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Objective

» Linear programming (LP) problems occur in a diverse range of real-life
applications in economic analysis and planning, operations research, computer
science, medicine, and engineering.

» These prolems, it is known that nay minima occur at the vertices of the feasible
region and can be determined through a “brute-force” or exhaustive approach
by evaluating the objective function at all the vertices of the feasible region.

» The number of variables involved in practical LP problem is often vary large and
an exhaustive approach would entail a considerable amount of computation.

» In 1947, Dantzig developed a method for solving LP problems known as the
simplex method. He solved this problem because he came to the class late and
thought an unsolved problem on a blackboard was homework.

» Named one of the “Top 10 algorithms of the 20th century” by Computing in
Science & Engineering magazine. Full list at:
https://www.siam.org/pdf/news/637.pdf

» The simplex method has been the primary method for solving LP problems

since its introduction. 283


https://www.siam.org/pdf/news/637.pdf

Simplex Method (Alternative Form): Degenerate Case

Consider

minimize c¢’x
X
subject to AX <b

> At a degenerate vertex,the number of rows in matrix Ag, is larger than n.

» The Matrix A,, will replaced with A,y that is composed of n linearly
independent rows of Ay, .

» The set of constraints corresponding to the rows in Aak is called a working set
of active constraints and often referred to as a working-set matrix W.

» Associated with Aak is The working index set denoted as
Wi, = {w1, w2, ..., wn}
» The index set Z;, (inactive constraints) is redefined as

T, ={i:i ¢ Wyandald, >0}
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Simplex Method: degenerate

Simplex algorithm for the alternative-form LP problem, degenerate vertices

1. Input vertex xg, and form a working-set matrix Aao and a working-index
set Wy. Set k = 0.

2. Solve AT py = —cfor puy. If ;. > 0, stop (vertex x;, is a minimizer);
otherwise, select index I using I = miny,,, ey, ,(u;); <0(Wi)

3. Solve Ay, dj, = —e; for dy.

4. Form index set Zy using Zy, = {i : « ¢ Wy and a,L-Td;C > 0}. If Z, is empty,

stop (the objective function tends to —oo in the feasible region).

—
al'dy,
fori € Z;, and o, = min;e7, (6;). Record index ¢* as ¢* = ming. —,, (¢

k k €Ty d;=ag

5. Compute the residual vectorry, = Ax, —b = (ri)le parameter §; =

6. Set Xp41 = Xg + adg. Update Aak+1
aiT* and update index set Wy, accordingly. Set k = k + 1 and repeat for
Step 2.

by deleting row al" and adding row
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Simplex Method: degenerate example

Solve the LP problem

minimize f(x) = —2z1 — 3z2 + z3 + 1224
X
subject to —x1 <0,—22 <0,—23 <0,—z4 <0

— 221 — 922 + 23 + 924 <0

1 1
—x1+x2 — —x3 — 224 <0
31 2 3 3 4 S

T
> We start with xg = [0 0 0 0} which is obviously a degenerate vertex (6
active constraints). Applying the algorithm, the first iteration results in the

following computations:
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Simplex Method: degenerate example

o T T
> Ag o = {2 3 -1 712] = g = {72 -3 1 12] . The lowest
absolute negative value is at I = 1 (from 1 and 2).

. T
> Aaud():—61:>d0:[1 0 0 0] . We have

T
ro = [0 00 0 0 0} To=1{i:i¢ Wyandald, >0}i=50r6
that are not in W, but only aGTd() = % is positive. Zop = {6}. ap =0and i* =6

| 2
1 1
0 5 1 -5 =2
0 N 0o -1 0 0
X1 = X0 = , Ag, = , W1 =1{6,2,3,4
1 0 0 ay 0 o 1 1={ }
0 0 o0 0o -1

> Note that although x; = x0, Aq, differs from A,,. Repeating from Step 2, the
T
second iteration (k = 1) gives p; = [6 3 -1 0] =3,

d1:[1 01 O}T,m:[o 00 0 0 O]T
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Simplex Method: degenerate example

> i=1,5¢)Wand

-
afdi=[-1 0 0 0 (1) =1
_0_
-
agdlz[—2 9 1 9} (1) -1
_O_

we have Z; = {o}

» 7, is an empty set. Therefore, in the feasible region the objective function tends
{0 —o0.
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Simplex Method for Standard Form

Consider an example of the standard LP problem:

minimize f(x) =21 — 2x2 — 24

T
subject to 3z1 +4x9+23 =9
2x1 + 2 + x4 =6

21 > 0,72 > 0,23 > 0,24 >0

We have

XER4, p=2

O O O = N W
O O = O
O = O O O =
O O O O o ©
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Simplex Method for Standard Form

The p equality constraints can be used to express p dependent variables in terms of
n — p independent variables. Assume B is a matrix that consists of p linearly
independent column of A. The we have

1
XB 3 4|1 0] |*
Ax = b = Ax :[B\N} — { — | =Bxp +Nxy =b
o 2 1(0 1] |,
T4

» The variables contained in xg and x are called basic and non basic variables,
respectively.

» B is nonsingular, we can express the basic variables in terms of the nonbasic
variables as

xg =B 'b — B~ 'Nxy
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Simplex Method for Standard Form

> At vertex xy, there is at least n active constraints. In addition to the p equality
constraints, there are at least n — p inequality constraints that become active in
Xk

» Therefore, for the standard-form LP problem a vertex contains at least n — p
zero components.

Theorem: Linear independence of columns in matrix A

The columns of A corresponding to strictly positive of a vertex x; are linearly
independent.

Proof: Let B be formed by the columns of A that correspond to strictly positive
components of x; (x; > 0), and let X, be the collection of the positive components
of xi. If B& = 0 for some nonzero w , then it follows that

Axj, = Bxj, = B( + aw) = b for any scalar o
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Simplex Method for Standard Form

Since x5 > 0, there exists a sufficiently small a4 > 0 such that
Ve =Xk +aw >0for —ar <a<ag.

y € R™*1 be such that the components of y;, corresponding to %;, are equal to the
components of §5 and the remaining correspondents of y; are zero. Note that with

a =0,y =X Is a vertex, and when « varies from —a to a4 , vertex = would lie
between two feasible points on a straight line, which is a contradiction. Hence w must
be zero and the columns of B are linearly independent.
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Simplex Met tandard Form

Consider

minimize f(x) = —z1 — 2x2
X
subject to —2z1 +x2 + 23 =2
—z1twx2+ x4 =3
r1+x5 =3

x>0

There are five variables, however we need only three basic variables.

x1
-2 1 1 0 0] |z 2
Ax=|-1 1 0 1 O0f |z3| =13
1 0 0 0 1] |ag 3

5
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Simplex Met tandard Form

T

X3:[0 3 -1 0 3}

x1,x3 = 0 for the basic infeasible solution
T

X1:[0 0 2 3 3]

x1,x2 = 0 for the basic feasible solution

X5:[3 6 2 0 O]T

x4, x5 = 0 for the basic feasible solution
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Simplex Method for Standard Form

» Using above theorem, we can use the columns of B as a set of core basis
vectors to construct a nonsingular square matrix B. If B already contains p
columns, we assume that B = B, otherwise, we augment B with additional
columns of A to obtain a square nonsingular B.

> Let the index set associated with B at xj, be denoted as Zg = {81, 82, ..., 8p}.
With matrix B so formed, matrix N can be constructed with those n — p columns
of A thatare notinB. Let Zy = {v1,v2,...,vn—p} be the index set for the
columns of N and let Iy be the (n — p) x n matrix composed of rows
v1,02,...,Un—p Of the n x n identity matrix.

> [tis clear that at vertex x, the active constrain matrix Aq, contains the
working-set matrix

as an n x n submatrix.
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Simplex Method for Standard Form

> It can be shown that matrix A, is nonsingular. If A, x = 0 for some x, then we
have

Bxgp +Nxy =0andxy =0 — szfoleN:O

T
X = [XB XN] =0.

Therefore, Aak is nonsingular. In summary, at a vertex x; a working set of active
constraints for the application of the simplex method can be obtained with
three simple steps as follows:

1. Select the columns in matrix A that correspond to the strictly positive
components of x; to form matrix B.

2. If the number of columns in B is equal to p, take B = B; otherwise, B is
augmented with additional columns of A to form a square nonsingular
matrix B.

3. Determine the index set Z,, and form matrix Iy.
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Simplex Method for Standard Form: Example

Identify working sets of active constraints at vertex x = [3 0 0 0]7 for the LP problem

minimize f(x) =x1 — 222 — 74
xT
subject to  3z1 +4x9 +x3 =9
2x1 +x2+ x4 =6

z1 2 0,22 2 0,23 > 0,24 > 0

Solution Using r = Ax — b, we can verify that the pointx = [30 0 0] is a degenerate
vertex at which there are five active constraints. (count the zero element in r). Since
x1 is the only strictly positive component, B contains only the first column of A, i.e,,

T R
B= [3 2] . Matrix B can be augmented, by using the second column of A to

generate a nonsingular B = B as
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Simplex Method for Standard Form: Example

This leads to

Iy ={3,4} and A, =

S O N W
O O =
oS = O =
= o = O

The vertex x is degenerate, matrix A, is not unique. There are two possibilities for
augmenting B. Using the third column of A for the augmentation, we have

3 1 N
B = I =12, 4}, A, =
L O] N =12, 4}

S O N W
O ==
oS O O =
— O ~ O
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Simplex Meth tandard Form: Example

Alternatively, augmenting B with the fourth column of A yields

B— E (IJ] . In = {2,3}, and A, =

O O N W
[
= o O =
oS O = O

It can be easily verified that all three A,’s are nonsingular.
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Simplex Met tandard Form: Algorithm

We could change steps 2 and 3 of the previous simplex algorithm to reduce the
computational complexity.

> At a vertex xi, the nonsingularity of the working-set matrix Aak given by

- A . .
A, = L ] implies that there exist A, € RP*! and i, € R(*=P)x1 such that
N

_ AT
c=Ag,

-
TR = AT + 1,
fik

If u;, € R**1 is the vector with zero basic variables and the components of i,
as its nonbasic variables, then the above equation can be expressed as

c=—ATX + py,

The vertex x, is @ minimizer if and only if &, > 0.
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Simplex Method for Standard Form: Algorithm

» |f we use a permutation matrix P to rearrange the components of ¢ in
accordance with the partition of x;, into basic and nonbasic variables then

T
i +

B
Pc = {CB} = —PATX, +PILfuy, = — {
M

cN NT

It follows that
BTA, = —cp and f1;, = cy + NT X,

Since B is nonsingular, A, and f;, can be computed. The size of the matrix is
p X p, which is much smaller than n x n of the simplex method for the
non-standard form.
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Simplex Method for Standard Form: Algorithm

> [f some entry in fi;, is negative, then x;, is not a minimizer and a search
direction dy, needs to be determined. Note the Lagrange multipliers fi;, are not
related to the equality constraints in Ax = b but are related to those bound
constraints x > 0 that are active and are associated with the nonbasic variables.

> |f the search direction dy, is partitioned according to the basic and nonbasic
variables, xg and xp, into d,(cB) and d,iN), respectively, and if (fu,); < 0, then
assigning

dg\” = e; where ¢; is the Ith column of the (n — p) X (n — p) identity matrix.

d; makes the v;th constraint inactive without affecting other bound constraints
that are associated with the nonbasic variables.

> In order to assure the feasibility of dg, it is also required that Adg = 0. This
requirement can be described as

Ady, = Bd® + Na™ = Bd® 4 Ne; = 0
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Simplex Method for Standard Form: Algorithm

> dECB) can determined by solving the system of equations
Bd](CB) = —ay, where a,; = Ng;
Altogether we can determine the search direction dy. It follows that
. 7 (N . .
Tdy = — AT Ady, + il Indy = pf 4 = ple; = (i) < 0

Therefore, di, is a feasible descent direction.
» To determine the step size ay, we note that a point x5 + ady with any «

satisfies the constraints Ax = b, i.e.

A(xp + ady) = Axg + aAd, = b

The only constraints that are sensitive to step size «, are those that are
associated with the basic variables and are decreasing along direction dy.
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Simplex Method for Standard Form: Algorithm

» When limited to the basic variables, d;, becomes dg” . Since the normals of the
constraints in x > 0 are simply coordinate vectors, a bound constraint
associated with a basic variable is decreasing along d;, if the associated
component in d;B) is negative.

» The special structure of the inequality constraints in x > 0 implies that the
residual vector, when limited to basic variables in xg, is xg itself.

» The above analysis lead to a simple step that can be used to determine the
index set

{i: (d,i,B))i < 0} and, if Z is not empty

S ST
i€Zy (_d](€B>)Z_

Iy,

where XECB) denotes the vector for the basic variables of x;,.

23/43



Simplex Met tandard Form: Algorithm

» If ¢* is the index in Z, that achieves «y, then the i*th component of
x,(CB) + akdECB) is zero. This zero component is then interchanged with the ith
component ofxgv), which is now not zero but ay,.

» The vector XECB) + adliB) after this updating becomes Xgi)l and xgi)l remains a
zero vector. Matrices B and N as well as the associated index sets Zg and Zn

also need to be updated accordingly.
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Simplex Method for Standard Form: Algorithm

Simplex algorithm for the standard-form LP problem

1. Input vertex xo set k = 0, and form B,N,xém, I = {ﬁ@,ﬁém, .. .,,81(,0),
and Zy = {vio),véo), e ,U,SLO_)p}.
2. Partition vector ¢ into ¢g and cy. Solve BT\, = —cp for A, and compute

fu), using
i, = e + NT X,

If fu,, > 0, stop (xx, is a vertex minimizer); otherwise, select the index [ that
corresponds to the most negative component in fuy,.

3. Solve BdiB) = —ay, for dg” where a,,; is the ul(k>th column of A.

4. Form index set Zy in Iy, = {i : (d,(CB))i < 0}. If Z;, is empty then stop (the

objective function tends to —oo in the feasible region); otherwise,
) ]
(*df))i

compute ay, USINg o, = mingez, [
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Simplex Method for Standard Form: Algorithm

(B)yx*
4. (cont.) and record the index i* with ay, = %
(=47

®) _

5. Compute x;. /) = X;‘,B) + adeB) and replace its i*th zero component by «y,. Set

xg\fgl = 0. Update B and N by interchanging the Ith column of N with the i*th

column of B.

6. Update Zp and Zy by interchanging index vl(k) of Zn with index BZ(E) of Ip.
Use the xgi)l and xgi)l obtained in Step 5 in conjunction with Zg and Zy to
form xg41. Set k = k + 1 and repeat form Step 2.
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Simplex Met tandard Form: Example

Solve the standard-form LP problem

minimize f(x) = 2z1 + 922 + 33
X
subject to —2x; +2x9 +x3 —x4 =1
1 +4xe —x3 —a5 =1

21 20,22 2 0,23 > 0,24 > 0,25 >0
Solution: We have

2 2 1 -1 0 1 T
A= } :H,andc:[z 9 3 0 0]

1 4 -1 0 -1

To identify a vertex, we set z1 = 3 = x4 = 0 and solve the system

2 0 1
{ ] {IQ} = { ] , for ze and 5.
4 -1 |5 1
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Simplex Meth tandard Form: Example

T
We have 2 = 1/2 and x5 = 1; hence xg = |0 % 0 0 1} is a vertex.
Associated with xg are Zp = {2,5}, Zny = {1, 3,4}

_|=2 1 -1 ® _[1 T
, N[l . Oyandac0 7[5 1]

Partitioning ¢ into

cB:[Q o]T anch:[Q 3 O}T

T
and solving BT Ao = —cp for Ag, we obtain Ao = [—g 0] . Hence
2] [-2 1 0 11
ﬂ():CN+NT)\o= 31+ |1 —1 |: 02:| = —%
0 -1 0 2
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Simplex Meth tandard Form: Example

Since (fip)2 < 0, zo is not a minimizer, and I = 2. Next, we solve Bng) = —a,, for

T
df® with v{ = 3andag = [1 —1] , which yields

_1
d(()B) = l: §:| and Zp = {1,2}
Hence
. 1 1 .
ozo:mln(l,f) =—andi* =2
3 3
To find ng> , we compute

XéB) + Oéod((]B)

Il
—
O wir
—
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Simplex Method for Standard Form: Example

Replace i*th component by ay, i.e.,

xgm = [ ] with XSN) = |:g]

o= o=

Update B and N as
2 1 -2 —1

B= and N = 0
- 1 —1 0

and update Zp and Iy as Zp = {2,3} and Zy = {1,5,4}. The vertex obtained is

T
x| = [0 L 400 0] to compute the first iteration.
The second iteration starts with the partitioning of ¢ into

2

9
CB|::| andey = |0
3
0
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Simplex Method for Standard Form: Example

Solving BT A1 = —cp for A1, we obtain A\; = {7% 7%] which leads to
T 17
2] [-2 1] o [¥
fp=cy +NTx=lo| + 10 —1| | 3=/}
0 -1 0 2 z

Since f1; > 0, x1 is the unique vertex minimizer.
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Tabular Form of the Simplex Method

For LP problems of very small size, the simple method can be applied in terms of a
tabular form in which the input data such as A, b, and ¢ are used to form a table.
Consider the standard form LP problem:

minimize c¢x
X
subject to Ax=b
x>0
» Assume that at vertex x the equality constraints are expressed as
P 4B INxM =B~ b
From ¢ = —AT X, + p,, , the objective function is given by

CTXk = ,u,{xk — )\gAxk = OTXIE;B) + [szg\l) — )\gb
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Tabular Form of the Simplex Method

The important data at the kth iteration can be put together in a tabular form as a
table. BT Ay, = —cp, fi, = cx + NTX)

Vg i
X*B XN
I BN B~'b
oT af XTb

> If oL >0, x; is @ minimizer.
» Otherwise, and appropriate rule can be used to choose a negative component in
fur,, Say (1)) < 0. The column in B—IN gives fd,(CB). This column will be
referred to as the pivot column. The variable in x%; that corresponds to (f); is
the variable chosen as a basic variable.
» Since x,iN) =0, xém + B—le(kN) = B~ !b implies that xg” = B~ 1b. Therefore,
the far-right p-dimensional vector gives x](vBX
> Since x,(CN) =0,clay = OTX;B) + ﬂfngN) — AL implies that the number in the
lower-right corner of the table is equal to — f(xg).
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Tabular Form of the Simplex Method

The important data at the kth iteration can be put together in a tabular form as a

table.
Basic variables Nonbasic variables
T2 Ts xr1 x3 x4 B~ 1b
CRE N N S
—5 3 — 1
0 11 -3 g -3 +~ b

> From the previous example with zg, since ({1)2 < 0, zg is not a minimizer. x3 is
the variable in xéN) that will become a basic variable, and the vector above (ji)2,

T
[% 3] is the pivot column —d[()m.

From Z, = {i : (dgﬁB))i < 0}, , the positive components of the pivot column
should be used to compute the ratio (x(()m)i/(—d(()B))i where xf)B) is the
far-right column (B—1b) in the table. The minimum ratio is i* = 2

(min{fé, —2}). The second basic variable, x5, should be exchanged with =3 to

become a nonbasic variable.
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
T2 Ts a81| x3 x4 B 1b
- 4 o & i
I R D
0 0 11 -3 2 2 A

» To transform z3 into the second basic variable, we use row operations to
transform the pivot column into the i*th coordinate vector. Here we can add

—1/6 times the second row to the first row, and then multiply the second row by
1/3
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
T2 x3 azil x5 x4 B 1b
A
I I R
0 0 i i z —4 < ATb

» We interchange the columns associated with variable z3 and x5 to form the
updated basic and nonbasic variables, and then add 3/2 times the second row
to the last row to eliminate the nonzero Lagrange multiplier associated with
variable z3. Then swap zs and z5.

» The Lagrange multipliers fi; in the last row of the tale are all positive and hence
T
x1 is the unique minimizer. Vector x; is specified by ng) = [% %] in the

T
far-right column and x§N> = {0 0 0]
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Tabular Form of the Simplex Method

» In the conjunction with the composition of the basic and nonbasic variables,
ng) and ng) yield
T
x1 = [o 1 0 0]

At x3, the lower-right corner of the table gives the minimum of the objective
function as f(x1) = —ALTb = 4.
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Tabular Form of the Simplex Method

Consider an alternative form LP

minimize f(x) = 5x1 — 4xo + 623 — 8x4
X

subject to  x1 + 2z + 223 + 44 < 40
221 — w2 + 23 + 224 < 8

4x1 — 229 + 23 — 14 < 10
Transform to standard form by adding three slack variables:

minimize f(x) = 5x1 — 4ao + 6z3 — 8x4 + Ox5 + 0z6 + Ox7
X

subject to  x1 + 2x2 + 223 4+ 4xg4 + x5 = 40
2x1 —x2 + 23 + 224 + 26 =8

dxry — 229 +x3 — g4 + 27 = 10
x>0
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Tabular Form of the Simplex Method

We set
1 2 2 4 1 0 o0
A=12 -1 2 0 1 0
4 -2 1 1 0 0 1
T T
b=[40 8 10] ,c:[s -4 6 -8 0 0 0]
1 0 0 1 2 2 4
B= 1 0/, N=f2 -1 1 2
0 1 -2 1 1

ﬂkch+NT>\=[5 4 6 fs}T

ATp=0
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
Ts5 g Ty T T2 T3 T4 B~ 1b
1 0 0 1 2 2 4 40
0 1 0 2 —1 1 2 8
0 1 4 -2 1 —1 10
0 0 5 —4 6 -8 0 + AFb

> At the column x4, f1,, has most negative (—8). Therefore, we select this column

as a pivot. The minimum ratio occurs at i* = 2.
» Since ¢* = 2. we make a pivot and then swap z4 and xg.

» Ro < R2/2,Ri <+ R1 — R2%4, R3 < R3 + R, R4 < R4+ R2 %8
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
x5 x4 By @il T2 x3 z6 B~ 1b
1 0 0 -3 4 0 —2 24
0 1 0 1 —0.5 0.5 0.5 4
0 5 —2.5 1.5 0.5 14
0 0 13 -8 10 4 32 < A7'b

> At the column xo, f1;, has most negative (—8). Therefore, we select this column
as a pivot. The minimum ratio occurs at i* = 1.

» Since i* = 1. we make a pivot and then swap x5 and zo.

> Ry FR1/4,R2 %R2+Rl*(0.5),R3 (—R3+R1*(2.5),R4 <~ R4+ Ry %8
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Tabular Form of the Simplex Method

Basic variables Nonbasic variables
T2 x4 Ty T Ts5 x3 T7 B~ 1b
1 0 0 —0.75 0.25 0 —0.5 6
1 0 0.625 0.125 0.5 0.25 7

3.125 0.625 1.5  0.75 29
0 7 2 10 0 80 A

oo o

» Since there are no more components of fi;, that are negative, the iteration stops.

> We have x = B~ 1b. However, since z7 is a slack variable, it does not affect the
objective function and can be ignored.

» The vertex minimizeris x = [0 6 0 7], and the minimum value of the
objective function f(x) = —80.

» We can check the result using a command linprog of MATLAB.
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