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Objective

▶ Linear programming (LP) problems occur in a diverse range of real-life
applications in economic analysis and planning, operations research, computer
science, medicine, and engineering.

▶ These prolems, it is known that nay minima occur at the vertices of the feasible
region and can be determined through a “brute-force” or exhaustive approach
by evaluating the objective function at all the vertices of the feasible region.

▶ The number of variables involved in practical LP problem is often vary large and
an exhaustive approach would entail a considerable amount of computation.

▶ In 1947, Dantzig developed a method for solving LP problems known as the
simplex method. He solved this problem because he came to the class late and
thought an unsolved problem on a blackboard was homework.

▶ Named one of the “Top 10 algorithms of the 20th century” by Computing in
Science & Engineering magazine. Full list at:
https://www.siam.org/pdf/news/637.pdf

▶ The simplex method has been the primary method for solving LP problems
since its introduction. 2 / 43
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Simplex Method (Alternative Form): Degenerate Case

Consider

minimize
x

cT x

subject to AX ≤ b

▶ At a degenerate vertex,the number of rows in matrix Aak is larger than n.
▶ The Matrix Aak will replaced with Âak that is composed of n linearly

independent rows of Aak .
▶ The set of constraints corresponding to the rows in Âak is called a working set

of active constraints and often referred to as a working-set matrixW .
▶ Associated with Âak is The working index set denoted as

Wk = {w1, w2, . . . , wn}

▶ The index set Ik (inactive constraints) is redefined as

Ik = {i : i /∈ Wk and aTi dk > 0}
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Simplex Method: degenerate

Simplex algorithm for the alternative-form LP problem, degenerate vertices

1. Input vertex x0 , and form a working-set matrix Âa0 and a working-index
setW0 . Set k = 0.

2. Solve ÂT
ak

µk = −c for µk . If µk ≥ 0, stop (vertex xk is a minimizer);
otherwise, select index l using l = minwi∈Wk,(µk)i<0(wi)

3. Solve Âakdk = −el for dk .

4. Form index set Ik using Ik = {i : i /∈ Wk and aTi dk > 0}. If Ik is empty,
stop (the objective function tends to −∞ in the feasible region).

5. Compute the residual vector rk = Axk − b = (ri)
p
i=1 parameter δi =

−ri
aTi dk

for i ∈ Ik and αk = mini∈Ik
(δi). Record index i∗ as i∗ = minδi=αk

(i)

6. Set xk+1 = xk + αkdk . Update Âak+1 by deleting row aTl and adding row
aTi∗ and update index setWk+1 accordingly. Set k = k + 1 and repeat for
Step 2.
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Simplex Method: degenerate example

Solve the LP problem

minimize
x

f(x) = −2x1 − 3x2 + x3 + 12x4

subject to − x1 ≤ 0,−x2 ≤ 0,−x3 ≤ 0,−x4 ≤ 0

− 2x1 − 9x2 + x3 + 9x4 ≤ 0

1

3
x1 + x2 −

1

3
x3 − 2x4 ≤ 0

▶ We start with x0 =
[
0 0 0 0

]T
which is obviously a degenerate vertex (6

active constraints). Applying the algorithm, the first iteration results in the
following computations:

Âa0 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , W = {1, 2, 3, 4}
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Simplex Method: degenerate example

▶ ÂT
a0

µ0 =
[
2 3 −1 −12

]T
=⇒ µ0 =

[
−2 −3 1 12

]T
. The lowest

absolute negative value is at l = 1 (from 1 and 2).

▶ Âa0d0 = −e1 =⇒ d0 =
[
1 0 0 0

]T
. We have

r0 =
[
0 0 0 0 0 0

]T
. I0 = {i : i /∈ Wk and aTi dk > 0} i = 5 or 6

that are not inW , but only aT6 d0 = 1
3
is positive. I0 = {6}. α0 = 0 and i∗ = 6

▶

x1 = x0 =


0

0

0

0

 , Âa1 =


1
3

1 − 1
3
−2

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , W1 = {6, 2, 3, 4}

▶ Note that although x1 = x0 , Âa1 differs from Âa0 . Repeating from Step 2, the
second iteration (k = 1) gives µ1 =

[
6 3 −1 0

]T
, l = 3 ,

d1 =
[
1 0 1 0

]T
, r1 =

[
0 0 0 0 0 0

]T
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Simplex Method: degenerate example

▶ i = 1, 5 /∈ W and

aT1 d1 =
[
−1 0 0 0

]

1

0

1

0

 = −1

aT5 d1 =
[
−2 −9 1 9

]

1

0

1

0

 = −1

we have I1 = {∅}

▶ I1 is an empty set. Therefore, in the feasible region the objective function tends
to −∞.
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Simplex Method for Standard Form

Consider an example of the standard LP problem:

minimize
x

f(x) = x1 − 2x2 − x4

subject to 3x1 + 4x2 + x3 = 9

2x1 + x2 + x4 = 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

We have

A =



3 4 1 0

2 1 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, b =



9

6

0

0

0

0


, x ∈ R4, p = 2
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Simplex Method for Standard Form

The p equality constraints can be used to express p dependent variables in terms of
n− p independent variables. Assume B is a matrix that consists of p linearly
independent column of A. The we have

Ax = b =⇒ Ax =
[
B N

]xB

xN

 =

[
3 4 1 0

2 1 0 1

]
x1

x2

x3

x4

 = BxB + NxN = b

▶ The variables contained in xB and xN are called basic and non basic variables,
respectively.

▶ B is nonsingular, we can express the basic variables in terms of the nonbasic
variables as

xB = B−1b− B−1NxN
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Simplex Method for Standard Form

▶ At vertex xk , there is at least n active constraints. In addition to the p equality
constraints, there are at least n− p inequality constraints that become active in
xk .

▶ Therefore, for the standard-form LP problem a vertex contains at least n− p

zero components.

Theorem: Linear independence of columns in matrix A

The columns of A corresponding to strictly positive of a vertex xk are linearly
independent.

Proof: Let B̂ be formed by the columns of A that correspond to strictly positive
components of xk (xk ≥ 0) , and let x̂k be the collection of the positive components
of xk . If B̂ŵ = 0 for some nonzero ŵ , then it follows that

Axk = B̂x̂k = B̂(x̂ + αŵ) = b for any scalar α

10 / 43



Simplex Method for Standard Form

Since x̂k > 0, there exists a sufficiently small α+ > 0 such that

ŷk = x̂k + αŵ > 0 for − α+ ≤ α ≤ α+.

y ∈ Rn×1 be such that the components of yk corresponding to x̂k are equal to the
components of ŷk and the remaining correspondents of yk are zero. Note that with
α = 0, yk = xk is a vertex, and when α varies from −α+ to α+ , vertex xk would lie
between two feasible points on a straight line, which is a contradiction. Hence ŵ must
be zero and the columns of B̂ are linearly independent.
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Simplex Method for Standard Form

Consider

minimize
x

f(x) = −x1 − 2x2

subject to − 2x1 + x2 + x3 = 2

− x1 + x2 + x4 = 3

x1 + x5 = 3

x ≥ 0

There are five variables, however we need only three basic variables.

Ax =

−2 1 1 0 0

−1 1 0 1 0

1 0 0 0 1



x1

x2

x3

x4

x5

 =

23
3


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Simplex Method for Standard Form

1 2 3 4

1

2

3

4

5

6

0

x0

x4

x2

x3

x1

x5

x1

x2

x3 =
[
0 3 −1 0 3

]T
x1, x3 = 0 for the basic infeasible solution

x1 =
[
0 0 2 3 3

]T
x1, x2 = 0 for the basic feasible solution

x5 =
[
3 6 2 0 0

]T
x4, x5 = 0 for the basic feasible solution
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Simplex Method for Standard Form

▶ Using above theorem, we can use the columns of B̂ as a set of core basis
vectors to construct a nonsingular square matrix B. If B̂ already contains p
columns, we assume that B = B̂, otherwise, we augment B̂ with additional
columns of A to obtain a square nonsingular B.

▶ Let the index set associated with B at xk be denoted as Iβ = {β1, β2, . . . , βp}.
With matrix B so formed, matrix N can be constructed with those n− p columns
of A that are not in B. Let IN = {v1, v2, . . . , vn−p} be the index set for the
columns of N and let IN be the (n− p)× n matrix composed of rows
v1, v2, . . . , vn−p of the n× n identity matrix.

▶ It is clear that at vertex xk the active constrain matrix Aak contains the
working-set matrix

Âak =

[
A
IN

]

as an n× n submatrix.
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Simplex Method for Standard Form

▶ It can be shown that matrix Âak is nonsingular. If Âakx = 0 for some x, then we
have

BxB + NxN = 0 and xN = 0 =⇒ xB = −B−1NxN = 0

x =
[
xB xN

]T
= 0.

Therefore, Âak is nonsingular. In summary, at a vertex xk a working set of active

constraints for the application of the simplex method can be obtained with

three simple steps as follows:

1. Select the columns in matrix A that correspond to the strictly positive
components of xk to form matrix B̂.

2. If the number of columns in B̂ is equal to p, take B = B̂; otherwise, B̂ is
augmented with additional columns of A to form a square nonsingular
matrix B.

3. Determine the index set In and form matrix IN .
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Simplex Method for Standard Form: Example

Identify working sets of active constraints at vertex x = [3 0 0 0]T for the LP problem

minimize
x

f(x) = x1 − 2x2 − x4

subject to 3x1 + 4x2 + x3 = 9

2x1 + x2 + x4 = 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

Solution Using r = Ax− b, we can verify that the point x = [3 0 0 0]T is a degenerate
vertex at which there are five active constraints. (count the zero element in r). Since
x1 is the only strictly positive component, B̂ contains only the first column of A, i.e.,
B =

[
3 2

]T
. Matrix B̂ can be augmented, by using the second column of A to

generate a nonsingular B̂ = B as

B =

[
3 4

2 1

]
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Simplex Method for Standard Form: Example

This leads to

IN = {3, 4} and Âa =


3 4 1 0

2 1 0 1

0 0 1 0

0 0 0 1



The vertex x is degenerate, matrix Âa is not unique. There are two possibilities for
augmenting B̂. Using the third column of A for the augmentation, we have

B =

[
3 1

2 0

]
, IN = {2, 4}, Âa =


3 4 1 0

2 1 0 1

0 1 0 0

0 0 0 1


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Simplex Method for Standard Form: Example

Alternatively, augmenting B̂ with the fourth column of A yields

B =

[
3 0

2 1

]
, IN = {2, 3}, and Âa =


3 4 1 0

2 1 0 1

0 1 0 0

0 0 1 0



It can be easily verified that all three Âa’s are nonsingular.
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Simplex Method for Standard Form: Algorithm

We could change steps 2 and 3 of the previous simplex algorithm to reduce the
computational complexity.

▶ At a vertex xk , the nonsingularity of the working-set matrix Âak given by

Âak =

[
A
IN

]
implies that there exist λk ∈ Rp×1 and µ̂k ∈ R(n−p)×1 such that

c = ÂT
ak

[
−λk

µ̂k

]
= −ATλk + ITN µ̂k

If µk ∈ Rn×1 is the vector with zero basic variables and the components of µ̂k

as its nonbasic variables, then the above equation can be expressed as

c = −ATλk + µk

The vertex xk is a minimizer if and only if µ̂k ≥ 0.
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Simplex Method for Standard Form: Algorithm

▶ If we use a permutation matrix P to rearrange the components of c in
accordance with the partition of xk into basic and nonbasic variables then

Pc =

[
cB
cN

]
= −PATλk + PITN µ̂k = −

[
BT

NT

]
λk +

[
0

µ̂k

]

It follows that

BTλk = −cB and µ̂k = cN + NTλk

Since B is nonsingular, λk and µ̂k can be computed. The size of the matrix is
p× p, which is much smaller than n× n of the simplex method for the
non-standard form.
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Simplex Method for Standard Form: Algorithm

▶ If some entry in µ̂k is negative, then xk is not a minimizer and a search
direction dk needs to be determined. Note the Lagrange multipliers µ̂k are not
related to the equality constraints in Ax = b but are related to those bound
constraints x ≥ 0 that are active and are associated with the nonbasic variables.

▶ If the search direction dk is partitioned according to the basic and nonbasic
variables, xB and xN , into d(B)

k and d(N)
k , respectively, and if (µ̂k)l < 0 , then

assigning

d(N)
k = el where el is the lth column of the (n− p)× (n− p) identity matrix.

dk makes the vlth constraint inactive without affecting other bound constraints
that are associated with the nonbasic variables.

▶ In order to assure the feasibility of dk , it is also required that Adk = 0. This
requirement can be described as

Adk = Bd(B)
k + Nd(N)

k = Bd(B)
k + Nel = 0
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Simplex Method for Standard Form: Algorithm

▶ d(B)
k can determined by solving the system of equations

Bd(B)
k = −avl where avl = Nel

Altogether we can determine the search direction dk . It follows that

cT dk = −λT
k Adk + µ̂T

k INdk = µ̂T
k d(N)

k = µ̂T
k el = (µ̂k)l < 0

Therefore, dk is a feasible descent direction.
▶ To determine the step size αk , we note that a point xk + αdk with any α

satisfies the constraints Ax = b, i.e.

A(xk + αdk) = Axk + αAdk = b

The only constraints that are sensitive to step size αk are those that are
associated with the basic variables and are decreasing along direction dk .
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Simplex Method for Standard Form: Algorithm

▶ When limited to the basic variables, dk becomes d(B)
k . Since the normals of the

constraints in x ≥ 0 are simply coordinate vectors, a bound constraint
associated with a basic variable is decreasing along dk if the associated
component in d(B)

k is negative.
▶ The special structure of the inequality constraints in x ≥ 0 implies that the

residual vector, when limited to basic variables in xB , is xB itself.
▶ The above analysis lead to a simple step that can be used to determine the

index set

Ik = {i : (d(B)
k )i < 0} and, if I is not empty

αk = min
i∈Ik

[
(x(B)

k )i

(−d(B)
k )i

]

where x(B)
k denotes the vector for the basic variables of xk .
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Simplex Method for Standard Form: Algorithm

▶ If i∗ is the index in Ik that achieves αk , then the i∗th component of
x(B)
k + αkd(B)

k is zero. This zero component is then interchanged with the lth
component of x(N)

k , which is now not zero but αk .
▶ The vector x(B)

k + αd(B)
k after this updating becomes x(B)

k+1 and x(N)
k+1 remains a

zero vector. Matrices B and N as well as the associated index sets IB and IN
also need to be updated accordingly.

24 / 43



Simplex Method for Standard Form: Algorithm

Simplex algorithm for the standard-form LP problem

1. Input vertex x0 set k = 0, and form B,N, x(B)
0 , IB = {β(0)

1 , β
(0)
2 , . . . , β

(0)
p ,

and IN = {v(0)1 , v
(0)
2 , . . . , v

(0)
n−p}.

2. Partition vector c into cB and cN . Solve BTλk = −cB for λk and compute
µ̂k using

µ̂k = cN + NTλk

If µ̂k ≥ 0, stop (xk is a vertex minimizer); otherwise, select the index l that
corresponds to the most negative component in µ̂k .

3. Solve Bd(B)
k = −avl for d(B)

k where avl is the v
(k)
l th column of A.

4. Form index set Ik in Ik = {i : (d(B)
k )i < 0}. If Ik is empty then stop (the

objective function tends to −∞ in the feasible region); otherwise,

compute αk using αk = mini∈Ik

[
(x(B)

k
)i

(−d(B)
k

)i

]
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Simplex Method for Standard Form: Algorithm

4. (cont.) and record the index i∗ with αk =
(x(B)

k
)∗i

(−d(B)
k

)∗i

5. Compute x(B)
k+1 = x(B)

k + αkd(B)
k and replace its i∗th zero component by αk . Set

x(N)
k+1 = 0. Update B and N by interchanging the lth column of N with the i∗th
column of B.

6. Update IB and IN by interchanging index v(k)l of IN with index β(B)
i∗ of IB .

Use the x(B)
k+1 and x(N)

k+1 obtained in Step 5 in conjunction with IB and IN to
form xk+1 . Set k = k + 1 and repeat form Step 2.
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Simplex Method for Standard Form: Example

Solve the standard-form LP problem

minimize
x

f(x) = 2x1 + 9x2 + 3x3

subject to −2x1 + 2x2 + x3 − x4 = 1

x1 + 4x2 − x3 − x5 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

Solution: We have

A =

[
−2 2 1 −1 0

1 4 −1 0 −1

]
, b =

[
1

1

]
, and c =

[
2 9 3 0 0

]T

To identify a vertex, we set x1 = x3 = x4 = 0 and solve the system

[
2 0

4 −1

][
x2

x5

]
=

[
1

1

]
, for x2 and x5.

27 / 43



Simplex Method for Standard Form: Example

We have x2 = 1/2 and x5 = 1; hence x0 =
[
0 1

2
0 0 1

]T
is a vertex.

Associated with x0 are IB = {2, 5}, IN = {1, 3, 4}

B =

[
2 0

4 −1

]
, N =

[
−2 1 −1
1 −1 0

]
, and x

(B)
0 =

[
1
2

1
]T

Partitioning c into

cB =
[
9 0

]T
and cN =

[
2 3 0

]T

and solving BTλ0 = −cB for λ0 , we obtain λ0 =
[
− 9

2
0
]T
. Hence

µ̂0 = cN + NTλ0 =

23
0

+

−2 1

1 −1
−1 0

[
− 9

2

0

]
=

 11

− 2
3

9
2


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Simplex Method for Standard Form: Example

Since (µ̂0)2 < 0, x0 is not a minimizer, and l = 2. Next, we solve Bd(B)
0 = −av2 for

d(B)
0 with v

(0)
2 = 3 and a3 =

[
1 −1

]T
, which yields

d(B)
0 =

[
− 1

2

−3

]
and I0 = {1, 2}

Hence

α0 = min
(
1,

1

3

)
=

1

3
and i∗ = 2

To find x(B)
1 , we compute

x(B)
0 + α0d(B)

0 =

[
1
3

0

]

29 / 43



Simplex Method for Standard Form: Example

Replace i∗th component by α0 , i.e.,

x(B)
1 =

[
1
3
1
3

]
with x(N)

1 =

[
0

0

]

Update B and N as

B =

[
2 1

4 −1

]
and N =

[
−2 0 −1
1 −1 0

]

and update IB and IN as IB = {2, 3} and IN = {1, 5, 4}. The vertex obtained is
x1 =

[
0 1

3
1
3

0 0
]T

to compute the first iteration.
The second iteration starts with the partitioning of c into

cB =

[
9

3

]
and cN =

20
0


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Simplex Method for Standard Form: Example

Solving BTλ1 = −cB for λ1 , we obtain λ1 =
[
− 7

2
− 1

2

]T
which leads to

µ̂1 = cN + NTλ1 =

20
0

+

−2 1

0 −1
−1 0


T [
− 7

2

− 1
2

]
=


17
2
1
2
7
2


Since µ̂1 > 0, x1 is the unique vertex minimizer.
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Tabular Form of the Simplex Method

For LP problems of very small size, the simple method can be applied in terms of a
tabular form in which the input data such as A, b, and c are used to form a table.
Consider the standard form LP problem:

minimize
x

cT x

subject to Ax = b

x ≥ 0

▶ Assume that at vertex xk the equality constraints are expressed as

x(B)
k + B−1Nx(N)

k = B−1b

From c = −ATλk + µk , the objective function is given by

cT xk = µT
k xk − λT

k Axk = 0T x(B)
k + µ̂T

k x(N)
k − λT

k b
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Tabular Form of the Simplex Method

The important data at the kth iteration can be put together in a tabular form as a
table. (BTλk = −cB , µ̂k = cN + NTλk)

xTB xTN
I B−1N B−1b
0T µ̂T

k λT
k b

▶ If µ̂ ≥ 0, xk is a minimizer.
▶ Otherwise, and appropriate rule can be used to choose a negative component in

µ̂k , say (µ̂)l < 0. The column in B−1N gives −d(B)
k . This column will be

referred to as the pivot column. The variable in xTN that corresponds to (µ̂)l is
the variable chosen as a basic variable.

▶ Since x(N)
k = 0 , x(B)

k + B−1Nx(N)
k = B−1b implies that x(B)

k = B−1b. Therefore,
the far-right p-dimensional vector gives x(B)

k .
▶ Since x(N)

k = 0, cT xk = 0T x(B)
k + µ̂T

k x(N)
k − λT

k b implies that the number in the
lower-right corner of the table is equal to −f(xk).
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Tabular Form of the Simplex Method

The important data at the kth iteration can be put together in a tabular form as a
table.

Basic variables Nonbasic variables
x2 x5 x1 x3 x4 B−1b
1 0 −1 1

2
− 1

2
1
2

0 1 −5 3 −2 1

0 0 11 − 3
2

9
2

− 9
2

← λT
k b

▶ From the previous example with x0 , since (µ̂)2 < 0, x0 is not a minimizer. x3 is
the variable in x(N)

0 that will become a basic variable, and the vector above (µ̂)2 ,[
1
2

3
]T

is the pivot column −d(B)
0 .

▶ From Ik = {i : (d(B)
k )i < 0}, , the positive components of the pivot column

should be used to compute the ratio (x(B)
0 )i/(−d(B)

0 )i where x(B)
0 is the

far-right column (B−1b) in the table. The minimum ratio is i∗ = 2

(min{− 1
3
,−2}). The second basic variable, x5 , should be exchanged with x3 to

become a nonbasic variable.
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
x2 x5 x1 x3 x4 B−1b
1 − 1

6
− 1

6
0 − 1

6
1
3

0 1
3

− 5
3

1 − 2
3

1
3

0 0 11 − 3
2

9
2

− 9
2

← λT
k b

▶ To transform x3 into the second basic variable, we use row operations to
transform the pivot column into the i∗th coordinate vector. Here we can add
−1/6 times the second row to the first row, and then multiply the second row by
1/3
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
x2 x3 x1 x5 x4 B−1b
1 0 − 1

6
− 1

6
− 1

6
1
3

0 1 − 5
3

1
3

− 2
3

1
3

0 0 17
2

1
2

7
2

−4 ← λT
k b

▶ We interchange the columns associated with variable x3 and x5 to form the
updated basic and nonbasic variables, and then add 3/2 times the second row
to the last row to eliminate the nonzero Lagrange multiplier associated with
variable x3 . Then swap x3 and x5 .

▶ The Lagrange multipliers µ̂1 in the last row of the tale are all positive and hence
x1 is the unique minimizer. Vector x1 is specified by x(B)

1 =
[
1
3

1
3

]T
in the

far-right column and x(N)
1 =

[
0 0 0

]T
.
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Tabular Form of the Simplex Method

▶ In the conjunction with the composition of the basic and nonbasic variables,
x(B)
1 and x(N)

1 yield

x1 =
[
0 1

3
1
3

0 0
]T

At x1 , the lower-right corner of the table gives the minimum of the objective
function as f(x1) = −λT

k b = 4.
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Tabular Form of the Simplex Method

Consider an alternative form LP

minimize
x

f(x) = 5x1 − 4x2 + 6x3 − 8x4

subject to x1 + 2x2 + 2x3 + 4x4 ≤ 40

2x1 − x2 + x3 + 2x4 ≤ 8

4x1 − 2x2 + x3 − x4 ≤ 10

Transform to standard form by adding three slack variables:

minimize
x

f(x) = 5x1 − 4x2 + 6x3 − 8x4 + 0x5 + 0x6 + 0x7

subject to x1 + 2x2 + 2x3 + 4x4 + x5 = 40

2x1 − x2 + x3 + 2x4 + x6 = 8

4x1 − 2x2 + x3 − x4 + x7 = 10

x ≥ 0
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Tabular Form of the Simplex Method

We set

A =

1 2 2 4 1 0 0

2 −1 1 2 0 1 0

4 −2 1 1 0 0 1


b =

[
40 8 10

]T
, c =

[
5 −4 6 −8 0 0 0

]T
B =

1 0 0

0 1 0

0 0 1

 , N =

1 2 2 4

2 −1 1 2

4 −2 1 1


cB =

[
0 0 0

]T
, cN =

[
5 −4 6 −8

]
λk = (BT )−1(−cB) =

[
0 0 0

]
µ̂k = cN + NTλ =

[
5 −4 6 −8

]T
λT b = 0
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
x5 x6 x7 x1 x2 x3 x4 B−1b
1 0 0 1 2 2 4 40

0 1 0 2 −1 1 2 8

0 0 1 4 −2 1 −1 10

0 0 0 5 −4 6 −8 0 ← λT
k b

▶ At the column x4 , µ̂k has most negative (−8). Therefore, we select this column
as a pivot. The minimum ratio occurs at i∗ = 2.

▶ Since i∗ = 2. we make a pivot and then swap x4 and x6 .
▶ R2 ← R2/2, R1 ← R1 −R2 ∗ 4, R3 ← R3 +R2 , R4 ← R4 +R2 ∗ 8
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
x5 x4 x7 x1 x2 x3 x6 B−1b
1 0 0 −3 4 0 −2 24

0 1 0 1 −0.5 0.5 0.5 4

0 0 1 5 −2.5 1.5 0.5 14

0 0 0 13 −8 10 4 32 ← λT
k b

▶ At the column x2 , µ̂k has most negative (−8). Therefore, we select this column
as a pivot. The minimum ratio occurs at i∗ = 1.

▶ Since i∗ = 1. we make a pivot and then swap x5 and x2 .
▶ R1 ← R1/4, R2 ← R2 +R1 ∗ (0.5), R3 ← R3 +R1 ∗ (2.5), R4 ← R4 +R1 ∗ 8
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
x2 x4 x7 x1 x5 x3 x7 B−1b
1 0 0 −0.75 0.25 0 −0.5 6

0 1 0 0.625 0.125 0.5 0.25 7

0 0 1 3.125 0.625 1.5 0.75 29

0 0 0 7 2 10 0 80 ← λT
k b

▶ Since there are no more components of µ̂k that are negative, the iteration stops.
▶ We have x = B−1b. However, since x7 is a slack variable, it does not affect the

objective function and can be ignored.
▶ The vertex minimizer is x =

[
0 6 0 7

]
, and the minimum value of the

objective function f(x) = −80.
▶ We can check the result using a command linprog of MATLAB.
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