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Objective

At the end of this chapter you should be able to:

• Penalty methods

• Quadratic Penalty Method
• Augmented Lagrange Method
• Interior Penalty Method
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Exterior Penalty Methods

There are two popular penalty method:

• Quadratic penalty: The quadratic penalties are continuously differentiable and
straightforward to implement, but they suffer from numerical ill-conditioning.

• Nonsmooth exact penalty: This method uses a single unconstrained problem to
take palce the original constrained problem. Using these penalty functions, we
can often find a solution by performing a single unconstrained minimization,
buth the nonsmoothness may create complications. A popular function of this
type is the ℓ1 penalty function.

• Augmented Lagrangian: The augmented Lagrangian method is more
sophisticated; it is based on the quadratic penalty but adds terms that improve
the numerical properties.

• Interior penalty: Similar to quadratic penalty method, but working in opposite
way.
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The Quadratic Penalty Method

We want to replace a constrained optimization problem by a single function consisting
of

• the original objective function, and

• additional term for each constraint, which is positive when the current point x
violates the constraint and zero otherwise.

The method defines the sequence of such penalty functions, in which the penalty
terms for the constraint violations are multiplied by a positive coefficient.

• By making this coefficient larger, we penalize constraint violations more severely

• thereby forcing the minimizer of the penalty function closer to the feasible
region for the constrained problem.

• The simplest penalty function of this type is the quadratic penalty function, in
which the penalty terms are the squares of the constraint violations.

4/27



The Quadratic Penalty Method

Consider the equality constrained problem:

minimize
x

f(x)

subject to hi(x) = 0, i = 1, . . . , p

The quadratic penalty function Q(x;µ) for this formulation is

Q(x;µ) = f(x) +
µ

2

p∑
i=1

h2
i (x),

where µ > 0 is the penalty parameter.

• By driving µ to∞, we penalize the constraint violations with increasing severity.

• We use a sequence of values {µk} with µk ↑ as k →∞, and to seek the
approximate minimizer xk of Q(x;µk) for each k.
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The Quadratic Penalty Method: Example

Consider a problem

minimize
x

x1 + 2x2

subject to
1

4
x2
1 + x2

2 − 1 = 0

for which the solution is
[
−1.414 −0.707

]T
and the quadratic penalty function is

Q(x;µ) = x1 + 2x2 +
µ

2

(
1

4
x2
1 + x2

2 − 1

)2

When µ = 1 , we observe a minimizer of Q near the point
[
−2 −1

]T
. The penalty is

active for all points that are infeasible, but the minimum of the penalized function
does not coincide with the constrained minimum of the original constrained problem.
The penalty parameter needs to be increased for the minimum of th epenalized
function to approach the correct solution, but this results in a poorly conditioned
function.
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The Quadratic Penalty Method: Example
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Here, the red line is the constraint, the dashed line is the objective function, and the
primary contour is the contour of the Q function. 7/27



The Quadratic Penalty Method: Algorithm

Require:
x0 : Starting point
µ0 > 0: Initial penalty parameter
ρ > 1: Penalty increase factor (ρ ∼ 1.2 is conservative, ρ ∼ 10 is aggressive)
k = 1

while ∥∇xQ(x;µk)∥ ≤ ε do
x∗
k ← minimizexk Q(x;µk)

µk+1 = ρµk

xk+1 = x∗
k

k = k + 1

end while

For minimization, we can use any method explain in unconstrained problem.
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The Quadratic Penalty Method: Algorithm
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Using a previous algorithm with the starting µ = 1.0.
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The Quadratic Penalty Method: Example

For a given value of the penalty parameter µ, the penalty function may be unbounded
below een if the original consrained problem has a unique solution. Consider for
example

minimize
x

−5x2
1 + x2

2

subject to x1 = 1

• The solution is at
[
1 0

]T
• The penalty function is unbounded for any µ < 0.

• For such values of µ, the iterates generated by an unconstrained minimization
method would usually diverge.

• This deficiency is common to all the penalty function.
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The Quadratic Penalty Method: General formula

For the general constrained optimization problem

minimize
x

f(x)

subject to hi(x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . , q

We can define the quadratic penalty function as

Q(x;µ) = f(x) +
µh

2

p∑
i=1

h2
i (x) +

µg

2

q∑
j=1

max(0, gi(x))
2

The last term means that we add the penalty wehn the inequality constraint is
violated (i.e., when gi(x) > 0).
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The Quadratic Penalty Method: Example
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Here, the red line is the constraint, the dashed line is the objective function, and the
primary contour is the contour of the Q function. The white area is the feasible region.12/27



The issues of the penalty method

• If the starting value for µ is too low. The penalty might not be enough to
overcome a function that is unbounded from below, and the penalized function
has no minimum.

• In practical, we can not make µ→∞. Hence, the solution to the problem is
always slightly infeasible. By comparing,

∇xL = ∇f + JT
hλ = 0 the optimality condition of the constrained problem

∇xQ = ∇f + µJT
hh = 0 the optimality condition of the penalized function.

hi ≈
λ∗
j

µ

Because hj = 0 at the optimum, µ must be large to satisfy the constraints.

• The extra curvature is added in a direction perpendicular to the constraints,
making the Hessian of the penalized function increasingly ill-conditioned as µ
increases. Thus, the need to increase µ to improve accuracy directly leads to a
function space that is increasingly challenging to solve.
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The ℓ1-norm Penalty Method: Example

The ℓ1 penalty function is defined by

Q(x;µ) = f(x) + µh

p∑
i=1

|hi(x)|+ µg

q∑
j=1

|max(0, gi(x))|
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Augmented Lagrangian method

• The next method is The method of multipliers or the augmented Lagrangian
method. This algorithm is related to the quadratic penalty algorithm, however it
reduces the possibility of ill conditioning by introducing explicit Lagrange
multiplier estimates into the function to be minimized, which is known as the
augmented Lagrangian function.

• In contrast to the penalty functions, the augmented Lagrangian function largely
preserves smoothness, and implementations can be constructed from standard
software for unconstrained or bound-constrained optimization.

The augmented Lagrangian function for equality constraints is

LA(x;λ, µ) = f(x) +

p∑
i=1

λihi(x) +
µ

2

q∑
j=1

hj(x)
2
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Augmented Lagrangian method

To estimate the Lagrange multipliers, we can compare the optimality conditions for
the augmeted Lagrangian and the actual Lagrangian,

∇xLA(x;λ, µ) = ∇f(x) +
p∑

i=1

(λi + µhi(x))∇hj = 0

∇xL(x∗,λ∗) = ∇f(x∗) +

p∑
i=1

λ∗
i∇hj(x

∗) = 0

We have

λ∗
i = λi + µhi ⇒ λk+1 = λk + µkh(xk)

This method can improve the plain quadratic penalty because updating the Lagrange
multiplier estimates at each iteration allows for more accurate solutions without
increasing µ as much. Since

hi ≈
1

µ
(λ∗

i − λi) compare to the quadratic penalty method hi ≈
λ∗
i
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Augmented Lagrangian method

• The quadratic penalty relies solely on increasing µ in the denominator to drive
the constraints to zero.

• The augmented Lagrangian also controls the numerator through the Lagrange
multiplier estimate. If the estimate is reasonable close to the true Lagrange
multiplier, then the numerator becomes small for modest values of µ.

• Thus, the augmented Lagrangian can provide a good solution for x∗ while
avoiding the ill-conditioning issues of the quadratic penalty.

The the general augmented Lagrangian including the inequality constraints we have

LA(x;λ, µ) = f(x) + λT ḡ(x) +
µ

2
∥ḡ(x)∥22,

where

ḡi(x) =


hi(x) for equality constraints

gi(x) if gi ≥ −λi/µ

−λi/µ otherwise
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The augmented Lagrange Method: Algorithm

Require:
x0 : Starting point
λ0 = 0 Initial Lagrange multiplier
µ0 > 0: Initial penalty parameter
ρ > 1: Penalty increase factor
k = 0

while ∥∇xLA(x;λ, µk)∥ ≥ ε do
x∗
k ← minimizexk LA(x;λk, µk)

λk+1 = λk + µkh(xk)

µk+1 = ρµk

xk+1 = x∗
k

k = k + 1

end while

For minimization, we can use any method explain in unconstrained problem.
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Augmented Lagrangian method: Example

Consider

minimize f(x) = x1 + 2x2

subject to g(x) =
1

4
x2
1 + x2

2 − 1 ≤ 0

The augmented Lagrangian is

LA(x;µ) = x1 + 2x2 + λ

(
1

4
x2
1 + x2

2 − 1

)
+

µ

2

(
1

4
x2
1 + x2

2 − 1

)2

Applying the augmented Lagrangian algorithm, starting with µ = 0.5 and using
ρ = 1.1.
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Augmented Lagrangian method: Example
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Compared with the quadratic penalty, the penalized function is much better
conditioned. Th eminimum of the penalized function eventually becomes the
minimum of the constrained problem without a large penalty parameter. 20/27



Interior penalty method

The interior penalty method is they seek to maintain feasibility.

• Instead of adding a penalty only when constraints are violated, they add a
penalty as the constraint is approached from the feasible region.

• This type of penalty is particularly desirable if the objective function is
ill-defined outside the feasible region.

• The methods are call interior because the iteration points remain on the
interior of the feasible region.

• They are also referred to as barrier methods because the penalty function acts
as a barrier preventing iterates from leaving the feasible region.

• Theinterior penalty function to enforce g(x) ≤ 0 is the inverse barrier

π(x) =

q∑
j=1

−
1

gj(x)
,

where π(x)→∞ as gj(x)→ 0−
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Interior penalty method

• A more popular interior penalty function is the logarithmic barrier

π(x) =


∑q

j=1− ln (−gj(x)) gi(x) < 0

0 otherwise

which also approaches infinity as the constraint tends to zero from the feasible
side. The penalty function is then

Qb(x;µ) = f(x) + µπ(x)

• Neither of these penalty functions applies when gj > 0 because they are
designed to be evaluated only within the feasible space. Algorithms based on
these penalties must be prevented from evaluating infeasible points.
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Interior penalty method
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The Interior Penalty Method: Algorithm

Require:
x0 : Starting point
µ0 > 0: Initial penalty parameter
ρ < 1: Penalty increase factor
k = 1

while ∥∇xQb(x;µk)∥ ≥ ε do
x∗
k ← minimizexk Qb(x;µk)

µk+1 = ρµk Decrease penalty parameter
xk+1 = x∗

k

k = k + 1

end while

For minimization, we can use any method explain in unconstrained problem.
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The Interior Penalty Method: Example

Consider a problem

minimize
x

x1 + 2x2

subject to
1

4
x2
1 + x2

2 − 1 = 0

for which the solution is
[
−1.414 −0.707

]T
and the logarithmic penalty function is

Qb(x;µ) = x1 + 2x2 − µ ln

(
−
1

4
x2
1 − x2

2 + 1

)

Note:

• the Hessian for interior penalty methods becomes increasingly ill-conditioned
as the penalty parameter tends to zero.

• There is a modern method that can solve the ill-conditioned problem such at
interior-point method.
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The Interior Penalty Method: Example
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