solves the problem in (2). Consequently,
the set {x*, A*, u*} is a primal-dual solution.
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Primal-Dual Solutions and Central Path: Primal-Dual Solutions

Theorem: Strict feasibility of primal-dual solutions

If the primal and dual problems are both feasible, then
1. solutions of the primal problem are bounded if the dual is strictly feasible:
2. solutions of the dual problem are bounded if the primal is strictly feasible:

3. primal-dual solutions are bounded if the primal and dual are both strictly
feasible.

Proof: see reference 5.
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Primal-Dual Solutions and Central Path: Primal-Dual Solutions

Duality gap From (3), we observe that
Tyt = ()T — (A)TA = ~(A)TAx" = ~(A)Tb = f(x*) =h(X")
If we define the duality gap as
§(x, ) =cTx+bTA

Then the above equations imply that d(x, A) is always nonnegative with §(x*, A*) = 0.
For any feasible  and A, we have

x> cx* > —bTA* > —bTA

Tx—cTx*>0>-bA —cTx* > -bIA—c"x* = 0<cTx—cTx* < (%, A)

It indicates that the duality gap can serve as a bound on the closeness of f(x) to

f(x).
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Primal-Dual Solutions and Central Path: Central Path

One of the important concept related to the primal-dual solutions is central path. By
using (3), set {x, A, u} with x € R™, X € R?, and p € R™ is a primal-dual solution if it
satisfies the KKT conditions

Ax=b withx>0

“ATAx+p=c withp>0 (4)
Xp =0
where X = diag{z1,x2, ...,z } The centeral path for a standard form LP problem is

defined as a set of vectors {x(7), A(7), u(7)} that satisfy the conditions

Ax=Db withx>0
—ATXx+p=c withu>0 (5)
Xp=re (wipm =)
where 7 is a strictly positive scalar parameter,ande =[11 --- 1]T

13/29



Primal-Dual Solutions and Central Path: Central Path

> For each fixed 7 > 0, the vectors in the set {x(7), A(), u(7)} satisfying (5) can
be viewed as sets of points in R™, RP, and R"™, respectively.

» When 7 varies, the corresponding points form a set of trajectories called the
central path.

» By comparing (5) with (3), it is obvious that the centeral path is closely related to
the primal-dual solutions. Every point on the central path is strictly feasible.

» The central path lies in the interior of the feasible regions of the problems in (1)
and (2) and it approaches a primal-dual solution as 7 — 0.

> Given 7 >0, let {x(7),A(7), u(7)} be on the central path. From (5), the duality
gap §[x(r, A(7)] is given by

51x(r), A(7)] = eTx(r) + BTA() = [-AT (1A + w7 (7)}x(r) + BT A(T)

=pT(7)x(r) = nr

The central path converges linearly to zero a 7 — 0. The objective function
cTx(7), and bTX(7) approach the same optimal value.
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Primal-Dual Solutions and Central Path: Central Path

Example:

Sketch the central path of the LP problem

minimize f(x) = —2z1 + z2 — 323
X

subject to x1 +xz2 +x3 =1

z1 > 0,22 > 0,23 >0

Solution: Withe =[-21 —3]7, A =[111],and b= 1, (5) become

1 +T2+r3=1

“Atpr =2
“A+pu2=1
“Atp3=-3

TPl =T, T2M2 =T, T3N3 =T

where z; > 0and p; > 0fori=1,2,3. 15/29



Primal-Dual Solutions and Central Path

Central Path

From above equations, we have
1 =-2+X pu2=1+X pz=-3+2A

Hence p; > 0for1 <i < 3if A > 3. If we assume that A > 3, then

1t .1 _1
A—2 A+1 A=3 1

1., (4 1 6
f)\"f<7+3>>\2+<*+8>)\+(771>:0
T T T T

The central path can be constructed by finding a root of above equation that satisfies
A>3
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Primal-Dual Solutions and Central Path : Central Path
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Primal-Dual Solutions and Central Path : Central Path

We cannot set 7 = 0 directly. When we set = = 0, the key KKT condition becomes:

Xpu=0 = zu;=0 Vi

» |t Creates a Discontinuous Jump: A step tries to jump from the current interior
point directly to a solution on the boundary where many x; and pu; are zero.
This is a huge, highly non-linear jump. The step will almost certainly overshoot,
resulting in negative values for some z; or u;, whichis infeasible and breaks the
algorithm.

» The Problem Becomes Non-Smooth: The conditions x;u; = 0 represents a set
of axes—a shap with a sharp corner at the origin. The method relies on using
derivatives to find the next step, and this doesn’'t work well at shap corners.
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Primal-Dual Interior Methods: Path-Following Method

We need to find 7 to make {xx, Ag, puy, } approach the minimizer vertex. In this
lecture, we introduce the method that simultaneously solves the primal and dual LP
problems and has emerged as the modest efficient interior-point method for the LP
problems.

» Consider the standard form LP problem in (1) and its dual (2). Let
Wi = {Xk, Ak, 1y } Where xy is strictly feasible for the primal and {Ag, gt} is
strictly feasible for the dual.

> We need to find the increment vector 8., = {8+, d,d,} such that the next
iterate Wi 1 = {Xp41, Mot 15 g1y = {Xk + 0, A + Ox, ooy, + ) remains
strictly feasible and approaches the central path defined by (2) with
T =Tk+1 > 0.

» The path-following method, a suitable §,, is obtained as a first-order
approximate solution of (5).
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Primal-Dual Interior Methods: Path-Following Method

If wgy1 satisfies (5) with 7 = 75,41, then

Perturbation: Condition for w1

A(xx +62)=Db Ad; =0
—AT(Ap +83) + (p +6u) =c —ATSy +6,=0

X(pp +6u) = Thtre AXpy + X0, + AXSy = 16 — Xy,
where

X = diag{wl s L2y e 7xn}¢x = diag{xl + (5:10)17732 + (51:)2; ce T+ (5JIZ)71}7
AX = diag{(8z)1, (0z)2, ..., (0z)n}, X=X+ AX

By neglecting the AX4,, and let AXpu,, = Mé, (we need to find §), where
M = diag{()1, (184)2: - - - (183 }, We have

Aa:x: = 01 _AT(;)\ + 6;! = 01 MJIL’ + X5N = Tk+1€ — X'u'k (6)
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Primal-Dual Interior Methods: Path-Following Method

Solving (6) for 8., we obtain

o\, = —YAy
S = AT0, )
0p = -y - D(s;t

D=M'X, Y=@ADAT) ! y=x4 -7 M lte
where

/(1)1 (xk)1 (1)1
M~ Xpy, = :

1/ (g )n (xp)n | | (g)n

Il
>
=
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Primal-Dual Interior Methods : Path-Following Method

Primal-dual path-following algorithm for the LP problem
1. Input A and a strictly feasible wo = {xo, Ao, so}. Setk =0and p > /n

(n is the dimension of x), and initialize the tolerance ¢ for the duality gap.
2. Ifugxk < g, output solution w* = wy and stop; otherwise, continue with
Step 3

T
3. SetTpyl = *:L’f: and compute 8y, = {84,0x,d,} using (7).

4. compute step size ay, as follow:
ak = (1-— 10_6)amax, Omax = min(ay, ag)

where

_(Xk)i:|7

= min min =
i with (51)i<0|: (62): i with (5#)i<0[ ()i
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Primal-Dual Interior Met : Path-Following Method Example

Example:

Sketch the central path of the LP problem

minimize f(x) = —2z1 + x2 — 3z3
X

subject to x1 +z2 + 23 =1

z1 > 0,22 > 0,23 > 0

Solution: Find an initial wo on the central path by using the method described in the
previous example with 79 = 5. The vector wg obtained is {xq, Ao, o} with

0.344506 14.513519
x0 = [0.285494| , Ao =16.513519, py = |17.513519
0.370000 13.513519

With p = 7y/n and e = 10~5, the algorithm will converges after eight iterations to the

solution x* = [0.000000 0.000000 1.000000]
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A nonfeasible-Initialization: Path-Following Method

If wii 1 satisfies (5) with 7 = 75,41, then

Perturbation: Condition for wy 1

A(xg +d85)=b Ab, =T,
—AT(Ap+8x) + (my +8,) =¢ “ATE, 46, =1y

X(py +04) = Thyre M6, + X6, = i1 — Xy,

whererp, =b — Ax;, andrg = ¢ + AT, — p, are the residuals for the primal and
dual constraints, respectively.

6y =—-Y(Ay + ADry +1p)
6,,, = AT(s)\ + Td (8)
6, =—y—Dd,
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Nonfeasible-Initialization Primal-Dual Path-Following Method

Nonfeasible-initialization Primal-dual path-following algorithm for the LP prob-
lem
1. Input A, b, ¢, and wo = {0, Mo, po}. Setk=0and p > /n (nisa
dimension of z), and initialize the tolerance ¢ for the duality gap.
2. If;{xk < g, output solution w* = w;, and stop; otherwise, continue with
Step 3
i xg

3. SetTpyr = T and compute 8, = {8z,8x,8,} using (8).

4. compute step size oy, as follow:

ap = (1- 1076)04111&)( Qmax = min(ap,ad)

where

7(Xk)i:| 7

- iwithn(nﬁlg)KO [ (8)i

(/J’k)i:|

min -
i with (8,); <0 [ (8p)i
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Nonfeasible-Initialization Primal-Dual Path-Following Method

Example

Example:

Sketch the central path of the LP problem

minimize f(x) = —2z1 + x2 — 3z3
X

subject to x1 +z2 +x3 =1

z1 2 0,22 > 0,23 > 0

Solution: The vector wo, which is not feasible, is {xo, Ao, o} with

0.4 1.0
x0= (03], Ao=-05 po= 05
0.4 1.0

With p = 7y/n and e = 1075, the algorithm will converges after eight iterations to the

solution x* = [0.000000 0.000000 1.000000]
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Nonfeasible-Initialization Primal-Dual Path-Following Method

Example

—¥— non-feasible
*  central-path
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Nonfeasible-Initialization Primal-Dual Path-Following Method

Example

% min -2x1 + x2 - 3x3

% s.t. X1 + x2 + x3 =1

% x1l, x2, x3 >= 0

c=1[-2; 1; -3]; % Objective function vector (c'x)

Aeq = [1 1 1] % Equality constraint matrix (Aeq*x = beq)
beq = 1; % Equality constraint vector

b = [0; 0; 0]; % Lower bounds (x >= 0)

ub = [1; % No upper bounds

options = optimoptions('linprog', 'Algorithm',...

'interior-point',

'Display', 'iter');

[x_opt, fval, exitflag, output] = linprog(c, [1, [1,...
Aeq, beq, lb, ub, options);

disp(x_opt');
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