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Objective

At the end of this chapter you should be able to:

• Describe, implement, and the constrained optimization problems
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Reviews: Back Tracking Line Search

• The backtracking line search is very simple and quite effective.

• Depend on two constants α, β with 0 < β < 0.5, 0 < ρ < 1.

Require: a descent direction d , β ∈ (0, 0.5) and ρ ∈ (0, 1)

α = 1

while f(x+ αd) > f(x) + βα∇f(x)Td do
α = ρα

end while
return α

f(x + αd)

f(x) + α∇f(x)Td

f(x) + αρ∇f(x)Td

α

f(α) • The lower dashed line shows the
linear extrapolation of f(x)

• The upper dashed line ahs a slope of
a factor of ρ smaller.

• The backtracking condition is that
f(x) is lies below the upper dashed
line. 3/21



Newton Method with Line Search

Minimizer of second-order approximation

f(x+∆x) ≈ f(x) +∇f(x)T∆x+
1

2
∆xT∇2f(x)∆x

∇f(x+∆x) = ∇f(x) +∇2f(x)∆x = 0 (with respect to ∆x)

The second equation is the optimality condition. We have

∆x = −∇2f(x)−1∇f(x) = d

The positive definiteness of ∇2f(x) implies that

∇f(x)T∆x = −∇f(x)T∇2f(x)−1∇f(x) = −gTH−1g < 0

The Newton step is a descent direction (unless x is optimal).
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Newton Method with Line Search

• The local Newton method is

xk+1 = xk −∇2f(x)−1∇f(xk)

• Newton method with line search

xk+1 = xk − αkDk∇f(xk) = xk − αk∇2f(x)−1∇f(xk)

In general the Hessian matrix ∇2f(xk) may not be positive definite, it is
necessary to choose another preconditioner.

• One of then involves choosingDk diagonal, with entries

Dk(i, i) = max

(
ε,

∂2f

∂(x)2i (xk)

)−1

with ε > 0. Then, each diagonal element (i.e., each eigenvalue) is greater than or
equal to ε, which guarantees the positive definiteness of the matrix.
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Newton Method with Line Search

Modified Cholesky factorization

Require: A symmetric matrix A ∈ Rn×n

k = 0

if mini aii > 0 then
τk = 0

else
τk = 1

2
‖A‖F

end if
repeat

Calculate the Cholesky factorization LLT of A+ τI

if the factorization is not successful then
τk+1 = max(2τk,

1
2
‖A‖F )

k = k + 1

end if
until the factorization is successful
return τk+1
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Newton Method with Line Search

• The most widely used technique is the regularization (damped Newton or
Levenberg–Marquardt algorithm).

Dk =
(
∇2f(xk) + τI

)−1

Require: a starting point x, tolerance ε > 0

k = 0

repeat
Calculate a lower triangular matrix Lk and τ such that
LkL

T
k = ∇2f(xk) + τI

by using the modified Cholesky factorization
Find zk by solving the triangular system Lkzk = ∇f(xk)

Find dk by solving the triangular system LT
k dk = −zk

Choose step size αk by backtracking line search with α0 = 1

xk+1 = xk + αkdk

k = k + 1

until ‖∇f(xk)
T∇2f(xk)

−1∇f(xk)‖ ≤ ε

return xk+1 7/21



Newton Method with Line Search
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Bean function:

f(x) = (1− x1)
2 + (1− x2)

2 + 0.5(2x2 − x2
1)

2

• The Newton decrement is that it is independent of linear changes in the
problem variables.

• The backtracking line search especially suitable for a Newton algorithm is that
as the iterates approach the solution proin, αk approaches unity, the quadratic
approximation used as the basis fo the newton method becomes increasingly
accurate. 8/21



Equality Constrained Minimized

minimize
x

f(x)

subject to Ax = b,

where f(x) is a convex twice continuously differentiable function and A is of full row
rank. The KKT condition is

∇f(x) +ATλ = 0

Ax = b

are satisfied for some Lagrange multiplier λ.

• Assume x∗,λ∗ exist, then xk,λk satisfies Ax = b.

xk+1 = xk + dk

Axk+1 = Axk +Adk ⇒ Adk = 0
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Equality Constrained Minimized

• The linear approximation of the gradient is

∇f(xk + dk) ≈ ∇f(xk) +∇2f(xk)dk

= ∇f(xk) +Hkdk

• KKT Condition becomes

∇f(xk) +∇2f(xk)dk +ATλk+1 = 0

Adk = 0

• Matrix Form:

[
∇2f(xk) AT

A 0

][
dk

λk+1

]
=

[
−∇f(xk)

0

]
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Equality Constrained Minimized

• If there are no constraints, it becomes

Hkdk = −∇f(x)

dk = −H−1
k ∇f(x)

The vector dk satisfies the constraints is regarded as a Newton direction.

• We can calculate dk as

dk = −H−1
k

(
ATλk+1 +∇f(xk)

)
where

dk = −H−1
k ATλk+1 −H−1

k ∇f(xk)

λk+1 = −
(
AH−1

k AT
)
AH−1

k ∇f(xk)

Adk = 0

• The stop criterion can be formulate as ‖∇f(xk+1) +ATλk+1‖ < ε
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Equality Constrained Minimized

Newton Method with Linear Constraints and x ∈ dom f(x)

Require: a starting point x ∈ dom f(x), λ , tolerance ε > 0

k = 0

repeat
Calculate dk and δk

Find αk that minimize f(xk + αdk), using the backtracking line search
xk+1 = xk + αkdk and compute ∇f(xk+1)

k = k + 1

until ‖∇f(xk+1) +ATλk+1‖ ≤ ε

return xk+1
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Equality Constrained Minimized

• If x is not in dom f(x), (xk,λk) is known but xk is not feasible

(xk,λk) → (xk+1,λk+1)

We must have Adk = 0 = −(Ax− b)

• The Newton direction must satisfy the equations:

[
Hk AT

A 0

][
dk

λk+1

]
=

[
−∇f(xk)

b−Axk

]

• Here Adk 6= 0 dk is not necessarily a descent direction. The line search and
the stop criterion are not applicable.

• Let use λk+1 = λk + δk

[
H AT

A 0

][
dk

δk

]
= −

[
rd

rp

]
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Equality Constrained Minimized

• rd and rp is called dual and primal residual

rd = ∇f(xk) +ATλk

rp = Axk − b

• We have

dk = −H−1
k

(
AT δk + rd

)
δk = −

(
AH−1

k AT
)−1 (

AH−1
k rd − rp

)

‖r(xk,λk)‖ ≤ ε

• The backtracking line search can be found by

minimize ‖r(xk + αkdk,λk + αkδk‖ 14/21



Equality Constrained Minimized

Newton Method with Linear Constraints and x is not in dom f(x)

Require: a starting point x,λ, tolerance ε > 0

k = 0

repeat
Calculate dk and λk+1

Find αk using backtracking that minimizes ‖r(xk + αdk,λk + αδk)‖
xk+1 = xk + αkdk

k = k + 1

until ‖r(xk,λk)‖ < ε

return xk+1

Modified Backtracking

Require: γ ∈ (0, 0.5) and ρ ∈ (0, 1), λ = 1

while ‖r(xk + αdk,λk + αδk‖ > (1− ρα)‖r(xk,λk)‖ do
α = γα

end while
return xk+1 15/21



Equality Constrained Minimized
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Nonlinear Equality Constrained Minimized

minimize
x

f(x), f(x) : Rn 7→ R

subject to c(x) = 0, c(x) : Rn 7→ Rm

First-Order Necessary Conditions:

• ∇f(x) = 0 in free directions

• c(x) = 0 for active constraints.

• Any non-zero component of ∇f(x) must be normal to the constraint
surface/manifold

∇f(x) + λ∇c(x) = 0,

where λ is a Lagrange multiplier(dual variable).
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Nonlinear Equality Constrained Minimized

• In general

∂f

∂x
+ λT ∂c

∂x
= 0, λ ∈ Rm

• Based on this gradient condition, we defined:

L(x,λ) = f(x) + λT c(x),

where L is called “Lagrangian”

• The KKT condition is

∇xL(x,λ) = ∇f(x) +

(
∂c

∂x

)T

λ = 0

∇λL(x,λ) = c(x) = 0
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Nonlinear Equality Constrained Minimized

We can solve the KKT condition with the Newton method:

∇xL(x+∆x,λ+∆λ) ≈ ∇xL(x,λ) +
∂2L
∂x2

∆x+
∂2L
∂x∂λ

∆λ = 0

∇λL(x+∆x,λ+∆λ) ≈ c(x) +
∂c

∂λ
∆x = 0

Note:

∂

∂x
∇λL(x,λ) =

(
∂c

∂x

)T

,
∂c

∂x
∆x = −c(x)

The KKT system is

 ∂2L
∂x2

(
∂c
∂x

)T

∂c
∂λ

0

[
∆x

∆λ

]
=

[
−∇xL(x,λ)

−c(x)

]

In the algorithm we have xk+1 = xk +∆x and λk+1 = λk +∆λ.
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Nonlinear Equality Constrained Minimized
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When the equality constraints are nonlinear, it is obvious that the Newton with Linear
constraint method cannot use.
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