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At the end of this chapter you should be able to:
» Describe, implement, and use Linear Programming

» Understand Linear Programming
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Matrix basic

Two vectors x,y € R™ can be multiplied together in two ways. Both are valid matrix
multiplications:

» inner product: produces a scalar.

XTy = |:x1 ce xn] =x1Yy1 + -+ TnYn

Yn

Also called dot product. Sometime write x - y or (x,y).

» Quter product: produces an n x n matrix.

z1 T1Y1 o T1Yn

Ty InYl - ITnlYn
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Matrix basic

> Matrices and vectors can be stacked and combined to form bigger matrices as
long as the dimesions agree, e.g. If x1,...,%,;, € R™, then
X = [xl X2 ... xm] € Rmxn

> Matrices can also be concatenated in blocks. For example

A B
C D

if A, C have same number of columns, A, B have same number of rows, etc.

» Matrix multiplication also works with block matrices:

:

as long as A has as many columns as P has rows, etc.

A B
C D

AP + BQ
CP +DQ
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Linear and Affine Functions

» Afunction f(z1,...,zm) is linear in the variables z1, ...,z if there exist
constants aq, ..., am such that
f@1,. . zm) = a1z + -+ amam =al
» Afunction f(z1,...,zm) is affine in the variables x1, ..., x,, if there exist
constants b,az,...,an, such that
f(@1,...,2m) = a0+ a1z1 + -+ @mzm =a’ x+b
Example:

> 3z —yislinearin (z,y).
» 2zy -+ 1isaffineinz and y but notin (z,y).

> 22 +y2is not linear or affine.
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Linear and Affine Functions

Several linear or affine functions can be combined:

1171 + -+ a1pTn + b2
a1l - ain | |®1 b1
a21T1 + -+ a2nTn + b2

Am1 . Gmn Tn bm
am1Z1 + -+ GmnTn + bm
which can be written simply as Ax + b. Same definitions apply to:

» Avector-valued function F(x) is linear in x if there exists a constant matrix A
such that F(x) = Ax.

» A vector-valued function F(x) is affine in x if there exists a constant matrix A
and vector b such that F'(x) = Ax + b.
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Geometry of Affine Equation

» The set of points z € R™ that satisfies a linear equation ayz1 + -+ - + anzyn =0
(oraTx = 0) is called a hyperplane. The vector a is normal to the hyperplane.

» I the right=hand side is nonzero: a”x = b, the solution set is called an affine
hyperplane. (It's a shifted hyperplane.)

\ / |
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Geometry of Affine Equation

> The set of points x € R™ satisfying many linear equations
a;j1x1 + -+ ajmrn =0fori=1,...,m (or Ax = 0) is called a subspace (the
intersection of many hyperplanes).

» If the right-hand side is nonzero: Ax = b, the solution set is called an affine
subspace, (the shifted subspace).

Intersections of affine hyperplanes are affine subspaces.
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Geometry of Affine Equation

The dimension of a subspace is the number of independent directions it contains. A
line has dimension 1, a plane has dimension 2, and so on. (Hyperplanes are
subspaces)

» A hyperplane in R™ is a subspace of dimension n — 1.

» The intersection of k& hyperplanes has dimension at least n — k ("at least”
because of potential redundancy).
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Affine Combinations

If x,y € R™, then the combination
w=oax+ (1—a)y forsome o € R

is called an affine combination.

e ax+(1—a)y

y

If Ax = b and Ay = b, then Aw = b. So affine combinations of points in an (affine)
subspace also belong to the subspace.
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Affine Combinations

If x,y € R™, then the combination
w=oax+ (1—a)y forsome o € R

is called an affine combination.

. y+alx—y)

If Ax = b and Ay = b, then Aw = b. So affine combinations of points in an (affine)
subspace also belong to the subspace.
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Convex Combinations

If x,y € R™, then the combination
w=oax+(1—a)y forsome0<a<1
is called a convex combination. It's the line segment that connects x and y.

. X
wax+ (I—a)y
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Geometry of affine inequalities

» The set of points x € R™ that satisfies a linear inequality ajz1 + - -+ + anxn < b
(ora™ <b)is called a halfspace. The vector a is normal to the halfspace and b
shifts it.

> Definew = ax + (1 —a)ywhere 0 < a < 1. Ifa”’x < band aly < b, then
al'w < b.

Halfspace
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Geometry of affine inequalities

> The set of points x € R™ satisfying many linear inequalities
a1l + -+ ajprn < b;fori=1,...,m (or Ax <b)is called a polyhedron
(the intersection of many halfspaces). Some sources use the term polytope
instead.

> As before: letw = ax+ (1 — a)y where 0 < a < 1. If Ax < b and Ay < b, then
Aw <b.

Intersections of halfspaces are polyhedra.
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Linear Programming

» Many engineering optimization problem can be cast as a linear programming
(planning or scheduling) problem.

» The Linear Programming (LP) is an optimization problem where the objective
function and the constraints are linear functions of the optimization variables.

» Several nonlinear optimization problems can be solved by iteratively solving
linearized versions of the original problem.

In 1947, George Dantzig developed the famous Simplex method.

» Several variations of the Simplex method were introduced after that. Some
variations are commercial products, which are secret. They can solve several
thousand variables problem in less than one minute.

» The more efficient (most but not always) technique is the interior-point method
(IPM).
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Linear Programming

» We can put every LP in the form:
Maximization:

maximize ¢’ X
xeR™

subject to Ax <b

Minimization:

minimize ¢ x
x€R™

subject to Ax >b
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The linear program

A linear program (LP) is an optimization model with:
» real-valued variables (x € R™)

» affine objective function (¢”x + d), can be minimized or maximized.

» constraints may be:
> affine equations (Ax = b)
> affine inequalities (Ax < b) or (Ax > b)
»> combinations of the above

v

individual variables may have:
» box constraints (p < x;, orz; < g, 0rp < z; < q)
» no constraints (z; is unconstrained)

There are many equivalent ways to express the same LP.
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Solutions of an LP

There are exactly three possible cases:

» Model is infeasible: there is no x
that satisfies all the constraints. (is infeasible
the model correct?)

» Model is feasible, but unbounded:
the cost function can be arbitrarily
improved. (forgot a constraint?)

» Model has a solution which occurs
on the boundary of the set. (there
may be many solutions!). e

boundary
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Standard form: Top Brass Data

Top Brass Trophy Company makes large championship trophies for
youth athletic leagues. At the moment, they are planning pro-
duction for fall sports: US football and football. Each US football
trophy has a wood base, an engraved plaque, a large brass US football

Since the US football has an asymmetric shape, its base requires 4

board feet of wood;

the moment there are 1000 brass US footballs in stock, _

What trophies

should be produced from these supplies to _

assuming that all that are made can be sold?

US football football
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Standard form: Top Brass Data

Recipe for building each trophy

wood  plaques  US footballs soccer balls  profit

US football 4 ft 1 1 0 S 12

folEl 1 0 1 $9

Quantity of each ingredient in stock

wood plaques US football balls -balls
instock 4800 ft 1750 1000 1500
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Linear Programming: Example

Matrix form
maximize 12f 4+ 9s
f,s
subject to  4f + 2s < 4800 maximize c’'x
f+s <1750 subject to Ax <b
0 < f <1000 x>0
0 <s <1500
This is in matrix form, with:
4 2 4800
1 1 1750 12
A= , b= , ¢c= , X = !
1 0 1000 9 s
0 1 1500
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Graphical Method: Example

2500

Total board feet of wood
Total number of plaques
— - - American Football tropies
— — Football tropies 4

2000

Football (s)

0 500 1000 1500 2000 2500 3000 3500
US Football (f)
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Standard Form

The standard form of the linear programming problem is :

minimize ¢’'x
subject to Ax=Db

x>0

Example:

minimize f(x) = 4x1 — 5z2 + 33
subject to 3z1 — 2z + Txz =7
8xr1 + 6x2 + 63 =5

z1,72,23 > 0

. 4 3 —2 7 7
x=|za|, c¢=|=5|, A= , b=
8 6 6 5
T3 3
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Transformation tricks: Example

1. Converting minimize to maximize or vice versa
minixmize Tx=— maxi{mize —cTx
2. Reversing inequalities (flip the sign if b is negative):
Ax <b <= (—-A)x> (-b)
3. Ifavariable has a lower bound other than zeros
z>5 — 2 =x-5 — 2/>0
4. Inequalities to equalities (add slack variable):

f(x) <0 < f(x)+s=0ands>0
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Transformation tricks: Example

5. Unbounded to bounded (add difference):
z€ER <= u>0,v>0, and x =u—wv

6. Bounded to unbounded (convert to inequality):

1 q
p<z<q <= x <
—1 —p
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Standard Form: Example

Consider a linear programming problem:

maximize f(x) = —bz1 — 3z2 + Tx3
subject to 2z 4 4xo 4+ 623 =7
31 —bx2 +3x3 <5
—4xy — 9o + 4x3 < —4
z1 > —2,0< @2 <4

Convert to a minimization problem and make the third constraint to be nonnegative:

minimize f(x) = 5x1 + 3x2 — T3

subject to 2z 4+ 4w + 6x3 =7
31 —bxo +3x3 <5
{21 + Oxo — 4z > 4

r1 > —2,0< 29 <4
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Standard Form: Example

Transform z; to 2} = 1 + 2, make bound for z3 = 2% — 2, and change 0 < x5 < 4
tobexs >0and zg <4
minimize f(x) = 5x1 + 3x2 — T3

subject to 21 + 4xo + 623 =7
31 —b5xo +3x3 <5

lx1 + 9xo — 43 > 4
ro >~ ‘l‘
vl'/l,vli\’ 1'/;, 1/,: 0
Substitute all things
minimize f(x) = 5z 3xo — Tah + Tx4 — 10

subject to 22 + 4o + 62 — 627 =11
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Standard Form: Example

The constant term in the objective function could be remove via a transformation
f'(x) = f(x) + 10. The final step is to add slack and excess variables to convert the

general constraints to the equality constraints:

minimize f’'(x) = 5,1'/\ + 3x0 — T.rv’)‘ + 1_,1'/,:
. ot . =/
subject to 2x7 + 4xo + 63 — 623 11
3z — bxo + 3xh — 32 + 59 = 11
2 3 3 2
/ 1
lI| 9z Aao Ao ez = 12
3 3
I)f.\'] |
/ 1o
r1,T2,T3,x3,82,€3,84 > 0
T

In matrix form minimize ¢’ x

subject to Ax=Db

27191



Standard Form: Example

T T

¢= [5 3 -7 7 0 0 0] , b= [11 112 4]

2 4 6 -6 0 0 0

3 -5 3 -3 1 0 0
A=

4 9 -4 4 0 -1 0

0 0 0 0 1

T

X = [1”1 x2 xh ozl sz e3 94]
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Standard Form: Example

Put the problem

minimize — 2xz1 + 3x2
subject to x1 +x2 <5
x>0

in the standard form. Obtain a graphical solution for the original problem and the

standard problem.

r,fZT From the figure, it is obvious that the
minimum value of the objective function
over the feasible region is f* = —10, and
the optimal point is x* = [5 o]TA

f=-10

T
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Standard Form: Example

Change it into a standard form by adding a slack variable x3:

minimize f(x) = —2z1 + 3z2
subject to x1 +z2 +2x3 =5

x>0

The minimum of the objective function is
atx* = [5 0 O]T. The optimal solution
is the same like the original problem as
the slack variable z3 is set to zero.

How can we find the optimal vertex?
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Objective

» Linear programming (LP) problems occur in a diverse range of real-life
applications in economic analysis and planning, operations research, computer
science, medicine, and engineering.

» These prolems, it is known that nay minima occur at the vertices of the feasible
region and can be determined through a “brute-force” or exhaustive approach
by evaluating the objective function at all the vertices of the feasible region.

» The number of variables involved in practical LP problem is often vary large and
an exhaustive approach would entail a considerable amount of computation.

» In 1947, Dantzig developed a method for solving LP problems known as the
simplex method. He solved this problem because he came to the class late and
thought an unsolved problem on a blackboard was homework.

» Named one of the “Top 10 algorithms of the 20th century” by Computing in
Science & Engineering magazine. Full list at:
https://www.siam.org/pdf/news/637.pdf

» The simplex method has been the primary method for solving LP problems
since its introduction.
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General Constrained Optimization Problem

A general constrained optimization problems:

minimize f(x)
X

subject to  g;(x) <0, fori=1,2,...,q
hj(x) =0, forj=1,2,...,p
zp, <z < Ty, fork=1,2,...,n,

where zy, and z; are lower bound and upper bound, respectively.

Definition: Regular point

Apointxis called a regular point of the equality constraints if x satisfies h; (x) = 0
and column vector Vh(x) are linearly independent.

> xis a regular point of the equality constraints if it is a solution of h;(x) = 0 and

T
the Jacobian J = {Vhl (xX) Vi (%), Vh, (x)] has full row rank.

32/91



General Constrained Optimization Problem

Consider the equality constraints

—x14+x3—1=0

.r%—&-ac%—?atl:()

The Jacobian of the constraints is given by
—1 0 1
J=
201 —2 2x2 O

» The Jacobian has rank 2 except x = [1 0 :Eg]

T
> x = [1 0 ,7:3} does not satisfy the second constraint.

» Any points satisfying both constraints is regular.
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General Constrained Optimization Problem: Inequality

constraints

Consider the constraints

vV v v VY

91(x) £0, g2(x) <0, -+ gq(x) <0

For the feasible point x, these inequalities can be divided into two classes.
The set of constraints with g;(x) = 0 are called active constraints.
The set of constraints with g;(x) < 0 is called inactive constraints.

We can convert inequality constraints into equality constraints by adding slack
variable s > 0 as

Gi(x) =gi(x) +s, =0
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General Properties: Formulation of LP problems

The standard-form LP problem:

minimize ¢!x (413)

X
subjectto Ax=Db (41b)
x>0 (410)

where ¢ € R™*1 with ¢ £ 0, A € RP*", and b € RP*! are given. We assume that A is
of full row rank, i.e, rank(A) = p. To be meaningful LP problem, full row rank in A
implies that p < n.
» Forn =2,¢"'x = B represents a linea and ¢”'x = g for 8 = 1, B2, .. .,
represents a family of parallel lines.
» The normal of these lines is ¢, and the vector ¢ is often referred to as the
normal vector of the objective function.
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General Properties: Formulation of LP problem
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General Properties: Formulation of LP problems

Another LP problem, which is often encountered in practice, involves minimizing a

linear function subject to inequality constraints, i.e,,
(4.2a)

minimize c¢’x
X
(4.2b)

subject to Ax <b

where ¢ € R"*1 with ¢ # 0, A € RP*™ and b € RP*! are given. This will be referred

to as the alternative-form LP problem hereafter. If we let

a? b1
ag bo
A= , b= ,thenalx <b;, fori=1,2,...,p
T bp

where vector a; is the normal of the sth inequality constraint, and A is usually referred

to as the constraint matrix.
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General Properties: Formulation of LP problems

» by introducing a p-dimensional slack vector variable s, the LP problem can be
reformaulated as

Ax+s=b fors >0

The vector variable x can be decomposed as

x=x—x" with ¥ >0 with x">0

Hence if we let
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General Properties: Formulation of LP problems

» The non-standard LP can be reformulated as a standard-form LP problem , the
increase in problem size leasd to reduced computational efficiency which can
sometimes be a serious problem particularly when the number of inequality
constraints is large.

» To solve each form LP will be described separately to enable us to solve each of
these problems directly without the need of converting the one form into the
other.
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General Properties: KKT Conditions

» Lagrange Multipliers use to convert a constrained problem into a form such that
the derivative test of an unconstrained problem can be applied.

» From the LP:

minimize c¢’x
X
subject to Ax=b
x>0

The Lagrangian and the optimal conditions are

L(x, 1, A) = cTx + AT (Ax —b) — uTx
VELx=c+ATA—p=0
VLy=Ax—b=0
VL,=x=0
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General Properties: KKT Conditions

Theorem: Karush-Kuhn-Tucker (KKT) conditions for standard LP

If x* is regular for the constraints that are active at x*, then it is a global solution
of the LP problem in the standard LP if an only if

> Ax* =b, (4.3a)
> x* >0, (4.3b)
> there exist Lagrange multipliers A* € RP>*! and p* € R™*! such that
p* > 0and
c+ AT —p* =0 (43c)
> prxf =0for1<i<n (4.3d)

» The first two condition simply say that solution x* must be a feasible point. The

constraint matrix A and vector ¢ are related through the Lagrange multipliers
A*and p*.
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General Properties: Formulation of LP problems

From (4.3a)-(4.3d), in most cases solution x* cannot be strictly feasible.
» The term strictly feasible points is the points that satisfy the equality
constraints with z > 0for1 <i<n

> From (4.3d), w* must be a zero vector for a strictly feasible point x* to be a
solution (z} > 0). Hence (4.3c) becomes

c+ATX =0

» For strictly feasible point to be a minimizer of the standard-form LP problem,
the n-dimensional vector ¢ must lie in the p-dimensional subspace spanned by
the p columns of AT Since p < n, the probability that ¢ + ATA* = 0 is very
small.

» Any solutions of the problem are very likely to be located on the boundary of
the feasible region.
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General Properties: Example

Solve the LP problem

minimize f(x) = z1 + 42
X

subject to x1 +z2 =1

2; >0, i=1,2

» The feasible region of the problem is
the segment of the line 1 + 22 =1
in the first quadrant.

» The dashed lines are contours of the
form f(x) = constant, and the arrow
points to the steepest-descent
direction of f(x)

~ _Steepest-descent direction

1<PI‘\‘ \\‘::\‘\fzﬁ
\f:5

P2

0 1 1

c= [1} and AT = 1]
4 1

Since c and AT are linearly independent,
¢ = ATX\* cannot be satisfied and no

Y

We have

interior feasible point can be a solution.
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General Properties: Example

T
From the figure, the unique minimizer is x* = |1 0| . Atx* the constraint
r1 + 22 = 1 and zo = 0 are active. The Jacobian of these constraints,

is nonsingular, x* is a regular point. From pz} = 0and z] = 1, then u} =0

c+ATA —p* =0

Af=—landus =3

T
This is confirm that x* = [1 O] is indeed a global solution (KKT condition).
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General Properties: Example

x2
Note: if the objective function is changed N A
to N
AY
N
f(x) = cl'x = dzq + day 1
We can have

cHATXN - =0 = AN =—-4,pu"=0

0 1
Any feasible point becomes a global solution. The objective function remains constant

(x1 + 2 = 1)in the feasible region, i.e,

f(x) = 4(z1 + 22) = 4, forx € R?
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General Properties: Alternative form

Consider an alternative LP

minimize f(x) =c'x
X

subject to Ax <b

Theorem: Necessary and sufficient conditions for a minimum in alternative form
LP problem

If x* is regular for the constraints in (4.2b) that are active at x*, then it is a global
solution of the problem in (4.2a) if and only if
1. Ax* <b (4.4)

2. there exists a u* € RPX1 such that u* > 0 and
c+ATp =0 (4.4b)

3. pr@@lx* —b)=0for1<i<p (4.40)
where al’ is the ith row of A

7
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General Properties: Alternative form

» The theorem show that the solutions of the problem must be located on the
boundary of the feasible region.

> If x* is a strictly feasible point satisfying p3 (al'x — b;) = 0, then Ax* < b and
the complementarity condition in (4.4c) implies that u* = 0. Hence (4.4b)
cannot be satisfied unless ¢ = 0

» If ¢ =0, it would lead to a meaningless LP problem.

» |n other word, any solutions of (4.4a)-(4.4c) can only occur on the boundary of
the feasible region.
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General Properties: Alternative form Example

Solve the LP problem

minimize f(x) = —xz1 — 42
X
subject to —x1 <0
1 <2
—x2 <0

x1 +x2—35<0
1+ 222 —6<0

The five constraints can be expressed as Ax < b with

—1 0
1 0
A=]10 -1}, b= | 0 | the feasible region is the polygon shown above.
1 3.5
1 2 6
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General Properties: Alternative form Example

» The solution cannot be inside the polygon, we consider the five edges of the
polygon. At any point of x on an edge other than the five vertices p; only one
constraints is active. This mean that only one of the five u;'s is nonzero.

» At such an z;, (which is on the edge.), (4.4b) becomes

T
c= [—1 —4] = —l;a;

where a; is the transpose of the ith row in A.
» Since each a; is linearly independent of ¢, no u; exists that satisfies ¢ = —pu;a;

T
» We have five vertices for verification. At p; = {0 0] , the constraints
—x1 =0,and —z2 = 0 are active. Thenc = —ATp is

=1 |1 0] {m — -1 -4
4 - 0 1 ;,L3, H1 = s 13 =

» Since u; <0, then p1 is not a solution.
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General Properties: Alternative form Example

T
> Atthe pointpe = |0 3| ,the constraints —z; = 0and z1 + 2z5 — 6 =0 are

active. Thenc = —AT pu is

T
> py = [0 3] isa minimizer, i.e, x = x* = po.
» By checking the other vertex point, the point p2 is the unique solution to the

problem.
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Facets, Edges, and Vertices

z1+ a2 +23 <1
1 >0, 22 >0, z3 >0

Ax <b

The polyhedron is three-dimension face, which has four facets, six edges, and four
vertices.

A vertex is a feasible point p at which there exist at least n active constraints which
contain n linearly independent constraints where n is the dimension of x. Vertex p is
said to be nondegenerate if exactly n constraints are active at p or degenerative if
more than n constraints are active at p.

P1,P2,P3, P4 are nondegenerate vertices.
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Facets, Edges, and Vertices

1+ w2 +23 <1
0.521 + 2x9 + 23 <1

z1 > 0,29 > 0,23 > 0

Ax<b
1 1 1 1
0.5 2 1 1
=|-1 0f,b=10
0 —1 0 0
0 0 -1 0

» The convex polyhedron has five facets, eight edges, and five vertices.
> At vertex ps four constraints are active but since n = 3, ps is degenerate.

» The other four vertices, namely, p1, p2, p3, and p4, are nondegenerate.
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Feasible Descent Directions

Start from an initial point, we need to find a better new point:

Theorem: Feasible direction

Let 8 = ad be a change in x where « is a positive constant and d is a direction
vector. If © is the feasible region and a constant & > 0 exists such that

x+ad €

for all e in the range 0 < o < &, then d is said to be a feasible direction at point

X.

> Avectord € R"*1 is said to be a feasible descent direction at a feasible point
x € R**1 if d is a feasible direction and the linear objective function strictly
decreases alongd, i.e, f(x + ad) < f(x) for a > 0, where f(x) = ¢’'x.

» This implies that

fx+ad) =l (x4 ad) = cTx + acld

[fx+ad) — f(x)] = ! [ch + acld - ch} =clfd<o
a

Q[
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Feasible Descent Directions

» For LP, we denote A, as the matrix whose rows are the rows of A associated
with the constraints active at x.

» We can construct a matrix A, the active constraint matrix at x. If
J = [j1,J2,---,Jk] is the set of indices that identify active constraints at x then

A, = , ajx=b; forjeJ

» If dis a feasible direction, we must have
Ay(x+ ad) < b,

where by = [bj, bj, - bjk,]T
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Feasible Descent Directions

> As(x+ad) <b, = Agx+ aAysd < b, since Agx = by, we must have
A,d<O0

» So the characterizes of a feasible descent direction d is

Aed<0 and cfd<o0

The point x* is a solution of the problem in (4.2a) and (4.2b) if and only if there
is no feasible descent directions exist at x*.

Theorem: Necessary and sufficient conditions for a minimum in alternative form
LP problem

Point x* is a solution of the problem in (4.2a) and (4.2b) if and only if it is feasible
and

¢Td>0 foralldwithAg«d <0

where A, = is the active constraint matrix at x*.

The theorem shows that we could not find the feasible descent directions. 55/91



Feasible Descent Directions

» For the standard form LP problem in (41a)-(41c), a feasible descent direction d
at a feasible point x* satisfies the constraints Ad = 0 and d; > 0 for j € J« and
c¢’'d <0, where J. = [j1,42, .. -,4k] is the set of indices for the constraints in
(41c) that are active at x*.

Theorem: Necessary and sufficient conditions for a minimum in standard form
LP problem

Point x* is a solution of the problem in (41a)-(41c) if and only if it is feasible and
c’d>0 foralldwithd € N(A)andd; > 0forj€ Ju

where N'(A) denotes the null space of A.
d € N(A) means the set of d such that Ad = 0.
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Finding a Vertex (not the LP solution)

» We know that the solution of the LP problems can occur at vertex points. Under
some conditions a vertex minimizer always exists.

> We need to have a strategy that can be used to find a minimizer vertex for the
LP problem starting with a feasible point xg.

» In the kth iteration, if the active constraint matrix at x;, A4, , has rank n, then
xy, itself is already a vertex.

> Assume that rank(A,, ) < n. We will generate a feasible point xj4.; such that
the active constraint matrix at xzy1, Aa,_ ,, IS @an augmented version of A,
with rank(Ag, , , ) increased by one.

> x;,..1 iSa point such that (a) it is feasible, (b) all the constraints that are active
at x;, remain active at x;1, and (c) there is a new active constraint at x 1,
which was inactive at x;.. A vertex can be identified in a finite number of steps.

> Lletxp41 = X} + ardy. To make sure that all active constraints at x; remain
active at x4, we must have

Aa,kxlﬂ—l = bak
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Finding a Vertex

> Since Ag, X = bq,,
Ao Xp41 = Axp + apAg, dy =bg,

it follows that Ag, dj, = 0 (no more feasible direction).

» Since rank(Ag, ) < n, the solutions of A, dy, = 0 form the null space of A, of
dimension n — rank(Ag,, ). For a fixed xj, and dj, € N'(Aq,,). We call an inactive
constraint al'x;, — b; < 0 increasing with respect to dy, if al'dj, > 0. (not in the
null space.)

» |f the ith constraint is an increasing constraint with respect to d, then moving
from xj, to x4+ along dy, the constraint becomes

azTXIH-l — bi = aiT(xk + akdk) — bi

= (a;fpxk — bl) + aka?dk =0

with a?xk, —b; < 0and a;dk > 0.
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Finding a Vertex

> A positive oy, that makes the ith constraint active at point x4 can be

identified as (= 0)
aiTx;C —b;

= aLTdk

» The moving point along d, also affects other inactive constraints and care must
be taken to ensure that the value of ay, used does not lead to an infeasible
Xk+41-

» Two problems need to be addressed. (1) how to find a direction dj, in the null
space N (A, ) such that there is at least one decreasing inactive constraint
with respect to dy. (2) if dj, is found, how to determine the step size ay.

> Given x; and Ag, , we can find an inactive constraint whose normal al is
linearly independent of the rows of A,, . It follows that the system of equations

ol

has a solution dj, with d, € N'(Aq,,) and al'd; > 0.

Ag,
T
a;
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Finding a Vertex

» The set of indices corresponding to increasing active constraints with respect to
d;. can be defined as

I = {z : a?xk —b; < O,a?dk > 0}

» The value of ay, can be determined as the value for which x;, + o d; intersects
the nearest new constraint. Hence

T
. (ai Xk — bl)
ap = min | —————
1€Ly a; dk

» If ¢ =1¢* isan index in Zj that yields the ay , then it is quite clear that at point
Xp+1 = Xk + oy dy, the active constraint matrix becomes

A,
aT

i*

A =

ap41

where rank(Aq, ,,) = rank(Aq, ) + 1. 6091



Finding a Vert

» By repeating the above steps, a feasible point x;, with rank(A4, ) = n will
eventually be reached, and point x;, is then deemed to be a vertex.
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Finding a Vertex: Example

Solve the LP problem

3 P2
minimize f(x) = —xz1 — 42 Ps
X
subject to —x1 <0 2
T S 2 P4
—x2 <0 1
x1 +x2—35<0
1+ 222 —6<0 P1 Ps
0 1 2 .
The five constraints can be expressed as Ax < b with
—1 0
1 0
A=]10 -1}, b= | 0 | the feasible region is the polygon shown above.
1 3.5
1 2 6
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Finding a Vertex: Example

> Starting from point xg = [1 1}T, apply the iterative procedure to find a vertex for
the LP problem. Since the components of the residual vector at xq is

-1 0 —1

1 2 -1
ro=Axp—b=|-1| -] 0| = | —1 | areall negative.

2 3.5 —1.5

3 6 -3

»> There are no active constraints at xq. If the first constraint (whose residual is
the smallest) is chosen to form

T
a;

A 0
ak:| dp = |: } — a{do = [—1 O} do = —do1 + (0)do2 =1
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Finding a Vertex: Example

» The set Zy in this case contains only one index, i.e, Zop = {1}.

Txp—b —1-
ao:_(aﬂ(() 1):_< 0>:1’ =1

a?do 1
» Hence
—1 .
x1 = X0 + agdg = 1 + 0 = |::| V\/IthAal—[—l 0]
> At point x;
0
—2
rp =Ax; —b=| —1 | Only —x; <1isactive.
—2.5
—4
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Finding a Vertex: Example

» The third constraint (whose residual is the smallest and inactive) is chosen to

be active:
A —1 0 0
;} d1 = dl
a; 0 1 1
) T
we obtain d; = [o 71] . It follows that Z; = {3}.
>
Tx1 —b -1-0 .
m:_as’gisz_< ):1W|thz’*—3
ald; 1
-1 0
X2 = X1 + aid; = :Aazz{o 1]
>

Since rank Aq, = 2 =n, x2 is a vertex.

65/91



Finding a Vertex: Example

T2

A
3 4
2 N
X1 do X0
1] ¢---—<-- -
dq

X2 N
T g

0 1 2
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Finding a Vertex: Example Il

Find the vertex for the convex polygon x1 + x2 + x3 = 1 such that = > 0 starting with
T
X0 = [é % %] . (For LP, we need x > 0 to be —x < 0.)
> We have

11 | 1 0
-1 0 3 0 -1

ro = Axg —b = | % — 0 = ?
_ 3 -1

o o0 —1] -3 0 -3

The problem is standard form.

> We select the first inequality constraint (they are equal) so

111 0
do = do —
0 {—1 0 o} 0 1]

Since do1 + do2 + doz = 0 and —dp1 = 1, we have dos + doz = 1. Here we
select dop2 = 1 and dpz = 0. Then dg = [—1 1 0] , Ip =12}

Aag

T
a
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Finding a Vertex: Example Il

» We have
Txo—b -0 1
ao:_aﬂ; t_ 73 ==, withi* =2
a, do 1 3
T
X1 = Xg + apdp = [0 % %]
> 1 = [0 0 —§ —%] . Choosing the fourth inequality constraint , we have
A o 1 0
oldi= , = |—-1 0 0 |di=|0
ay 1

0 0 -1 1
T .
di=[0 1 —1] , withZy = {4}

Tx1—b -+-0 1
al:,aél"; 3o 3 = withi* =4
a4d1 1 3

X9 =x1 +a1dy = |:O 1 O]T
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Finding a Vertex: Example Il

We have
0 1 1 1
Axo —b = = Ay, = |—1 0 0 | with rank(A,,) = 3.
0 0 -1

The point xs is a vertex.

d;
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Vertex Minimizers

The iterative method for finding a vertex described in the previous section does not
involve the objective function f(x) = ¢Tx. The vertex obtained may not be a
minimizer. If we start the iterative step at a minimizer, a vertex would eventually be
reached without increasing the objective function, which is a vertex minimizer.

Theorem: Existence of a vertex minimizer in alternative-form LP problem

If the minimum of f(x) in the alternative-form LP problem is finite, then there is
a vertex minimizer.

Proof: If xg is @ minimizer, then xg is finite and satisfies the condition Axg < b and
there exists a p* > 0 such that

c+ATp =0 = c+AZUp,Z:O,

where Ag, is the active constraint matrix at xo and p is composed of the entries of
wp* that correspond to the active constraints.
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Vertex Minimizers

» If xo is not a vertex, the method described in the previous section can be
applied to yield a point

X1 = X0 + apdo
which is closer to a vertex, where dg is a feasible direction that satisfies the
condition Ag,do = 0.

> |t follows that at x; the objective function remains the same as at xq, i.e.,

f(x1) = cT'xy = cT(xo + apdo) = ¢Txo — ageldy

=cTxo — ag(p})TAaydo = cTxo = f(x0)

» |f x1 is not yet a vertex, then the process is continued to generate minimizers
X2,X3, ... Until a vertex minimizer is reached.

el



Vertex Minimizers

» To apply the theorem to the standard form, it follow that
c=—ATXN fp* = —ATXN* + 1T s

where Iy consists of the rows of the n x n identity matrix that are associated
with the inequality constraints x > 0 that are active at xo, and u}; is composed
of the entries of w* that correspond to the active (inequality) constraints.

> At xo, the active constraint matrix A4, is given by

A, =

ao

It can show that the objective function is not change.

Theorem: Existence of a vertex minimizer in standard-form LP problem

Ifthe minimum of f(x) in the standard LP problem is finite, then a vertex minimizer

exists.
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Simplex Method: Nondegenerate

» |f the minimum value of the objective function in the feasible region is finite,
then a vertex minimizer exists.

> Let xg be a vertex and assume that it is not a minimizer. The simplex method
generates an adjacent vertex x; with f(x1) < f(x0) and continues doing so
until a vertex minimizer is reached.

> Given a vertex xg, a vertex x4 is adjacent to xy, if Aq, ., is different from Ag,
by only one row.

s T =A{J1,72,- - dn}
Jn

> If J, and Ji+1 have exactly (n — 1) members, vertices x;, and x4+ are
adjacent.

39



Simplex Method: Nondegenerate

> At vertex xg, the simplex method verifies whether x;, is a vertex minimizer, and if
itis not, it finds an adjacent vertex x4 that yields a reduced value of the
objective function.

» Since a vertex minimizer exists and there is only a finite number of vertices, the
method will find the solution using a finite number of iterations.

» Under the nondegeneracy assumption, A, is square and nonsingular. There
exists a p;, € R™*1 such that

c+ A7 =0

Since xi, is a feasible point, we conclude that x;, is a vertex minimizer if and
only if

pr >0

xi Is not a vertex minimizer if and only if at least one component of gy, or (py,);

is negative.
7491



Simplex Method: Nondegenerate

> Assume that xj is not a vertex minimizer and let (x;,); < 0.

» The simplex method finds an edge as a feasible descent direction d;, that points
from xj, to an adjacent vertex x;41 given by xp+1 = x5 + ayedy.

» A feasible descent direction dg is characterized by
Ao dp <0 and Tdy <0 (%)

> To find the edge that satisfies (x), we denote the Ith coordinate vector (the ith
column of the n x n identify matrix as e; and examine vector dj that solves the
equation A, d, = —e;

> We note that Ag, d < 0. We have

T+ ;,L{Aak =0 = chk + H{Aakdk =0

Tdy = —pf Agrdy, = pile; = (1g,)1 < 0

Hence dy, satisfies (x) and it is a feasible descent direction.
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Simplex Method: Nondegenerate

» Fori#1, Aq, d = —e; implies that
a}; (xk + ady) = ajTiXk + oaa};dk, = b,

» There are exactly n — 1 constraints that are active at x;, and remain active at
xp + adg. This means that x5, + ad with a > 0 is an edge that connects x;, to
an adjacent vertex x,41 with f(xx + 1) < f(xx). The right step size o, can be
identified as

[ —@Tx, —b;) —(alixj — bix)
ap = min - = T
€Ty a; dy, A dy

where Z;, contains the indices of the constraints that are inactive at x;, with
a;dk > 0.

> The vertex x;4+1 = X + oy dy, . Then at x4 the ¢*th constraint becomes active.
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Simplex Method: Nondegenerate

> Substituting jyth constraint with the active i*th constraint in A, ,, there are
exactly n active constraints at xz41 and Aq, ,, is given by

Agjp1 = |

a-
Ji+1

= in -

» The index set is given by

\7k+1 = {jl""7jlfl’i*7jl+17'“’jn}
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Simplex Method: Nondegenerate

Algorithm: Simplex algorithm for the alternative-form LP problem, nondegener-
ate vertices

1. Input vertex xg, and form A4, and Jo. Set k = 0

2. Solve ATy, = —cfor py,. If py, > 0, stop (xy, is a vertex minimizer):
otherwise, select the index [ that corresponds to the most negative
component in gy,.

3. Solve Ay, di, = —e;, where ¢; is a unit vector at  index for dy,.

4. Compute the residual vector r, = Ax, —b = (r;)Y_; If the index set
Ty, = {i:r; < 0and ald; > 0} is empty, stop

(The objective function tends to —oo in the feasible region);
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Simplex Method

Algorithm: Simplex algorithm for the alternative-form LP problem, nondegener-
ate vertices cont.

4. (cont.) otherwise, compute

n —Ti
Q. = min
i€Ly, a;rd;C

and record the index i* with a, = —r;« /(al.dy). Note: a] is the row of
Ag,, such thatr; < 0.

5. Setxpy1 = Xk + apdg. Update Aoy and J41 using

T
Aoy = [ajl oAy A Ay, ajn]

Tl = {315 > J1—1,%", Ji415 - - -5 dn )t

Set k = k + 1 and repeat from Step 2.
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Simplex Method: Nondegenerate Example

T
Solve the LP problem with initial vertex zg = [2 1‘5]

Z2

3 402
minimize f(x) = —z1 — 4a2 &
x
subject to —x1 <0 2
z1 <2 o
—22 <0 1
f=-6
1 +x2—3.5<0
f=-4
1 +2x2 —6<0 Py Ps
. 1
0 1 2

The five constraints can be expressed as Ax < b with

—1
1
A=|0 -1|, b= | 0 | the feasible region is the polygon shown above.
1 3.5
1 2 6 80/91



Simplex Method: Nondegenerate Example

» With xo the second and fourth constraints are active and hence

1 0
Ay = 5 :2,4
K

T
> Solving AT py = —c for py where ¢ = [—1 —4} , we obtain

T
Mo = [73 4] . Since pg, is negative, xo is not a minimizer and [ = 1. Next

we solve

» The residual vector at xq is given by

rO:Axo—b:[—Q 0 —15 0 —1]T
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Simplex Method: Nondegenerate Example

» 1 shows that the first, third, and fifth constrains are inactive at xq.

al -1 0 L 1
alldo=[0 -1 L]: -1|,  To={1,5}
al 2 1

a min —ror TTos 1 =5
0= = =
T » T ’
ajdo azdo

2 —1 1
X1 = Xo + apdp = +1 =
1.5 1 2.5

> Since ! = 1, we have (by swapping al and al),

1 2
Aot = dJ1 = {5,4
1 |:1 1:| and J1 = {5,4}

» End of the first iteration.
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Simplex Method: Nondegenerate Example

» The second iteration starts by solving A{lpl = —cfor pu,
1 —1

11 A
2 1 4 m=ED L,

Then the point x; is not a minimizer and [ = 2.

M1 =

> Bysolving Aq,d1 = —e2
1 2 0 1 -2 0 —2
dy = — = di =(-1) =
1 1 1 —1 1 —1 1
» We compute the residual vector at x; as
T
n=Ax-b=[-1 -1 -25 0 o0
It indicates that the first three constraints are inactive at xj.
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Simplex Method: Nondegenerate Example

» By evaluating

al -1 0 5 2
_ —r .

ag di=|1 =|=2|, Zr={1}, a1 = Tll =—i"=1

T 1 ajd; 2

ag 0o -1 -1

T .
» This leads to xo = x1 + a1d; = [0 3] with I = 2 (by swapping al” and aT)
1 2
Ao, = |:_1 0:| and J2 = {5,1}

Which is complete the second iteration.

> \Vertex zg is confirmed to be a minimizer at the beginning of the third iteration
since the equation A,{z po = —c and yields nonnegative Lagrange multipliers

wel )
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Simplex Method: Nondegenerate Example

T2
A
X2
3 9 a
X1
2 d[)
X0
1
‘ >
0 1 2
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Simplex Method: Nondegenerate Example

T2

2

minimize fx) =x1 4+ 22
subject to z <2 L
xg < 2
—2z1 + 22 <2
21 + 22 < 4 0

the constraints can be written as Ax < b with

and b =

o
= = = O
=N NN

Note: The feasible region is unbounded.
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Simplex Method: Nondegenerate Example

T
» We start with the vertex xg = [1 2] . At xq
T . .
ro=Axg —b= [71 0o -2 0] , second and fourth constraints are active.

0 1
Ay, = dJo =1{2,4
0 |:2 1:| and Jo { }

> From AT py = —c, we have

X0 IS not a minimizer.
> Since both components of p are negative, we can choose index [ to be either 1

or 2.
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Simplex Method: Nondegenerate Example

» Choosingl =1,
0 1 —1 11 —1| -1 1
Ay dp = —e1 = dg = —dy = — = — | 2
» The residual vector at xq is given by

T
ro=Axgp—b= [—1 0o -2 O] the first and third constraints are inactive at xg.

> We compute

al’ 1 ol -1 1
1 — 2| — 2 —
do = = . To=A{1
LST} [—2 1|1 -2 {}
—T01 1 .
ap = =-=2 i"=1
Tl 2
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Simplex Method: Nondegenerate Example

T
» the next vertex is x1 = xg + apdg = [2 0] , with

1 0
Ay, = [2 J ,and 71 = {1,4}

» Check whether 21 is a minimizer by solving

- 12 -1
Anm=—c = | lm=]| | = m=

1 =2| [-1] |1
0 1||-1 |[-1
indicating that x; is not a minimizer and [ = 2

» Solving

i = o [t) e[t ()L
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Simplex Method: Nondegenerate Example

» The residual vector at z7 is
T
1= Axi —b= [o 2 6 0}
» The second and third constraints are inactive. We evaluate
al 0 1|0 -1
d; = =
al -2 1 |-1 -1

» Since Z; is empty, we conclude that the solution of this LP problem is
un-bounded.
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