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Objective

At the end of this chapter you should be able to:
▶ Describe, implement, and use Linear Programming
▶ Understand Linear Programming
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Matrix basic

Two vectors x, y ∈ Rn can be multiplied together in two ways. Both are valid matrix
multiplications:

▶ inner product: produces a scalar.

xT y =
[
x1 · · · xn

]
y1
...
yn

 = x1y1 + · · ·+ xnyn

Also called dot product. Sometime write x · y or ⟨x, y⟩.
▶ Outer product: produces an n× n matrix.

xyT =


x1

...
xn

[y1 · · · yn

]
=


x1y1 · · · x1yn
...

. . .
...

xny1 · · · xnyn


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Matrix basic

▶ Matrices and vectors can be stacked and combined to form bigger matrices as
long as the dimesions agree, e.g. If x1, . . . , xm ∈ Rn , then
X =

[
x1 x2 . . . xm

]
∈ Rm×n

▶ Matrices can also be concatenated in blocks. For example

Y =

[
A B
C D

]

if A,C have same number of columns, A,B have same number of rows, etc.
▶ Matrix multiplication also works with block matrices:

[
A B
C D

][
P
Q

]
=

[
AP + BQ
CP + DQ

]

as long as A has as many columns as P has rows, etc.
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Linear and Affine Functions

▶ A function f(x1, . . . , xm) is linear in the variables x1, . . . , xm if there exist
constants a1, . . . , am such that

f(x1, . . . , xm) = a1x1 + · · ·+ amxm = aT x

▶ A function f(x1, . . . , xm) is affine in the variables x1, . . . , xm if there exist
constants b, a1, . . . , am such that

f(x1, . . . , xm) = a0 + a1x1 + · · ·+ amxm = aT x + b

Example:
▶ 3x− y is linear in (x, y).
▶ 2xy + 1 is affine in x and y but not in (x, y).
▶ x2 + y2 is not linear or affine.
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Linear and Affine Functions

Several linear or affine functions can be combined:


a11x1 + · · ·+ a1nxn + b2

a21x1 + · · ·+ a2nxn + b2
...

am1x1 + · · ·+ amnxn + bm

 =⇒


a11 · · · a1n
...

. . .
...

am1 · · · amn



x1

...
xn

+


b1
...

bm



which can be written simply as Ax + b. Same definitions apply to:
▶ A vector-valued function F (x) is linear in x if there exists a constant matrix A

such that F (x) = Ax.
▶ A vector-valued function F (x) is affine in x if there exists a constant matrix A

and vector b such that F (x) = Ax + b.
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Geometry of Affine Equation

▶ The set of points x ∈ Rn that satisfies a linear equation a1x1 + · · ·+ anxn = 0

(or aT x = 0) is called a hyperplane. The vector a is normal to the hyperplane.
▶ If the right=hand side is nonzero: aT x = b, the solution set is called an affine

hyperplane. (It’s a shifted hyperplane.)
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Geometry of Affine Equation

▶ The set of points x ∈ Rn satisfying many linear equations
ai1x1 + · · ·+ aimxn = 0 for i = 1, . . . ,m (or Ax = 0) is called a subspace (the
intersection of many hyperplanes).

▶ If the right-hand side is nonzero: Ax = b, the solution set is called an affine
subspace, (the shifted subspace).

8 / 91



Geometry of Affine Equation

The dimension of a subspace is the number of independent directions it contains. A
line has dimension 1, a plane has dimension 2, and so on. (Hyperplanes are
subspaces)

▶ A hyperplane in Rn is a subspace of dimension n− 1.
▶ The intersection of k hyperplanes has dimension at least n− k (”at least”

because of potential redundancy).
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Affine Combinations

If x, y ∈ Rn , then the combination

w = αx + (1− α)y for some α ∈ R

is called an affine combination.

If Ax = b and Ay = b, then Aw = b. So affine combinations of points in an (affine)
subspace also belong to the subspace.
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Convex Combinations

If x, y ∈ Rn , then the combination

w = αx + (1− α)y for some 0 ≤ α ≤ 1

is called a convex combination. It’s the line segment that connects x and y.
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Geometry of affine inequalities

▶ The set of points x ∈ Rn that satisfies a linear inequality a1x1 + · · ·+ anxn ≤ b

(or aT ≤ b) is called a halfspace. The vector a is normal to the halfspace and b
shifts it.

▶ Define w = αx + (1− α)y where 0 ≤ α ≤ 1. If aT x ≤ b and aT y ≤ b, then
aT w ≤ b.
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Geometry of affine inequalities

▶ The set of points x ∈ Rn satisfying many linear inequalities
ai1x1 + · · ·+ ainxn ≤ bi for i = 1, . . . ,m (or Ax ≤ b) is called a polyhedron
(the intersection of many halfspaces). Some sources use the term polytope
instead.

▶ As before: let w = αx + (1− α)y where 0 ≤ α ≤ 1. If Ax ≤ b and Ay ≤ b, then
Aw ≤ b.
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Linear Programming

▶ Many engineering optimization problem can be cast as a linear programming
(planning or scheduling) problem.

▶ The Linear Programming (LP) is an optimization problem where the objective
function and the constraints are linear functions of the optimization variables.

▶ Several nonlinear optimization problems can be solved by iteratively solving
linearized versions of the original problem.

▶ In 1947, George Dantzig developed the famous Simplex method.
▶ Several variations of the Simplex method were introduced after that. Some

variations are commercial products, which are secret. They can solve several
thousand variables problem in less than one minute.

▶ The more efficient (most but not always) technique is the interior-point method
(IPM).
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Linear Programming

▶ We can put every LP in the form:
Maximization:

maximize
x∈Rn

cT x

subject to Ax ≤ b

x ≥ 0

Minimization:

minimize
x∈Rn

cT x

subject to Ax ≥ b

x ≥ 0
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The linear program

A linear program (LP) is an optimization model with:
▶ real-valued variables (x ∈ Rn)
▶ affine objective function (cT x + d), can be minimized or maximized.

▶ constraints may be:
▶ affine equations (Ax = b)
▶ affine inequalities (Ax ≤ b) or (Ax ≥ b)
▶ combinations of the above

▶ individual variables may have:
▶ box constraints (p ≤ xi , or xi ≤ q, or p ≤ xi ≤ q)

▶ no constraints (xi is unconstrained)

There are many equivalent ways to express the same LP.
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Solutions of an LP

There are exactly three possible cases:
▶ Model is infeasible: there is no x

that satisfies all the constraints. (is
the model correct?)

▶ Model is feasible, but unbounded:
the cost function can be arbitrarily
improved. (forgot a constraint?)

▶ Model has a solution which occurs
on the boundary of the set. (there
may be many solutions!).
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Standard form: Top Brass Data

Top Brass Trophy Company makes large championship trophies for
youth athletic leagues. At the moment, they are planning pro-
duction for fall sports: US football and football. Each US football
trophy has a wood base, an engraved plaque, a large brass US football

on top, and returns $12 in profit. Football trophies are similar except

that a brass football ball is on top, and the unit profit is only $9.

Since the US football has an asymmetric shape, its base requires 4

board feet of wood; the football base requires only 2 board feet. At

the moment there are 1000 brass US footballs in stock, 1500 football

balls, 1750 plaques, and 4800 board feet of wood. What trophies

should be produced from these supplies to maximize total profit
assuming that all that are made can be sold?

US football football both
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Standard form: Top Brass Data

Recipe for building each trophy

wood plaques US footballs soccer balls profit

US football 4 ft 1 1 0 $ 12
football 2 ft 1 0 1 $ 9

Quantity of each ingredient in stock

wood plaques US football balls Football balls

in stock 4800 ft 1750 1000 1500
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Linear Programming: Example

maximize
f,s

12f + 9s

subject to 4f + 2s ≤ 4800

f + s ≤ 1750

0 ≤ f ≤ 1000

0 ≤ s ≤ 1500

Matrix form

maximize
x

cT x

subject to Ax ≤ b

x ≥ 0

This is in matrix form, with:

A =


4 2

1 1

1 0

0 1

 , b =


4800

1750

1000

1500

 , c =

[
12

9

]
, x =

[
f

s

]
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Graphical Method: Example

Define z = 12f + 9s, where z = profit. Here s = − 12
9
f + z

9
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Standard Form

The standard form of the linear programming problem is :

minimize cT x

subject to Ax = b

x ≥ 0

Example:

minimize f(x) = 4x1 − 5x2 + 3x3

subject to 3x1 − 2x2 + 7x3 = 7

8x1 + 6x2 + 6x3 = 5

x1, x2, x3 ≥ 0

x =

x1

x2

x3

 , c =

 4

−5

3

 , A =

[
3 −2 7

8 6 6

]
, b =

[
7

5

]
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Transformation tricks: Example

1. Converting minimize to maximize or vice versa

minimize
x

cT x = −maximize
x

−cT x

2. Reversing inequalities (flip the sign if b is negative):

Ax ≤ b ⇐⇒ (−A)x ≥ (−b)

3. If a variable has a lower bound other than zeros

x ≥ 5, → x′ = x− 5, → x′ ≥ 0

4. Inequalities to equalities (add slack variable):

f(x) ≤ 0 ⇐⇒ f(x) + s = 0 and s ≥ 0
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Transformation tricks: Example

5. Unbounded to bounded (add difference):

x ∈ R ⇐⇒ u ≥ 0, v ≥ 0, and x = u− v

6. Bounded to unbounded (convert to inequality):

p ≤ x ≤ q ⇐⇒
[

1

−1

]
x ≤

[
q

−p

]
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Standard Form: Example

Consider a linear programming problem:

maximize f(x) = −5x1 − 3x2 + 7x3

subject to 2x1 + 4x2 + 6x3 = 7

3x1 − 5x2 + 3x3 ≤ 5

− 4x1 − 9x2 + 4x3 ≤ −4

x1 ≥ −2, 0 ≤ x2 ≤ 4

Convert to a minimization problem and make the third constraint to be nonnegative:

minimize f(x) = 5x1 + 3x2 − 7x3

subject to 2x1 + 4x2 + 6x3 = 7

3x1 − 5x2 + 3x3 ≤ 5

4x1 + 9x2 − 4x3 ≥ 4

x1 ≥ −2, 0 ≤ x2 ≤ 4
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Standard Form: Example

Transform x1 to x′
1 = x1 + 2 , make bound for x3 = x′

3 − x′′
3 , and change 0 ≤ x2 ≤ 4

to be x2 ≥ 0 and x2 ≤ 4

minimize f(x) = 5x1 + 3x2 − 7x3

subject to 2x1 + 4x2 + 6x3 = 7

3x1 − 5x2 + 3x3 ≤ 5

4x1 + 9x2 − 4x3 ≥ 4

x2 ≤ 4

x′
1, x2, x

′
3, x

′′
3 ≥ 0

Substitute all things
minimize f(x) = 5x′

1 + 3x2 − 7x′
3 + 7x′′

3 − 10

subject to 2x′
1 + 4x2 + 6x′

3 − 6x′′
3 = 11

3x′
1 − 5x2 + 3x′

3 − 3x′′
3 ≤ 11

4x′
1 + 9x2 − 4x′

3 + 4x′′
3 ≥ 12

x2 ≤ 4

x′
1, x2, x

′
3, x

′′
3 ≥ 0
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Standard Form: Example

The constant term in the objective function could be remove via a transformation
f ′(x) = f(x) + 10. The final step is to add slack and excess variables to convert the
general constraints to the equality constraints:

minimize f ′(x) = 5x′
1 + 3x2 − 7x′

3 + 7x′′
3

subject to 2x′
1 + 4x2 + 6x′

3 − 6x′′
3 = 11

3x′
1 − 5x2 + 3x′

3 − 3x′′
3 + s2 = 11

4x′
1 + 9x2 − 4x′

3 + 4x′′
3 − e3 = 12

x2 + s4 = 4

x′
1, x2, x

′
3, x

′′
3 , s2, e3, s4 ≥ 0

In matrix form minimize cT x

subject to Ax = b

x ≥ 0
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Standard Form: Example

c =
[
5 3 −7 7 0 0 0

]T
, b =

[
11 11 12 4

]T

A =


2 4 6 −6 0 0 0

3 −5 3 −3 1 0 0

4 9 −4 4 0 −1 0

0 1 0 0 0 0 1


x =

[
x′
1 x2 x′

3 x′′
3 s2 e3 s4

]T
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Standard Form: Example

Put the problem

minimize − 2x1 + 3x2

subject to x1 + x2 ≤ 5

x ≥ 0

in the standard form. Obtain a graphical solution for the original problem and the
standard problem.

5

5

0

f = −10

f = 0

f = 7

f = 15

x1

x2

From the figure, it is obvious that the
minimum value of the objective function
over the feasible region is f∗ = −10, and
the optimal point is x∗ =

[
5 0

]T
.
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Standard Form: Example

Change it into a standard form by adding a slack variable x3 :

minimize f(x) = −2x1 + 3x2

subject to x1 + x2 + x3 = 5

x ≥ 0

(0, 5, 0)

(5, 0, 0)

(0, 0, 5)

x2

x1

x3

The minimum of the objective function is
at x∗ =

[
5 0 0

]T
. The optimal solution

is the same like the original problem as
the slack variable x3 is set to zero.

How can we find the optimal vertex?
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Objective

▶ Linear programming (LP) problems occur in a diverse range of real-life
applications in economic analysis and planning, operations research, computer
science, medicine, and engineering.

▶ These prolems, it is known that nay minima occur at the vertices of the feasible
region and can be determined through a “brute-force” or exhaustive approach
by evaluating the objective function at all the vertices of the feasible region.

▶ The number of variables involved in practical LP problem is often vary large and
an exhaustive approach would entail a considerable amount of computation.

▶ In 1947, Dantzig developed a method for solving LP problems known as the
simplex method. He solved this problem because he came to the class late and
thought an unsolved problem on a blackboard was homework.

▶ Named one of the “Top 10 algorithms of the 20th century” by Computing in
Science & Engineering magazine. Full list at:
https://www.siam.org/pdf/news/637.pdf

▶ The simplex method has been the primary method for solving LP problems
since its introduction.
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General Constrained Optimization Problem

A general constrained optimization problems:

minimize
x

f(x)

subject to gi(x) ≤ 0, for i = 1, 2, . . . , q

hj(x) = 0, for j = 1, 2, . . . , p

xLk
≤ xk ≤ xUk

, for k = 1, 2, . . . , n,

where xL and xU are lower bound and upper bound, respectively.

Definition: Regular point

A point x is called a regular point of the equality constraints if x satisfies hj(x) = 0

and column vector ∇h(x) are linearly independent.

▶ x is a regular point of the equality constraints if it is a solution of hj(x) = 0 and

the Jacobian J =
[
∇h1

(x) ∇h2
(x), . . . ,∇hp (x)

]T
has full row rank.

32 / 91



General Constrained Optimization Problem

Consider the equality constraints

−x1 + x3 − 1 = 0

x2
1 + x2

2 − 2x1 = 0

The Jacobian of the constraints is given by

J =

[
−1 0 1

2x1 − 2 2x2 0

]

▶ The Jacobian has rank 2 except x =
[
1 0 x3

]T
▶ x =

[
1 0 x3

]T
does not satisfy the second constraint.

▶ Any points satisfying both constraints is regular.
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General Constrained Optimization Problem: Inequality
constraints

Consider the constraints

g1(x) ≤ 0, g2(x) ≤ 0, · · · gq(x) ≤ 0

▶ For the feasible point x, these inequalities can be divided into two classes.
▶ The set of constraints with gi(x) = 0 are called active constraints.
▶ The set of constraints with gi(x) < 0 is called inactive constraints.
▶ We can convert inequality constraints into equality constraints by adding slack

variable s ≥ 0 as

ĝi(x) = gi(x) + si = 0
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General Properties: Formulation of LP problems

The standard-form LP problem:

minimize
x

cT x (4.1a)

subject to Ax = b (4.1b)

x ≥ 0 (4.1c)

where c ∈ Rn×1 with c ̸= 0, A ∈ Rp×n , and b ∈ Rp×1 are given. We assume that A is
of full row rank, i.e., rank(A) = p. To be meaningful LP problem, full row rank in A
implies that p < n.

▶ For n = 2, cT x = β represents a linea and cT x = β for β = β1, β2, . . . ,

represents a family of parallel lines.
▶ The normal of these lines is c, and the vector c is often referred to as the

normal vector of the objective function.
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General Properties: Formulation of LP problem

1 2

2

3

0

c

cT x = −4

cT x = −6

x1

x2
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General Properties: Formulation of LP problems

Another LP problem, which is often encountered in practice, involves minimizing a
linear function subject to inequality constraints, i.e.,

minimize
x

cT x (4.2a)

subject to Ax ≤ b (4.2b)

where c ∈ Rn×1 with c ̸= 0, A ∈ Rp×n , and b ∈ Rp×1 are given. This will be referred
to as the alternative-form LP problem hereafter. If we let

A =


aT1
aT2
...

aTp

 , b =


b1

b2
...
bp

 , then aTi x ≤ bi, for i = 1, 2, . . . , p

where vector ai is the normal of the ith inequality constraint, and A is usually referred
to as the constraint matrix.
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General Properties: Formulation of LP problems

▶ by introducing a p-dimensional slack vector variable s, the LP problem can be
reformaulated as

Ax + s = b for s ≥ 0

The vector variable x can be decomposed as

x = x′ − x′′ with x′ ≥ 0 with x′′ ≥ 0

Hence if we let

x̂ =
[
x′ x′′ s

]T
, ĉ =

[
c −c 0

]T
, Â =

[
A −A Ip

]

38 / 91



General Properties: Formulation of LP problems

▶ The non-standard LP can be reformulated as a standard-form LP problem , the
increase in problem size leasd to reduced computational efficiency which can
sometimes be a serious problem particularly when the number of inequality
constraints is large.

▶ To solve each form LP will be described separately to enable us to solve each of
these problems directly without the need of converting the one form into the
other.
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General Properties: KKT Conditions

▶ Lagrange Multipliers use to convert a constrained problem into a form such that
the derivative test of an unconstrained problem can be applied.

▶ From the LP:

minimize
x

cT x

subject to Ax = b

x ≥ 0

The Lagrangian and the optimal conditions are

L(x,µ,λ) = cT x + λT (Ax − b)− µT x

∇Lx = c + ATλ− µ = 0

∇Lλ = Ax − b = 0

∇Lµ = x = 0
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General Properties: KKT Conditions

Theorem: Karush-Kuhn-Tucker (KKT) conditions for standard LP

If x∗ is regular for the constraints that are active at x∗ , then it is a global solution
of the LP problem in the standard LP if an only if

▶ Ax∗ = b, (4.3a)
▶ x∗ ≥ 0, (4.3b)
▶ there exist Lagrange multipliers λ∗ ∈ Rp×1 and µ∗ ∈ Rn×1 such that

µ∗ ≥ 0 and

c + ATλ∗ − µ∗ = 0 (4.3c)

▶ µ∗
i x

∗
i = 0 for 1 ≤ i ≤ n (4.3d)

▶ The first two condition simply say that solution x∗ must be a feasible point. The
constraint matrix A and vector c are related through the Lagrange multipliers
λ∗ and µ∗ .
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General Properties: Formulation of LP problems

▶ From (4.3a)-(4.3d), in most cases solution x∗ cannot be strictly feasible.
▶ The term strictly feasible points is the points that satisfy the equality

constraints with x∗
i > 0 for 1 ≤ i ≤ n

▶ From (4.3d), µ∗ must be a zero vector for a strictly feasible point x∗ to be a
solution (x∗

i > 0). Hence (4.3c) becomes

c + ATλ∗ = 0

▶ For strictly feasible point to be a minimizer of the standard-form LP problem,
the n-dimensional vector c must lie in the p-dimensional subspace spanned by
the p columns of AT . Since p < n, the probability that c + ATλ∗ = 0 is very
small.

▶ Any solutions of the problem are very likely to be located on the boundary of
the feasible region.
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General Properties: Example

Solve the LP problem

minimize
x

f(x) = x1 + 4x2

subject to x1 + x2 = 1

xi ≥ 0, i = 1, 2
1

1

0

f = 5

f = 6p1

p2

Steepest-descent direction

x1

x2

▶ The feasible region of the problem is
the segment of the line x1 + x2 = 1

in the first quadrant.
▶ The dashed lines are contours of the

form f(x) = constant, and the arrow
points to the steepest-descent
direction of f(x)

We have

c =

[
1

4

]
and AT =

[
1

1

]

Since c and AT are linearly independent,
c = ATλ∗ cannot be satisfied and no
interior feasible point can be a solution.
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General Properties: Example

From the figure, the unique minimizer is x∗ =
[
1 0

]T
. At x∗ the constraint

x1 + x2 = 1 and x2 = 0 are active. The Jacobian of these constraints,

J =

[
1 1

0 1

]

is nonsingular, x∗ is a regular point. From µ∗
i x

∗
i = 0 and x∗

1 = 1, then µ∗
1 = 0

c + ATλ∗ − µ∗ = 0[
1

4

]
+

[
1

1

]
λ∗ −

[
0

µ∗
2

]
= 0

λ∗ = −1 and µ∗
2 = 3

This is confirm that x∗ =
[
1 0

]T
is indeed a global solution (KKT condition).
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General Properties: Example

Note: if the objective function is changed
to

f(x) = cT x = 4x1 + 4x2

We can have

c + ATλ∗ − µ∗ = 0 =⇒ λ∗ = −4,µ∗ = 0

1

1

0

f = 5

f = 6

Steepest-descent direction

x1

x2

Any feasible point becomes a global solution. The objective function remains constant
(x1 + x2 = 1)in the feasible region, i.e.,

f(x) = 4(x1 + x2) = 4, for x ∈ R2
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General Properties: Alternative form

Consider an alternative LP

minimize
x

f(x) = cT x

subject to Ax ≤ b

Theorem: Necessary and sufficient conditions for a minimum in alternative form
LP problem

If x∗ is regular for the constraints in (4.2b) that are active at x∗ , then it is a global
solution of the problem in (4.2a) if and only if

1. Ax∗ ≤ b (4.4a)

2. there exists a µ∗ ∈ Rp×1 such that µ∗ ≥ 0 and

c + ATµ∗ = 0 (4.4b)

3. µ∗
i (aTi x∗ − bi) = 0 for 1 ≤ i ≤ p (4.4c)

where aTi is the ith row of A
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General Properties: Alternative form

▶ The theorem show that the solutions of the problem must be located on the
boundary of the feasible region.

▶ If x∗ is a strictly feasible point satisfying µ∗
i (aTi x − bi) = 0 , then Ax∗ < b and

the complementarity condition in (4.4c) implies that µ∗ = 0. Hence (4.4b)
cannot be satisfied unless c = 0

▶ If c = 0, it would lead to a meaningless LP problem.
▶ In other word, any solutions of (4.4a)-(4.4c) can only occur on the boundary of

the feasible region.
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General Properties: Alternative form Example

Solve the LP problem

minimize
x

f(x) = −x1 − 4x2

subject to −x1 ≤ 0

x1 ≤ 2

−x2 ≤ 0

x1 + x2 − 3.5 ≤ 0

x1 + 2x2 − 6 ≤ 0

1 2

1

2

3

0

f = −4

f = −6

p1

p2

p3

p4

p5

x1

x2

The five constraints can be expressed as Ax ≤ b with

A =


−1 0

1 0

0 −1

1 1

1 2

 , b =


0

2

0

3.5

6

 the feasible region is the polygon shown above.
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General Properties: Alternative form Example

▶ The solution cannot be inside the polygon, we consider the five edges of the
polygon. At any point of x on an edge other than the five vertices pi only one
constraints is active. This mean that only one of the five µi’s is nonzero.

▶ At such an xi , (which is on the edge.), (4.4b) becomes

c =
[
−1 −4

]T
= −µiai

where ai is the transpose of the ith row in A.
▶ Since each ai is linearly independent of c, no µi exists that satisfies c = −µiai
▶ We have five vertices for verification. At p1 =

[
0 0

]T
, the constraints

−x1 = 0, and −x2 = 0 are active. Then c = −ATµ is

[
−1

−4

]
=

[
1 0

0 1

][
µ1

µ3

]
,=⇒ µ1 = −1, µ3 = −4

▶ Since µi ≤ 0, then p1 is not a solution.
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General Properties: Alternative form Example

▶ At the point p2 =
[
0 3

]T
, the constraints −x1 = 0 and x1 + 2x2 − 6 = 0 are

active. Then c = −ATµ is

[
−1

−4

]
= −

[
−1 0

1 2

]T [
µ1

µ5

]
=

[
1 −1

0 −2

][
µ1

µ5

]
µ1 = 1, µ5 = 2

µ = µ∗ =
[
1 0 0 0 2

]T
≥ 0

▶ p2 =
[
0 3

]T
is a minimizer, i.e., x = x∗ = p2 .

▶ By checking the other vertex point, the point p2 is the unique solution to the
problem.
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Facets, Edges, and Vertices

1

1

1

p2

p1

p3

x2

x1

x3

x1 + x2 + x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Ax ≤ b

A =


1 1 1

−1 0 0

0 −1 0

0 0 −1

 , b =


1

0

0

0


The polyhedron is three-dimension face, which has four facets, six edges, and four
vertices.

A vertex is a feasible point p at which there exist at least n active constraints which
contain n linearly independent constraints where n is the dimension of x. Vertex p is
said to be nondegenerate if exactly n constraints are active at p or degenerative if
more than n constraints are active at p.

p1, p2, p3, p4 are nondegenerate vertices.
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Facets, Edges, and Vertices

1

1

1

p3
p1

p5

p2

p4

x2

x1

x3

x1 + x2 + x3 ≤ 1

0.5x1 + 2x2 + x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Ax ≤ b

A =


1 1 1

0.5 2 1

−1 0 0

0 −1 0

0 0 −1

 , b =


1

1

0

0

0


▶ The convex polyhedron has five facets, eight edges, and five vertices.
▶ At vertex p5 four constraints are active but since n = 3, p5 is degenerate.
▶ The other four vertices, namely, p1, p2, p3 , and p4 , are nondegenerate.
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Feasible Descent Directions

Start from an initial point, we need to find a better new point:

Theorem: Feasible direction

Let δ = αd be a change in x where α is a positive constant and d is a direction
vector. If Ω is the feasible region and a constant α̂ > 0 exists such that

x + αd ∈ Ω

for all α in the range 0 ≤ α ≤ α̂, then d is said to be a feasible direction at point
x.

▶ A vector d ∈ Rn×1 is said to be a feasible descent direction at a feasible point
x ∈ Rn×1 if d is a feasible direction and the linear objective function strictly
decreases along d , i.e., f(x + αd) < f(x) for α > 0, where f(x) = cT x.

▶ This implies that

f(x + αd) = cT (x + αd) = cT x + αcT d
1

α
[f(x + αd)− f(x)] = 1

α

[
cT x + αcT d − cT x

]
= cT d < 0
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Feasible Descent Directions

▶ For LP, we denote Aa as the matrix whose rows are the rows of A associated
with the constraints active at x.

▶ We can construct a matrix Aa the active constraint matrix at x. If
J = [j1, j2, . . . , jk] is the set of indices that identify active constraints at x then

Aa =


aTj1
aTj2
...

aTjk

 , aTj x = bj for j ∈ J

▶ If d is a feasible direction, we must have

Aa(x + αd) ≤ ba

where ba =
[
bj1 bj2 · · · bjk

]T
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Feasible Descent Directions

▶ Aa(x + αd) ≤ ba ⇒ Aax + αAad ≤ ba since Aax = ba , we must have
Aad ≤ 0

▶ So the characterizes of a feasible descent direction d is

Aad ≤ 0 and cT d < 0

The point x∗ is a solution of the problem in (4.2a) and (4.2b) if and only if there
is no feasible descent directions exist at x∗ .

Theorem: Necessary and sufficient conditions for a minimum in alternative form
LP problem

Point x∗ is a solution of the problem in (4.2a) and (4.2b) if and only if it is feasible
and

cT d ≥ 0 for all d with Aa∗d ≤ 0

where Aa∗ is the active constraint matrix at x∗ .
The theorem shows that we could not find the feasible descent directions. 55 / 91



Feasible Descent Directions

▶ For the standard form LP problem in (4.1a)-(4.1c), a feasible descent direction d
at a feasible point x∗ satisfies the constraints Ad = 0 and dj ≥ 0 for j ∈ J∗ and
cT d ≤ 0, where J∗ = [j1, j2, . . . , jk] is the set of indices for the constraints in
(4.1c) that are active at x∗ .

Theorem: Necessary and sufficient conditions for a minimum in standard form
LP problem

Point x∗ is a solution of the problem in (4.1a)-(4.1c) if and only if it is feasible and

cT d ≥ 0 for all d with d ∈ N (A) and dj ≥ 0 for j ∈ J∗

where N (A) denotes the null space of A.

d ∈ N (A) means the set of d such that Ad = 0.
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Finding a Vertex (not the LP solution)

▶ We know that the solution of the LP problems can occur at vertex points. Under
some conditions a vertex minimizer always exists.

▶ We need to have a strategy that can be used to find a minimizer vertex for the
LP problem starting with a feasible point x0 .

▶ In the kth iteration, if the active constraint matrix at xk,Aak , has rank n, then
xk itself is already a vertex.

▶ Assume that rank(Aak ) < n. We will generate a feasible point xk+1 such that
the active constraint matrix at xk+1,Aak+1 , is an augmented version of Aak

with rank(Aak+1 ) increased by one.
▶ xk+1 is a point such that (a) it is feasible, (b) all the constraints that are active

at xk remain active at xk+1 , and (c) there is a new active constraint at xk+1 ,
which was inactive at xk . A vertex can be identified in a finite number of steps.

▶ Let xk+1 = xk + αkdk . To make sure that all active constraints at xk remain
active at xk+1 , we must have

Aakxk+1 = bak
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Finding a Vertex

▶ Since Aakxk = bak ,

Aakxk+1 = Axk + αkAakdk = bak

it follows that Aakdk = 0 (no more feasible direction).
▶ Since rank(Aak ) < n, the solutions of Aakdk = 0 form the null space of Aak of

dimension n− rank(Aak ). For a fixed xk and dk ∈ N (Aak ). We call an inactive
constraint aTi xk − bi < 0 increasing with respect to dk if aTi dk > 0. (not in the
null space.)

▶ If the ith constraint is an increasing constraint with respect to dk , then moving
from xk to xk+1 along dk , the constraint becomes

aTi xk+1 − bi = aTi (xk + αkdk)− bi

= (aTi xk − bi) + αkaTi dk = 0

with aTi xk − bi < 0 and aTi dk > 0.
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Finding a Vertex

▶ A positive αk that makes the ith constraint active at point xk+1 can be
identified as ( = 0)

αk = −
aTi xk − bi

aTi dk

▶ The moving point along dk also affects other inactive constraints and care must
be taken to ensure that the value of αk used does not lead to an infeasible
xk+1 .

▶ Two problems need to be addressed. (1) how to find a direction dk in the null
space N (Aak ) such that there is at least one decreasing inactive constraint
with respect to dk . (2) if dk is found, how to determine the step size αk .

▶ Given xk and Aak , we can find an inactive constraint whose normal aTi is
linearly independent of the rows of Aak . It follows that the system of equations

[
Aak

aTi

]
dk =

[
0

1

]

has a solution dk with dk ∈ N (Aak ) and aTi dk > 0.
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Finding a Vertex

▶ The set of indices corresponding to increasing active constraints with respect to
dk can be defined as

Ik =
{
i : aTi xk − bi < 0, aTi dk > 0

}
▶ The value of αk can be determined as the value for which xk + αkdk intersects

the nearest new constraint. Hence

αk = min
i∈Ik

(
−
(aTi xk − bi)

aTi dk

)

▶ If i = i∗ is an index in Ik that yields the αk , then it is quite clear that at point
xk+1 = xk + αkdk the active constraint matrix becomes

Aak+1 =

[
Aak

aTi∗

]

where rank(Aak+1 ) = rank(Aak ) + 1.
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Finding a Vertex

▶ By repeating the above steps, a feasible point xk with rank(Aak ) = n will
eventually be reached, and point xk is then deemed to be a vertex.

61 / 91



Finding a Vertex: Example

Solve the LP problem

minimize
x

f(x) = −x1 − 4x2

subject to −x1 ≤ 0

x1 ≤ 2

−x2 ≤ 0

x1 + x2 − 3.5 ≤ 0

x1 + 2x2 − 6 ≤ 0

1 2

1

2

3

0

p1

p2

p3

p4

p5

x1

x2

The five constraints can be expressed as Ax ≤ b with

A =


−1 0

1 0

0 −1

1 1

1 2

 , b =


0

2

0

3.5

6

 the feasible region is the polygon shown above.
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Finding a Vertex: Example

▶ Starting from point x0 = [1 1]T , apply the iterative procedure to find a vertex for
the LP problem. Since the components of the residual vector at x0 is

r0 = Ax0 − b =


−1

1

−1

2

3

−


0

2

0

3.5

6

 =


−1

−1

−1

−1.5

−3

 are all negative .

▶ There are no active constraints at x0 . If the first constraint (whose residual is
the smallest) is chosen to form

[
Aak

aTi

]
dk =

[
0

1

]
=⇒ aT1 d0 =

[
−1 0

]
d0 = −d01 + (0)d02 = 1

d0 =
[
−1 0

]T
.
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Finding a Vertex: Example

▶ The set I0 in this case contains only one index, i.e., I0 = {1}.

α0 = −
(aT1 x0 − b1)

aT1 d0
= −

(
−1− 0

1

)
= 1, i∗ = 1

▶ Hence

x1 = x0 + α0d0 =

[
1

1

]
+

[
−1

0

]
=

[
0

1

]
with Aa1 =

[
−1 0

]
.

▶ At point x1

r1 = Ax1 − b =


0

−2

−1

−2.5

−4

 Only − x1 ≤ 1 is active.
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Finding a Vertex: Example

▶ The third constraint (whose residual is the smallest and inactive) is chosen to
be active:

[
Aa1

aT3

]
d1 =

[
−1 0

0 −1

]
d1 =

[
0

1

]

we obtain d1 =
[
0 −1

]T
. It follows that I1 = {3}.

▶

α1 = −
aT3 x1 − b3

aT3 d1
= −

(
−1− 0

1

)
= 1 with i∗ = 3

x2 = x1 + α1d1 =

[
0

0

]
, Aa2 =

[
−1 0

0 −1

]

▶ Since rank Aa2 = 2 = n, x2 is a vertex.
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Finding a Vertex: Example

1 2

1

2

3

0

d0 x0x1

d1

x2
x1

x2

66 / 91



Finding a Vertex: Example II

Find the vertex for the convex polygon x1 + x2 + x3 = 1 such that x ≥ 0 starting with
x0 =

[
1
3

1
3

1
3

]T
. (For LP, we need x ≥ 0 to be −x ≤ 0.)

▶ We have

r0 = Ax0 − b =


1 1 1

−1 0 0

0 −1 0

0 0 −1




1
3
1
3
1
3

−


1

0

0

0

 =


0

− 1
3

− 1
3

− 1
3


The problem is standard form.

▶ We select the first inequality constraint (they are equal) so

[
Aa0

aT2

]
d0 =

[
1 1 1

−1 0 0

]
d0 =

[
0

1

]

Since d01 + d02 + d03 = 0 and −d01 = 1, we have d02 + d03 = 1. Here we
select d02 = 1 and d03 = 0. Then d0 =

[
−1 1 0

]T
, I0 = {2}.
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Finding a Vertex: Example II

▶ We have

α0 = −
aT2 x0 − b1

aT2 d0
= −

− 1
3
− 0

1
=

1

3
, with i∗ = 2

x1 = x0 + α0d0 =
[
0 2

3
1
3

]T
▶ r1 =

[
0 0 − 2

3
− 1

3

]T
. Choosing the fourth inequality constraint , we have

[
Aa

aT4

]
d1 =

[
0

1

]
, =⇒

 1 1 1

−1 0 0

0 0 −1

 d1 =

00
1


d1 =

[
0 1 −1

]T
, with I1 = {4}

α1 = −
aT4 x1 − b3

aT4 d1
= −

− 1
3
− 0

1
=

1

3
, with i∗ = 4

x2 = x1 + α1d1 =
[
0 1 0

]T
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Finding a Vertex: Example II

We have

Ax2 − b =


0

0

−1

0

 =⇒ Aa2 =

 1 1 1

−1 0 0

0 0 −1

 with rank(Aa2 ) = 3.

The point x2 is a vertex.

x0
d0 x1

d1

x2

x2

x1

x3
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Vertex Minimizers

The iterative method for finding a vertex described in the previous section does not
involve the objective function f(x) = cT x. The vertex obtained may not be a
minimizer. If we start the iterative step at a minimizer, a vertex would eventually be
reached without increasing the objective function, which is a vertex minimizer.

Theorem: Existence of a vertex minimizer in alternative-form LP problem

If the minimum of f(x) in the alternative-form LP problem is finite, then there is
a vertex minimizer.

Proof: If x0 is a minimizer, then x0 is finite and satisfies the condition Ax0 ≤ b and
there exists a µ∗ ≥ 0 such that

c + ATµ∗ = 0 ⇒ c + AT
a0

µ∗
a = 0,

where Aa0 is the active constraint matrix at x0 and µ∗
a is composed of the entries of

µ∗ that correspond to the active constraints.
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Vertex Minimizers

▶ If x0 is not a vertex, the method described in the previous section can be
applied to yield a point

x1 = x0 + α0d0

which is closer to a vertex, where d0 is a feasible direction that satisfies the
condition Aa0d0 = 0.

▶ It follows that at x1 the objective function remains the same as at x0 , i.e.,

f(x1) = cT x1 = cT (x0 + α0d0) = cT x0 − α0cT d0

= cT x0 − α0(µ
∗
a)

T Aa0d0 = cT x0 = f(x0)

▶ If x1 is not yet a vertex, then the process is continued to generate minimizers
x2, x3, . . . until a vertex minimizer is reached.
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Vertex Minimizers

▶ To apply the theorem to the standard form, it follow that

c = −ATλ∗ + µ∗ = −ATλ∗ + IT0 µ∗
a

where I0 consists of the rows of the n× n identity matrix that are associated
with the inequality constraints x ≥ 0 that are active at x0 , and µ∗

a is composed
of the entries of µ∗ that correspond to the active (inequality) constraints.

▶ At x0 , the active constraint matrix Aa0 is given by

Aa0 =

[
−A
I0

]
⇒ c = AT

a0

[
λ∗

µ∗
a

]

It can show that the objective function is not change.

Theorem: Existence of a vertex minimizer in standard-form LP problem

If theminimumof f(x) in the standard LP problem is finite, then a vertexminimizer
exists.
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Simplex Method: Nondegenerate

▶ If the minimum value of the objective function in the feasible region is finite,
then a vertex minimizer exists.

▶ Let x0 be a vertex and assume that it is not a minimizer. The simplex method
generates an adjacent vertex x1 with f(x1) < f(x0) and continues doing so
until a vertex minimizer is reached.

▶ Given a vertex xk , a vertex xk+1 is adjacent to xk if Aak+1 is different from Aak

by only one row.

Aak =


aTj1
aTj2
...

aTjn

 , Jk = {j1, j2, . . . , jn}

▶ If Jk and Jk+1 have exactly (n− 1) members, vertices xk and xk+1 are
adjacent.
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Simplex Method: Nondegenerate

▶ At vertex xk , the simplex method verifies whether xk is a vertex minimizer, and if
it is not, it finds an adjacent vertex xk+1 that yields a reduced value of the
objective function.

▶ Since a vertex minimizer exists and there is only a finite number of vertices, the
method will find the solution using a finite number of iterations.

▶ Under the nondegeneracy assumption, Aak is square and nonsingular. There
exists a µk ∈ Rn×1 such that

c + AT
ak

µk = 0

Since xk is a feasible point, we conclude that xk is a vertex minimizer if and
only if

µk ≥ 0

xk is not a vertex minimizer if and only if at least one component of µk or (µk)l

is negative.
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Simplex Method: Nondegenerate

▶ Assume that xk is not a vertex minimizer and let (µk)l < 0.
▶ The simplex method finds an edge as a feasible descent direction dk that points

from xk to an adjacent vertex xk+1 given by xk+1 = xk + αkdk .
▶ A feasible descent direction dk is characterized by

Aakdk ≤ 0 and cT dk < 0 (∗)

▶ To find the edge that satisfies (∗), we denote the lth coordinate vector (the lth
column of the n× n identify matrix as el and examine vector dk that solves the
equation Aakdk = −el

▶ We note that Aakdk ≤ 0. We have

cT + µT
k Aak = 0 ⇒ cT dk + µT

k Aakdk = 0

cT dk = −µT
k Aakdk = µT

k el = (µk)l < 0

Hence dk satisfies (∗) and it is a feasible descent direction.
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Simplex Method: Nondegenerate

▶ For i ̸= l, Aakdk = −el implies that

aTji (xk + αdk) = aTjixk + αaTjidk = bji

▶ There are exactly n− 1 constraints that are active at xk and remain active at
xk + αdk . This means that xk + αdk with α > 0 is an edge that connects xk to
an adjacent vertex xk+1 with f(xk + 1) < f(xk). The right step size αk can be
identified as

αk = min
i∈Ik

(
−(aTi xk − bi)

aTi dk

)
=

−(aTi∗xk − bi∗ )

aTi∗dk

where Ik contains the indices of the constraints that are inactive at xk with
aTi dk > 0.

▶ The vertex xk+1 = xk +αkdk . Then at xk+1 the i∗th constraint becomes active.
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Simplex Method: Nondegenerate

▶ Substituting jlth constraint with the active i∗th constraint in Aak+1 , there are
exactly n active constraints at xk+1 and Aak+1 is given by

Aak+1 =



aTj1
...

aTjl−1

aTi∗
aTjl+1

...
aTjn


▶ The index set is given by

Jk+1 = {j1, . . . , jl−1, i
∗, jl+1, . . . , jn}
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Simplex Method: Nondegenerate

Algorithm: Simplex algorithm for the alternative-form LP problem, nondegener-
ate vertices

1. Input vertex x0 , and form Aa0 and J0 . Set k = 0

2. Solve AT
ak

µk = −c for µk . If µk ≥ 0 , stop (xk is a vertex minimizer):
otherwise, select the index l that corresponds to the most negative
component in µk .

3. Solve Aakdk = −el , where el is a unit vector at l index for dk .

4. Compute the residual vector rk = Axk − b = (ri)
p
i=1 If the index set

Ik = {i : ri < 0 and aTi dk > 0} is empty, stop

(The objective function tends to −∞ in the feasible region);
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Simplex Method

Algorithm: Simplex algorithm for the alternative-form LP problem, nondegener-
ate vertices cont.

4. (cont.) otherwise, compute

αk = min
i∈Ik

(
−ri

aTi dk

)

and record the index i∗ with αk = −ri∗/(aTi∗dk). Note: aTi is the row of
Aak such that ri < 0.

5. Set xk+1 = xk + αkdk . Update Aak+1 and Jk+1 using

Aak+1 =
[
aj1 · · · ajl−1

ai∗ ajl+1
· · · ajn

]T
Jk+1 = {j1, . . . , jl−1, i

∗, jl+1, . . . , jn}

Set k = k + 1 and repeat from Step 2.
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Simplex Method: Nondegenerate Example

Solve the LP problem with initial vertex x0 =
[
2 1.5

]T

minimize
x

f(x) = −x1 − 4x2

subject to − x1 ≤ 0

x1 ≤ 2

− x2 ≤ 0

x1 + x2 − 3.5 ≤ 0

x1 + 2x2 − 6 ≤ 0

1 2

1

2

3

0

f = −4

f = −6

P1

P2

P3

x0

P5

x1

x2

The five constraints can be expressed as Ax ≤ b with

A =


−1 0

1 0

0 −1

1 1

1 2

 , b =


0

2

0

3.5

6

 the feasible region is the polygon shown above.
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Simplex Method: Nondegenerate Example

▶ With x0 the second and fourth constraints are active and hence

Aa0 =

[
1 0

1 1

]
, J = {2, 4}

▶ Solving AT
a0

µ0 = −c for µ0 where c =
[
−1 −4

]T
, we obtain

µ0 =
[
−3 4

]T
. Since µ01

is negative, x0 is not a minimizer and l = 1. Next
we solve

Aa0d0 = −e1 ⇒
[
1 0

1 1

]
d0 = −

[
1

0

]

d0 =
[
−1 1

]T
▶ The residual vector at x0 is given by

r0 = Ax0 − b =
[
−2 0 −1.5 0 −1

]T
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Simplex Method: Nondegenerate Example

▶ r0 shows that the first, third, and fifth constrains are inactive at x0 .

aT1
aT3
aT5

 d0 =

−1 0

0 −1

1 2

[−1

1

]
=

 1

−1

1

 , I0 = {1, 5}

α0 = min
(
−r01

aT1 d0
,
−r05

aT5 d0

)
= 1, i∗ = 5

x1 = x0 + α0d0 =

[
2

1.5

]
+ 1

[
−1

1

]
=

[
1

2.5

]

▶ Since l = 1, we have (by swapping aT1 and aT5 ),

Aa1 =

[
1 2

1 1

]
and J1 = {5, 4}

▶ End of the first iteration.
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Simplex Method: Nondegenerate Example

▶ The second iteration starts by solving AT
a1

µ1 = −c for µ1

[
1 1

2 1

]
µ1 =

[
1

4

]
=⇒ µ1 = (−1)

[
1 −1

−2 1

][
1

4

]
=

[
3

−2

]

Then the point x1 is not a minimizer and l = 2.
▶ By solving Aa1d1 = −e2

[
1 2

1 1

]
d1 = −

[
0

1

]
=⇒ d1 = (−1)

[
1 −2

−1 1

][
0

−1

]
=

[
−2

1

]

▶ We compute the residual vector at x1 as

r1 = Ax1 − b =
[
−1 −1 −2.5 0 0

]T
It indicates that the first three constraints are inactive at x1 .
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Simplex Method: Nondegenerate Example

▶ By evaluating

aT1
aT2
aT3

 d1 =

−1 0

1 0

0 −1

[−2

1

]
=

 2

−2

−1

 , I1 = {1}, α1 =
−r11

aT1 d1
=

1

2
, i∗ = 1

▶ This leads to x2 = x1 + α1d1 =
[
0 3

]T
with l = 2 (by swapping aT2 and aT1 )

Aa2 =

[
1 2

−1 0

]
and J2 = {5, 1}

Which is complete the second iteration.
▶ Vertex x2 is confirmed to be a minimizer at the beginning of the third iteration

since the equation AT
a2

µ2 = −c and yields nonnegative Lagrange multipliers

µ2 =
[
2 1

]T
.
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Simplex Method: Nondegenerate Example

1 2

1

2

3

0

x0

d0

x1

d1

x2

x1

x2
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Simplex Method: Nondegenerate Example

minimize f(x) = x1 + x2

subject to x1 ≤ 2

x2 ≤ 2

−2x1 + x2 ≤ 2

2x1 + x2 ≤ 4 1 2

1

2

0

d0

x0

x1

d1

x1

x2

the constraints can be written as Ax ≤ b with

A =


1 0

0 1

−2 1

2 1

 and b =


2

2

2

4


Note: The feasible region is unbounded.
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Simplex Method: Nondegenerate Example

▶ We start with the vertex x0 =
[
1 2

]T
. At x0

r0 = Ax0 − b =
[
−1 0 −2 0

]T
, second and fourth constraints are active.

Aa0 =

[
0 1

2 1

]
and J0 = {2, 4}

▶ From AT
a0

µ0 = −c, we have

[
0 2

1 1

]
µ0 =

[
−1

−1

]
=⇒ µ0 = −

1

2

[
1 −2

−1 0

][
−1

−1

]
=

[
− 1

2

− 1
2

]

x0 is not a minimizer.
▶ Since both components of µ0 are negative, we can choose index l to be either 1

or 2.
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Simplex Method: Nondegenerate Example

▶ Choosing l = 1,

Aa0d0 = −e1 =⇒
[
0 1

2 1

]
d0 =

[
−1

0

]
=⇒ d0 = −

1

2

[
1 −1

−2 0

][
−1

0

]
=

[
1
2

−1

]

▶ The residual vector at x0 is given by

r0 = Ax0 − b =
[
−1 0 −2 0

]T
the first and third constraints are inactive at x0 .

▶ We compute

[
aT1
aT3

]
d0 =

[
1 0

−2 1

][
− 1

2

−1

]
=

[
1
2

−2

]
, I0 = {1}

α0 =
−r01

aT1 d0
=

1
1
2

= 2, i∗ = 1
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Simplex Method: Nondegenerate Example

▶ the next vertex is x1 = x0 + α0d0 =
[
2 0

]T
, with

Aa1 =

[
1 0

2 1

]
, and J1 = {1, 4}

▶ Check whether x1 is a minimizer by solving

AT
a1

µ1 = −c =⇒
[
1 2

0 1

]
µ1 =

[
−1

−1

]
=⇒ µ1 =

[
1 −2

0 1

][
−1

−1

]
=

[
1

−1

]

indicating that x1 is not a minimizer and l = 2

▶ Solving

Aa1d1 = −e2 =⇒
[
1 0

2 1

]
d1 =

[
0

−1

]
=⇒ d1 =

[
1 0

−2 1

][
0

−1

]
=

[
0

−1

]
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Simplex Method: Nondegenerate Example

▶ The residual vector at x1 is

r1 = Ax1 − b =
[
0 −2 −6 0

]T
▶ The second and third constraints are inactive. We evaluate

[
aT2
aT3

]
d1 =

[
0 1

−2 1

][
0

−1

]
=

[
−1

−1

]

▶ Since I1 is empty, we conclude that the solution of this LP problem is
un-bounded.
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