Constrained Optimization I

Asst. Prof. Dr.-Ing. Sudchai Boonto November 16, 2023

Department of Control System and Instrumentation Engineering King Mongkut's Unniversity of Technology Thonburi Thailand

Objective

At the end of this chapter you should be able to:

• Describe, implement, and the constrained optimization problems

Reviews: Back Tracking Line Search

- The **backtracking** line search is very simple and quite effective.
- Depend on two constants α, β with $0 < \beta < 0.5, 0 < \rho < 1$.

```
Require: a descent direction \mathbf{d}, \beta \in (0, 0.5) and \rho \in (0, 1)

\alpha = 1

while f(\mathbf{x} + \alpha \mathbf{d}) > f(\mathbf{x}) + \beta \alpha \nabla f(\mathbf{x})^T \mathbf{d} do

\alpha = \rho \alpha

end while

return \alpha
```


- The lower dashed line shows the linear extrapolation of $f(\mathbf{x})$
- The upper dashed line ahs a slope of a factor of ρ smaller.
- The backtracking condition is that $f(\mathbf{x})$ is lies below the upper dashed line.

Minimizer of second-order approximation

$$f(\mathbf{x} + \Delta \mathbf{x}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(x) \Delta \mathbf{x}$$
$$\nabla f(\mathbf{x} + \Delta \mathbf{x}) = \nabla f(\mathbf{x}) + \nabla^2 f(x) \Delta \mathbf{x} = 0 \qquad \text{(with respect to } \Delta \mathbf{x})$$

The second equation is the optimality condition. We have

$$\Delta \mathbf{x} = -\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x}) = \mathbf{d}$$

The positive definiteness of $\nabla^2 f(x)$ implies that

$$\nabla f(x)^T \Delta x = -\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) = -\mathbf{g}^T \mathbf{H}^{-1} \mathbf{g} < 0$$

The Newton step is a descent direction (unless \mathbf{x} is optimal).

• The local Newton method is

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x}_k)$$

• Newton method with line search

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{D}_k \nabla f(\mathbf{x}_k) = \mathbf{x}_k - \alpha_k \nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x}_k)$$

In general the Hessian matrix $\nabla^2 f(\mathbf{x}_k)$ may not be positive definite, it is necessary to choose another preconditioner.

 \cdot One of then involves choosing \mathbf{D}_k diagonal, with entries

$$\mathbf{D}_{k}(i,i) = \max\left(\varepsilon, \frac{\partial^{2} f}{\partial(x)_{i}^{2}(\mathbf{x}_{k})}\right)^{-1}$$

with $\varepsilon > 0$. Then, each diagonal element (i.e., each eigenvalue) is greater than or equal to ε , which guarantees the positive definiteness of the matrix.

Modified Cholesky factorization

```
Require: A symmetric matrix A \in \mathbb{R}^{n \times n}
        k = 0
  if \min_i a_{ii} > 0 then
       \tau_k = 0
  else
       \tau_k = \frac{1}{2} \|A\|_F
  end if
  repeat
       Calculate the Cholesky factorization \mathbf{L}\mathbf{L}^T of A + \tau \mathbf{I}
       if the factorization is not successful then
           \tau_{k+1} = \max(2\tau_k, \frac{1}{2} ||A||_F)
            k = k + 1
       end if
  until the factorization is successful
  return \tau_{k+1}
```

• The most widely used technique is the regularization (damped Newton or Levenberg–Marquardt algorithm).

$$\mathbf{D}_k = \left(\nabla^2 f(\mathbf{x}_k) + \tau \mathbf{I}\right)^{-1}$$

Require: a starting point \mathbf{x} , tolerance $\varepsilon > 0$

k = 0

repeat

Calculate a lower triangular matrix \mathbf{L}_k and τ such that

 $\mathbf{L}_k \mathbf{L}_k^T = \nabla^2 f(\mathbf{x}_k) + \tau \mathbf{I}$

by using the modified Cholesky factorization

Find \mathbf{z}_k by solving the triangular system $\mathbf{L}_k \mathbf{z}_k = \nabla f(\mathbf{x}_k)$

Find \mathbf{d}_k by solving the triangular system $\mathbf{L}_k^T \mathbf{d}_k = -\mathbf{z}_k$

Choose step size α_k by backtracking line search with $\alpha_0 = 1$

$$x_{k+1} = x_k + \alpha_k \mathbf{d}_k$$

k=k+1

until
$$\|\nabla f(\mathbf{x}_k)^T \nabla^2 f(\mathbf{x}_k)^{-1} \nabla f(\mathbf{x}_k)\| \leq \varepsilon$$

return x_{k+1}

$$f(\mathbf{x}) = (1 - x_1)^2 + (1 - x_2)^2 + 0.5(2x_2 - x_1^2)^2$$

- The Newton decrement is that it is independent of linear changes in the problem variables.
- The backtracking line search especially suitable for a Newton algorithm is that as the iterates approach the solution proin, α_k approaches unity, the quadratic approximation used as the basis fo the newton method becomes increasingly accurate.

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b}, \end{array}$

where $f(\mathbf{x})$ is a convex twice continuously differentiable function and \mathbf{A} is of full row rank. The KKT condition is

$$\nabla f(\mathbf{x}) + \mathbf{A}^T \boldsymbol{\lambda} = 0$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

are satisfied for some Lagrange multiplier λ .

• Assume $\mathbf{x}^*, \boldsymbol{\lambda}^*$ exist, then $\mathbf{x}_k, \boldsymbol{\lambda}_k$ satisfies $\mathbf{A}\mathbf{x} = \mathbf{b}$.

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{d}_k$$
$$\mathbf{A}\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{A}\mathbf{d}_k \quad \Rightarrow \quad \mathbf{A}\mathbf{d}_k = 0$$

• The linear approximation of the gradient is

$$\begin{aligned} \nabla f(\mathbf{x}_k + \mathbf{d}_k) &\approx \nabla f(\mathbf{x}_k) + \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k \\ &= \nabla f(\mathbf{x}_k) + \mathbf{H}_k \mathbf{d}_k \end{aligned}$$

• KKT Condition becomes

$$abla f(\mathbf{x}_k) +
abla^2 f(\mathbf{x}_k) \mathbf{d}_k + \mathbf{A}^T \boldsymbol{\lambda}_{k+1} = 0$$

$$\mathbf{A} \mathbf{d}_k = 0$$

• Matrix Form:

$$\begin{bmatrix} \nabla^2 f(\mathbf{x}_k) & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{d}_k \\ \boldsymbol{\lambda}_{k+1} \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{x}_k) \\ 0 \end{bmatrix}$$

• If there are no constraints, it becomes

$$\begin{aligned} \mathbf{H}_k \mathbf{d}_k &= -\nabla f(\mathbf{x}) \\ \mathbf{d}_k &= -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}) \end{aligned}$$

The vector \mathbf{d}_k satisfies the constraints is regarded as a Newton direction.

 \cdot We can calculate \mathbf{d}_k as

$$\mathbf{d}_{k} = -\mathbf{H}_{k}^{-1} \left(\mathbf{A}^{T} \boldsymbol{\lambda}_{k+1} + \nabla f(\mathbf{x}_{k}) \right)$$

where

$$\mathbf{d}_{k} = -\mathbf{H}_{k}^{-1}\mathbf{A}^{T}\mathbf{\lambda}_{k+1} - \mathbf{H}_{k}^{-1}\nabla f(\mathbf{x}_{k})$$
$$\mathbf{\lambda}_{k+1} = -\left(\mathbf{A}\mathbf{H}_{k}^{-1}\mathbf{A}^{T}\right)\mathbf{A}\mathbf{H}_{k}^{-1}\nabla f(\mathbf{x}_{k})$$
$$\mathbf{A}\mathbf{d}_{k} = 0$$

• The stop criterion can be formulate as $\|
abla f(\mathbf{x}_{k+1}) + \mathbf{A}^T oldsymbol{\lambda}_{k+1} \| < arepsilon$

```
Newton Method with Linear Constraints and \mathbf{x} \in \mathsf{dom}\, f(\mathbf{x})
```

```
Require: a starting point \mathbf{x} \in \text{dom } f(\mathbf{x}), \boldsymbol{\lambda}, tolerance \varepsilon > 0

k = 0

repeat

Calculate \mathbf{d}_k and \boldsymbol{\delta}_k

Find \alpha_k that minimize f(\mathbf{x}_k + \alpha \mathbf{d}_k), using the backtracking line search

\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k and compute \nabla f(\mathbf{x}_{k+1})

k = k + 1

until \|\nabla f(\mathbf{x}_{k+1}) + \mathbf{A}^T \boldsymbol{\lambda}_{k+1}\| \le \varepsilon

return x_{k+1}
```

• If \mathbf{x} is not in dom $f(\mathbf{x})$, $(\mathbf{x}_k, \boldsymbol{\lambda}_k)$ is known but \mathbf{x}_k is not feasible

$$(\mathbf{x}_k, \boldsymbol{\lambda}_k) \quad \rightarrow \quad (\mathbf{x}_{k+1}, \boldsymbol{\lambda}_{k+1})$$

We must have $\mathbf{Ad}_k = 0 = -(\mathbf{Ax} - b)$

• The Newton direction must satisfy the equations:

$$\begin{bmatrix} \mathbf{H}_k & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{d}_k \\ \boldsymbol{\lambda}_{k+1} \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{x}_k) \\ \mathbf{b} - \mathbf{A}\mathbf{x}_k \end{bmatrix}$$

- Here $\mathbf{Ad}_k \neq 0 \mathbf{d}_k$ is not necessarily a descent direction. The line search and the stop criterion are not applicable.
- \cdot Let use $oldsymbol{\lambda}_{k+1} = oldsymbol{\lambda}_k + oldsymbol{\delta}_k$

$$\begin{bmatrix} \mathbf{H} & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{d}_k \\ \boldsymbol{\delta}_k \end{bmatrix} = - \begin{bmatrix} \mathbf{r}_d \\ \mathbf{r}_p \end{bmatrix}$$

 \cdot \mathbf{r}_d and \mathbf{r}_p is called **dual** and **primal residual**

$$\mathbf{r}_d = \nabla f(\mathbf{x}_k) + \mathbf{A}^T \boldsymbol{\lambda}_k$$
$$\mathbf{r}_p = \mathbf{A}\mathbf{x}_k - \mathbf{b}$$

• We have

$$\begin{split} \mathbf{d}_{k} &= -\mathbf{H}_{k}^{-1} \left(\mathbf{A}^{T} \boldsymbol{\delta}_{k} + \mathbf{r}_{d} \right) \\ \boldsymbol{\delta}_{k} &= - \left(\mathbf{A} \mathbf{H}_{k}^{-1} \mathbf{A}^{T} \right)^{-1} \left(\mathbf{A} \mathbf{H}_{k}^{-1} \mathbf{r}_{d} - \mathbf{r}_{p} \right) \end{split}$$

$$\|\mathbf{r}(\mathbf{x}_k, \boldsymbol{\lambda}_k)\| \leq \varepsilon$$

 \cdot The backtracking line search can be found by

minimize
$$\|\mathbf{r}(\mathbf{x}_k + \alpha_k \mathbf{d}_k, \boldsymbol{\lambda}_k + \alpha_k \boldsymbol{\delta}_k\|$$
 14/21

Newton Method with Linear Constraints and \mathbf{x} is not in dom $f(\mathbf{x})$

```
Require: a starting point \mathbf{x}, \boldsymbol{\lambda}, tolerance \varepsilon > 0

k = 0

repeat

Calculate \mathbf{d}_k and \boldsymbol{\lambda}_{k+1}

Find \alpha_k using backtracking that minimizes \|\mathbf{r}(\mathbf{x}_k + \alpha \mathbf{d}_k, \boldsymbol{\lambda}_k + \alpha \boldsymbol{\delta}_k)\|

x_{k+1} = x_k + \alpha_k \mathbf{d}_k

k = k + 1

until \|\mathbf{r}(\mathbf{x}_k, \boldsymbol{\lambda}_k)\| < \varepsilon

return x_{k+1}
```

Modified Backtracking

```
Require: \gamma \in (0, 0.5) and \rho \in (0, 1), \lambda = 1
while \|\mathbf{r}(\mathbf{x}_k + \alpha \mathbf{d}_k, \mathbf{\lambda}_k + \alpha \delta_k\| > (1 - \rho \alpha) \|\mathbf{r}(\mathbf{x}_k, \mathbf{\lambda}_k)\| do
\alpha = \gamma \alpha
end while
return x_{k+1}
```


 x_1

$$\begin{split} & \underset{\mathbf{x}}{\text{minimize}} \quad f(\mathbf{x}), \qquad f(\mathbf{x}): \mathbb{R}^n \mapsto \mathbb{R} \\ & \text{subject to} \quad c(\mathbf{x}) = 0, \qquad c(\mathbf{x}): \mathbb{R}^n \mapsto \mathbb{R}^m \end{split}$$

First-Order Necessary Conditions:

- $\nabla f(\mathbf{x}) = 0$ in free directions
- $c(\mathbf{x}) = 0$ for active constraints.
- Any non-zero component of $abla f(\mathbf{x})$ must be normal to the constraint surface/manifold

$$\nabla f(\mathbf{x}) + \lambda \nabla c(\mathbf{x}) = 0,$$

where λ is a Lagrange multiplier(dual variable).

• In general

$$\frac{\partial f}{\partial \mathbf{x}} + \boldsymbol{\lambda}^T \frac{\partial c}{\partial \mathbf{x}} = 0, \qquad \boldsymbol{\lambda} \in \mathbb{R}^m$$

• Based on this gradient condition, we defined:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^T c(\mathbf{x}),$$

where ${\cal L}$ is called "Lagrangian"

• The KKT condition is

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \nabla f(\mathbf{x}) + \left(\frac{\partial c}{\partial \mathbf{x}}\right)^T \boldsymbol{\lambda} = 0$$
$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = c(\mathbf{x}) = 0$$

We can solve the KKT condition with the Newton method:

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x} + \Delta \mathbf{x}, \boldsymbol{\lambda} + \Delta \boldsymbol{\lambda}) \approx \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) + \frac{\partial^2 \mathcal{L}}{\partial \mathbf{x}^2} \Delta \mathbf{x} + \frac{\partial^2 \mathcal{L}}{\partial \mathbf{x} \partial \boldsymbol{\lambda}} \Delta \boldsymbol{\lambda} = 0$$
$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\mathbf{x} + \Delta \mathbf{x}, \boldsymbol{\lambda} + \Delta \boldsymbol{\lambda}) \approx c(\mathbf{x}) + \frac{\partial c}{\partial \boldsymbol{\lambda}} \Delta \mathbf{x} = 0$$

Note:

$$\frac{\partial}{\partial \mathbf{x}} \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \left(\frac{\partial c}{\partial \mathbf{x}}\right)^T, \qquad \frac{\partial c}{\partial \mathbf{x}} \Delta \mathbf{x} = -c(\mathbf{x})$$

The KKT system is

$$\begin{bmatrix} \frac{\partial^2 \mathcal{L}}{\partial \mathbf{x}^2} & \left(\frac{\partial c}{\partial \mathbf{x}}\right)^T \\ \frac{\partial c}{\partial \boldsymbol{\lambda}} & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) \\ -c(\mathbf{x}) \end{bmatrix}$$

In the algorithm we have $\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta \mathbf{x}$ and $\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \Delta \boldsymbol{\lambda}$.

When the equality constraints are nonlinear, it is obvious that the Newton with Linear constraint method cannot use.

- 1. Joaquim R. R. A. Martins, Andrew Ning, "Engineering Design Optimization," Cambridge University Press, 2021.
- 2. Mykel J. kochenderfer, and Tim A. Wheeler, "Algorithms for Optimization," The MIT Press, 2019.
- 3. Ashok D. Belegundu, Tirupathi R. Chandrupatla, "Optimization Concepts and Applications in Engineering," Cambridge University Press, 2019.
- 4. Stephen Boyd, and Lieven Vandenberghe , "Convex Optimization," Cambridge University Press, 2009.