
Second-Order Methods

Asst. Prof. Dr.-Ing. Sudchai Boonto
Department of Control System and Instrumentation Engineering
King Mongkut’s Unniversity of Technology Thonburi
Thailand

September 20, 2025



Objective

At the end of this chapter you should be able to:
▶ Describe, implement, and use 2nd-order Method
▶ Explain the pros and cons of the various 2nd-order methods.
▶ Understand Newton, Levenberg-Marquardt, DFP, BFGS

2 / 42



Newton’s Method: one variable

▶ The function value and gradient can help to determine the direction to travel,
but it does not directly help to determine how far to step to reach a local
minimum.

▶ Second-order information allows us to make a quadratic approximation of the
objective function and approximate the right step size to reach a local minimum.

▶ As we have seen with a quadratic fit search, we can analytically obtain the
location where a quadratic approximation has a zero gradient. We can use that
location as the next iteration to approach a local minimum.

▶ The quadratic approximation about a point xk comes from the second-order
Taylor expansion (scalar case):

f(xk + s) = f(xk) + f ′(xk)s+
1

2
s2f ′′(xk)

d

ds
f(xk + s) = 0 + f ′(xk) + sf ′′(xk) = 0, s = −

f ′(xk)

f ′′(xk)
, where s is the step size

xk+1 = xk −
f ′(xk)

f ′′(xk)

3 / 42



Newton’s Method : One variable Example

Suppose we want to minimize the following single-variable function:

f(x) = (x− 2)4 + 2x2 − 4x+ 4, f ′(x) = 4(x− 2)3 + 4x− 4,

f ′′(x) = 12(x− 2)2 + 4

with x0 = 3, we can form the quadratic using the function value and the first and
second derivatives evaluated at the point.

x1 = x0 −
f ′(x0)

f ′′(x0)
= 2.25, x2 = x1 −

f ′(x1)

f ′′(x1)
= 1.1842, x3 = 1.3039, x∗ = x4 = 1.3177

x
0 2 4

0

25

50

x0x1x2x3x4x5

x
0 1 2 3 4 5

f(x
)

0

20

40

x0

x1x2x3x4x5
∇f(x) f(x)

4 / 42



Newton’s Method : One variable Example

Newton Iteration Table

i xk
f ′′(xk)

f ′(xk)
f(xk)

0 2.25 -0.75 5.12891
1 1.1842 -1.0658 2.51077
2 1.3039 0.1197 2.4195
3 1.3175 0.0136 2.41859
4 1.3177 0.0002 2.41859
5 1.3177 0.0 2.41859
6 1.3177 0.0 2.41859

5 / 42



Newton’ s Method : Disadvantages

▶ The update rule in Newton’s method involves dividing by the second derivative.
The update is undefined if the second derivative is zero, which occurs when the
quadratic approximation is a horizontal line.

▶ Instability also occurs when the second derivative is very close to zero, in which
case the next iterate will lie very far from the current design point, far from
where the local quadratic approximation is valid.

▶ Poor local approximations can lead to poor performance with Newton’s method.

x
xkxk + 1

f(x
)

1.5

2.0

2.5

3.0

Oscillation 

x1

xk xk + 1

f

−3

−2

−1

0

1

2
Overshoot 

x1

xkxk + 1

f

−2

−1

0

1

2

3

4
Negative curvature 

6 / 42



Newton’s Method : Multivariate Optimization

▶ The multivariate second-order Taylor expansion at xk is

f(xk + s) ≈ f(xk) +∇(f(xk)T s + 1

2
sT Hks

d

ds
(xk + s) = ∇f(xk) + Hks = 0

We then solve for the next iterate, thereby obtaining Newton’s method in
multivariate form:

s = −H−1
k ∇f(xk), s = xk+1 − xk

xk+1 = xk − H−1
k ∇f(xk)

▶ If f(x) is quadratic and its Hessian is positive definite, then the update
converges to the global minimum in one step. For general functions, Newton’s
method is often terminated once x ceases to change by more than a given
tolerance.

7 / 42



Newton’s Method : Example

With x1 =
[
9 8

]
, we will use Newton’s method to minimize Booth’s function:

f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2,

∇f(x) =
[
10x1 + 8x2 − 34, 8x1 + 10x2 − 38

]T
, H(x) =

[
10 8

8 10

]

The first iteration of Newton’s method yields:

x2 = x1 − H−1
1 g1 =

[
9

8

]
−

[
10 8

8 10

]−1 [
10(9) + 8(8)− 34

8(9) + 10(8)− 38

]

=

[
9

8

]
−

[
10 8

8 10

]−1 [
120

114

]
=

[
1

3

]

The gradient at x2 is zero, so we have converged after a single iteration. The Hessian is
positive definite everywhere, so x2 is the global minimum.

8 / 42



Newton’s Method : Multivariate Optimization

x1

−5 0 5

x 2

−5

0

5

Iteration
0 5 10 15 20

f(x
1
,x 2

)

0

50

100

150Newton Method

Steepest Descent

Newton Method , Stop at 0.0

Steepest Descent , Stop at 0.0

▶ If f(x) is quadratic and its Hessian is positive definite, the update converges to
the global minimum in one step.

9 / 42



Newton’s Method : Algorithm

Let s = xk+1 − xk

Require: x0 , εG , ∇fk , Hk

k = 0

while ∥∇fk∥ > εG and k ≤ kmax do
s = H(x)−1∇f(x)
x = x + s
k = k + 1

end while
return x

▶ Newton’s method is efficient because the second-order information results in
better search directions. Two main steps in Newton’s method

▶ Need to compute Hessian H
▶ Solve the system of equations Hs = −∇f(x) ⇒ xk+1 = xk − H−1∇f(xk)

10 / 42



Secant Methods

▶ Newton’s method for univariate function minimization requires the first and
second derivatives f ′(xk) and f ′′(xk)

▶ In many cases, f ′(xk) is known but the second derivative is not.
▶ We can use first-order information (gradients) along each step in the iteration

path to build an approximation of Hessian.
▶ The secant method uses the last two iterates to approximate the second

derivative.

f ′′(xk) ≈
f ′(xk)− f ′(xk−1)

xk − xk−1

This estimate is substituted into Newton’s method

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk)

▶ The secant method requires and additional initial design point. The method has
the same problems as Newton’s method and may take more iterations to
converge due to approximating the second derivative. 11 / 42



Levenberg-Marquardt Algorithm

▶ Newton’s method tends to perform well whn our objective function is a
quadratic equation or is closely approximation by one. It performs poorly when
the approximation is poor.

▶ A quadratic approximation for a smooth function will tend to be good
sufficiently close to a local optimum, where the objective function is typically
convex and bowl-like. In more linear regions, quadratic approximations will be
poor, and in the concave areas, quadratic approximations will have degenerate
Hessians. In such cases, it is often more effective to use a simple gradient
descent step.

▶ The interpolation update rule is parameterized by a damping factor δ:

xk+1 = xk − (Hk + δI)−1∇f(xk)

δ > 0 is small, the update mimics Newton’s method. When δ is large, the update
mimics gradient descent with a step factor α ≈ 1/δ.

12 / 42



Levenberg-Marquardt Algorithm

▶ The damping factor is adjusted during descent based on whether each iterations
improve the objective function value. If the objective is better at the next iterate,
it is accepted, and δ can be decreased. If the objective is worse at the next
iterate, it is rejected, the algorithm retains the current iterate, and δ is increased.

▶ In practice, we use

xk+1 = xk − (Hk + δ diag(diag(Hk)))
−1∇f(xk)

This leverages information about the Hessian even when mimicking gradient
descent, allowing iterates to move further in directions where the gradient is
smaller.

▶ If the Hessian is not invertible and diag(Hk) has any negative entries,
increasing the damping factor will not produce an invertible matrix. We can take
the component-wise maximum of these values with a small positive number.

13 / 42



Levenberg-Marquardt Algorithm

Each step of Levenberg-marquardt method:

Require: x0 , εG , ∇fk , Hk , δ, γa , γr
M = H(x0)
d = max(diag(M), ε)

M = M + δ ∗ diag(d)
x′ = x − M−1∇f(x)
if f(x′) < f(x) then ▷ accept the new design and decrease damping

return x = x′, δ = δ ∗ γa

end if ▷ reject the new design and increase damping
return x = x, δ = δ ∗ γr

14 / 42



Levenberg-Marquardt Algorithm: Gauss-Newton Method

The Levenberg-marquardt algorithm was ariginally develope for the least-square
problem, that we can derive an efficient approximation of the Hessian.

▶ Consider an objective function:

f(x) = 1

2

∑
i

fi(x)2, ∇f(x) =
∑
i

fi(x)∇fi(x), fi(x) ≈ fi(xk) +∇fi(xk)T (x − xk)

▶ Substituting the approximation back:

∇f(x) ≈
∑
i

(
fi(xk) +∇fi(xk)T (x − xk)

)
∇fi(x)

=
∑
i

fi(xk)∇fi(xk) +
∑
i

∇fi(xk)∇fi(xk)T (x − xk)

▶ Since we have only one scalar objective function of a vector parameter f(x),
then

J =
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
= (∇f(x))T

15 / 42



Levenberg-Marquardt Algorithm: Gauss-Newton Method

▶ Then we have

∇f(x) = JT f(x) + JT J(x − xk) = 0

xk+1 = xk −
(

JT J
)−1

JT f(x)

▶ This update matches Newton’s method, except the Hessian is approximated
using the outer product of the gradients.

▶ Using the damping factor produces the Levenberg-Marquardt:

xk+1 = xk −
(

JT J + δ diag
(

diag(JT J)
))−1

JT f(xk)

16 / 42



Quasi-Newton Methods

▶ Quasi-Newton methods are broad class of approaches to approximate the
Hessian used in Newton’s method.

▶ When H is too expensive to compute, or when H is not positive definite, we may
approximate this Hessian with a matrix H̃. The matrix H̃ provides a quadratic
approximation. The matrix H̃ provides a quadratic approximation f̃(x) to our
objective function f(y) at some point y near the current base point x

f̃(xk + pk) = f(xk) +∇f(xk)T pk +
1

2
pT
k H̃kpk

where H̃ is an approximation of the Hessian.

▶ To design an effective approximation H̃ to H, we need to put some constraints

on this new matrix:
▶ H̃ should be symmetric, as H is symmetric.
▶ Condition I: H̃ should be positive definite, since we will invert it in

Newton’s method.

17 / 42



Levenberg-Marquardt Algorithm

x1

0 1 2 3

x 2

0

1

2

3

Iteration
0 10 20 30 40 50

f(x
1,

x 2
)

−1.0

−0.5

0.0
LM with diag

LM without diag

Newton

LM with diag , Stop at -1.0

LM without diag , Stop at -1.0

Newton , Stop at -0.0

▶ Using the exact Hessian provides the most accurate information about the
curvature of the minimum surface. This can lead to more precise steps and
potentially faster convergence if the function is well-behaved.

▶ Calculation the second derivatives is very expensive. In many real-world
problems, it’s simply not practical.

18 / 42



Quasi-Newton Methods

▶ Cont.
▶ Condition II: The quadratic approximation f̃ should have the same

gradient at the current point xk+1 and last point xk :

∇f̃(xk+1) = ∇f(xk+1)

∇f̃(xk) = ∇f(xk)

▶ Since H̃ will be updated at each iteration step, we add a subscript H̃k . We
want H̃k+1 to be close to H̃k .

19 / 42



Quasi-Newton Methods

The quadratic approximation of the objective function:

f̃(xk + pk) = f(xk) +∇f(xk)T pk +
1

2
pT
k H̃kpk

Minimize this quadratic with respect to p, and let it equal zero, we have

H̃kpk = −∇f(xk)

We get the pk direction and update the point using xk+1 = xk + αkpk .
Quasi-Newton methods update the approximate Hessian at every iteration based on
the latest information using an update of the form (instead of recalculate the Hessian.)

H̃k+1 = H̃k +∆H̃k

The approximation of the Hessian must match the slope of the actual function at the
last two point.

20 / 42



Quasi-Newton Methods

Condition II: Using xk in the direction of pk , we have

f̃(xk+1 + pk) = f(xk+1) +∇f(xk+1)
T pk +

1

2
pT
k H̃k+1pk

∇f̃(xk+1 + pk) = ∇f(xk+1) + H̃k+1pk

If pk = 0, then we have ∇f̃(xk+1) = ∇f(xk+1). Move backward, xk = xk+1 − αkpk .
Then the approximation is

∇f̃(xk+1 − αkpk) = ∇f̃(xk) = ∇f(xk+1)− αkH̃k+1pk

To enforce that the ∇f̃(xk) = ∇f(xk), we need

∇f(xk+1)− αkH̃k+1pk = ∇f(xk) ⇒ αkH̃k+1pk = ∇f(xk+1)−∇f(xk)

Let sk = xk+1 − xk = αkpk , and yk = ∇f(xk+1)−∇f(xk). We have

H̃k+1sk = yk, which is a secant equation
21 / 42



Quasi-Newton Methods

Condition II: We need H̃ to be positive definite then

H̃k+1sk = yk ⇒ sTk H̃k+1sk = sTk yk > 0

The latter is called the curvature condition, and it is automatically satisfied if the line
search finds a step that satisfies the strong Wolfe conditions.

▶ The original quasi-Newton update, known ad DFP, was first proposed by Davidon
and then refined by Fletcher and slso Powell. The DFP update formula has been
superseded by the BFGS formula, which was independently developed by
Broyden, Fletcher, Goldfarb, and Shanno.

▶ The BFGS is currently considered the most effective quasi-Newton update.

22 / 42



Quasi-Newton Methods

▶ As the secant method approximates f ′′ in the univariate case, quasi-Newton
methods approximate the inverse Hessian. Quasi-Newton method updates have
the form:

xk+1 = xk − αkQk∇fk,

where αk is a scalar step factor and Qk approximates the inverse of the Hessian
at xk

▶ These methods typically set Q0 to the identity matrix, and they then apply
updates to reflect information learned with each iteration. To simplify the
equations for the various quasi-Newton methos, we define the following:

yk+1 = ∇f(xk+1)−∇f(xk)

sk+1 = xk+1 − xk

23 / 42



Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

In stead of starting with the update for the Hessian, we use the inverse Hessian Q.

Qk+1 = Qk + αuuT + βvvT

H̃k+1sk = yk ⇒ Qk+1yk = sk

Setting u = sk and v = Qkyk , we have

Qk+1 = Qk + αsksTk + βQkykyTk QT
k Multiply both sides with yk

sk = Qkyk + αsksTk yk + βQkykyTk Qyk from secant equation

sk − αsksTk yk = Qkyk + βQkykyTk QkyTk
sk(1− αsTk yk) = Qkyk(1 + βyTk QkyTk )

The last equation is correct if both sides are zero or

α =
1

sTk yk
, β =

−1

yTk Qkyk

24 / 42



Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

The Davidon-Fletcher-Powell (DFP) method uses:

Qk+1 = Qk +
sksTk
sTk yk

−
QkykyTk Qk

yTk Qkyk

The update for Q in the DFP method havs three properties:
▶ Q remains symmetric and positive definite.
▶ If f(x) = 1

2
xT Ax + bT x + c, then Q = A−1 . Thus the DFP has the same

convergence properties as the conjugate gradient method.
▶ For high-dimensional problems, storing and updating Q can be significant

compared to other methods like the conjugate gradient method.
▶ The DPF algorithm does not guarantee the positiveness of the Hessian H̃.

25 / 42



Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

Require: x0 , εG , f,∇f(x0)
k = 0,Q = I

while ∥∇f(xk)∥ > εG && k ≤ kmax do
gk = ∇f(xk)
α = line_search(f, xk,−Q ∗ g)
xk+1 = xk − αQ ∗ g

gk+1 = ∇f(xk+1)

s = xk+1 − xk
y = gk+1 − gk
Q = Q − QykyTk Q/yTk Qyk + sksTk /sTk yk
k = k + 1

xk = xk+1

end while
return xk+1

26 / 42



Quasi-Newton Methods : BFGS

In addition to the secant equation, we would like
▶ H̃k+1 is symmetric
▶ H̃k+1 is close to H̃k

▶ H̃ is positive definite the H̃k+1 is positive definite.

Using rank-1 update (H̃k+1 = H̃k + αuuT is satisfied the secant equation, but is not
guaranteed to be positive definite. The BFGS is a rank-2 update

H̃k+1 = H̃k + αuuT + βvvT , H̃k+1sk = yk ⇒ H̃ksk + αuuT sk + βvvT sk = yk

Setting u = y and v = H̃s yields

H̃ksk + αykyTk sk + βH̃ksk
(

H̃ksk
)T

sk = yk

yk
(
1− αyTk sk

)
= H̃ksk

(
1 + βsTk H̃ksk

)
we need α = 1

yT
k

sk
, and β = − 1

sT
k

H̃ksk
.

27 / 42



Quasi-Newton Methods : BFGS

We get the BFGS update:

H̃k+1 = H̃k +
ykyTk
yTk sk

−
H̃ksksTk H̃k

sTk H̃ksk

It is more efficient to approximate the inverse of the Hessian directly instead. The
inverse approximation Hessian Q can be found analytically from the update H̃ using
the Sherman-Morrison-Woodbury formula

Ã = A + UVT , Ã−1 = A−1 − A−1U(I + VT A−1U)VT A−1

We have

Qk+1 =
(
I − σkskyTk

)
Qk

(
I − σkyksTk

)
+ σksksTk ,

where σk = 1
yT
k

sk
. We have xk+1 = xk − αQk∇f(xk)

28 / 42



Broyden-Fletcher-Goldfarb-Shanno (BFGS) proof

By letting H̃k+1 = Ã , and H̃k = A, we have

Qk+1 = Qk − QkUk︸ ︷︷ ︸
Vk

(
I + VT

k QkUk

)−1
V1 V2Qk︸ ︷︷ ︸

VT
k

, V1V2 = VT
k , V2 = UT

, H̃−1
= Q

V1 =

− 1

sT
k

H̃ksk
0

0 1

yT
k

sk

 , V2 =

[
sTk H̃k

yTk

]
= UT

k , Uk =
[
H̃ksk yk

]
,

Let Vk = QkUk = (V2Qk)
T =

[
sk Qkyk

]
, and V2Qk =

[
sTk H̃kQk yTk Qk

]T
=

[
sk

Qkyk

]
Since,

M =
(

I + VT
k QkVk

)−1
V1 , we have

Qk+1 = Qk − VkMVT
k

M =
(

I + VT
k QkUk

)−1
V1 =

(
V−1
1 + V2QkVT

2

)−1

M−1
= V−1

1 + V2QkVT
2 =


−1

sT
k

H̃ksk
0

0 1

yT
k

sk


−1

+

[
sTk H̃k

yTk

]
Qk

[
H̃ksk yk

]

=

[
−sTk H̃ksk 0

0 yTk sk

]
+

[
sTk H̃k

yTk

] [
sk Qkyk

]
=

[
0 sTk yk

yTk sk yTk sk + yTk Qkyk

]
29 / 42



Broyden-Fletcher-Goldfarb-Shanno (BFGS) proof

M =
−1

yT
k

sksT
k

yk

[
yTk sk + yTk Qkyk −sTk yk

−yTk sk 0

]
= −ρ

[
1 + ρyTk Qkyk −1

−1 0

]
, ρ =

1

sT
k

yk

Qk+1 = Qk − VT
k MVT

k = Qk + ρk

[
sk Qkyk

] [
1 + ρkyTk Qkyk −1

−1 0

] [
sTk

yTk Qk

]

= Qk + ρk

(
sksTk + ρkskyTk QkyksTk − QkyksTk − skyTk Qk

)
=

(
I − ρkskyTk

)
Q̃k

(
I − ρkyksTk

)
+ ρksksTk ,

where ρ2k = 1

yT
k

sksT
k

yk

30 / 42



Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Require: x0 , εG , f , ∇fk

k = 0,Q = I

while ∥∇f(xk)∥ > εG && k ≤ kmax do
gk = ∇f(xk)
α = line_search(f, x,−Q ∗ g)
xk+1 = xk − αQ ∗ g
gk+1 = ∇f(xk+1)

s = xk+1 − xk
y = gk+1 − gk
σ = 1/sTk yk
Q =

(
I − σkskyTk

)
Qk

(
I − σkyksTk

)
+ σksksTk

k = k + 1

xk = xk+1

end while
return xk+1

31 / 42



Limited-Memory Quasi-Newton Methods

▶ When the problem is large whose Hessian matrices cannot be computed at a
reasonable cost.

▶ Instead of storing fully dense n× n approximations, we can save only a few
vectors of length n that represent the approximations implicitly.

▶ Here we introduce the limited-Memory BFGS or L-BFGS.
▶ The BFGS method has the form

xk+1 = xk − αkQk∇fk, Qk+1 = VT
k QkVk + ρksksTk , where

ρk =
1

yTk sk
, Vk = I − ρkyksTk , and sk = xk+1 − xk, yk = ∇fk+1 −∇fk

▶ The inverse Hessian approximation Qk will generally be dense, the cost of
storing and manipulating it is prohibitive when the number of variables is large.

▶ To solve this problem, we store a modified version of Qk implicitly, by storing a
certain numberm of the vector pairs {si, yi}. The product Qk∇fk can be
obtained by performing a sequence of inner products and vector summations
involving ∇fk and the pairs {si, yi}.

32 / 42



Limited-Memory Quasi-Newton Methods

Recall and expand the BFGS update:

Qk = VT
k−1Qk−1Vk−1 + ρk−1sk−1sTk−1

= VT
k−1VT

k−2Qk−2Vk−2Vk−1 + ρk−2Vk−2sk−2sTk−2Vk−1 + ρk−1sk−1sTk−1

=
(

VT
k−1VT

k−2 · · ·VT
k−m

)
Qk−m (Vk−mVk−m+1 · · ·Vk−1)

+ ρk−m

(
VT

k−1 · · ·VT
k−m+1

)
sk−msTk−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
VT

k−1 · · ·VT
k−m+2

)
sk−m+1sTk−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·

+ ρk−2VT
k−1sk−2sTk−2Vk−1 + ρk−1sk−1sTk−1.

In L-BFGS, we replace Qk−m (a dense d× d matrix) with some sparse matrix Q0
k , e.g., a

diagonal matrix. Thus, Qk can be constructe using the most recentm ≪ d pairs
{si, yi}k−1

i=k−m . That is

33 / 42



Limited-Memory Quasi-Newton Methods

Qk =
(

VT
k−1VT

k−2 · · ·VT
k−m

)
Q0
k (Vk−mVk−m+1 · · ·Vk−1)

+ ρk−m

(
VT

k−1 · · ·VT
k−m+1

)
sk−msTk−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
VT

k−1 · · ·VT
k−m+2

)
sk−m+1sTk−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·

+ ρk−2VT
k−1sk−2sTk−2Vk−1 + ρk−1sk−1sTk−1.

▶ We only need the d-dimensional vector Qk∇f(xk) to update
xk+1 = xk − αkQk∇f(xk).

▶ We only stor the vectors {si, yi}k−1
i=k−m from which Qk∇f(xk) can be computed

using only vector-vector multiplications.

▶ A popular choice for Q0
k is Q0

k = γkI, where γk =
sTk−1yk−1

yT
k−1

yk−1
. This choice

appears to be quite effective in practice.

34 / 42



Limited-Memory Quasi-Newton Methods

Algorithm 1 L-BFGS two-loop recursion

set q = ∇f(xk) want to compute Qk∇f(x)
for i = k − 1, k − 2,. . ., k = m do

αi = ρisTi q
q = q − αiyi ▷ RHS = q − ρisTi qyi =

(
I − ρiyisTi

)
︸ ︷︷ ︸

Vi

q

end for
r = Q0

kq
for i = k −m to k − 1 : do

β = ρiyTi r
r = r + si(αi − β) ▷ RHS = r + ρiαi − ρiyTi rsi =

(
I − ρisiyTi

)
r︸ ︷︷ ︸

VT
i

+ρiαi

end for
return r ▷ which equals Qk∇f(xk)

35 / 42



Limited-Memory Quasi-Newton Methods

Require: x0 ,m, εG
k = 0

while ∥∇f(xk)∥ ≤ εG do
Choose Q0

k

pk = −Qk∇f(xk), where Qk∇f(xk) is compute using Algorithm 1
xk+1 = xk + αkpk , where αk satisfies Wolfe Conditions
if k > m: then

discard {sk−m, yk−m} from storage
end if
Compute and store sk = xk+1 − xk and yk = ∇f(xk+1 −∇f(xk)
k = k + 1

end while

36 / 42



Compare Four Methods

Minimizing of bean function f(x1, x2) = (1− x1)2 + (1− x2)2 + 0.5(2x2 − x2
1)

2

x1

−2 0 2

x 2

−2

0

2

x1

−2 0 2

x 2

−2

0

2

x1

−2 0 2

x 2

−2

0

2

x1

−2 0 2

x 2

−2

0

2

SD with 39 Iterations

LM with 24 Iterations

Newton with 8 Iterations

Newton+ex LS with 7 Iterations

Newton+ap LS with 8 Iterations

DFP with 8 Iterations

BFGS with 8 Iterations

L-BFGS m=3 with 8 Iterations

L-BFGS m=1 with 8 Iterations

37 / 42



Compare Four Methods

Minimizing the total potential energy for a spring system:

minimize
x1,x2

1

2
k1

(√
(l1 + x1)2 + x2

2 − l1

)2

+
1

2
k2

(√
(l2 − x1)2 + x2

2 − l2

)2

−mgx2

By letting l1 = 12, l2 = 8, k1 = 1, k2 = 10,mg = 7 (with appropriate units).
38 / 42



Compare Four Methods

x1

−5 0 5 10 15

x 2

−10

0

10

20

x1

−5 0 5 10 15

x 2

−10

0

10

20

x1

−5 0 5 10 15

x 2

−10

0

10

20

x1

−5 0 5 10 15

x 2

−10

0

10

20

SD with 31 Iterations

LM with 39 Iterations

Newton with 5 Iterations

Newton+ex LS with 17 Iterations

Newton+ap LS with 500 Iterations

DFP with 15 Iterations

BFGS with 13 Iterations

L-BFGS m=3 with 11 Iterations

L-BFGS m=1 with 11 Iterations

39 / 42



Compare Four Methods

x1

−5 0 5 10 15

x 2

−10

0

10

20

x1

−5 0 5 10 15

x 2

−10

0

10

20

x1

−5 0 5 10 15

x 2

−10

0

10

20

x1

−5 0 5 10 15

x 2

−10

0

10

20

SD with 23 Iterations

LM with 15 Iterations

Newton with 8 Iterations

Newton+ex LS with 8 Iterations

Newton+ap LS with 500 Iterations

DFP with 14 Iterations

BFGS with 13 Iterations

L-BFGS m=3 with 16 Iterations

L-BFGS m=1 with 16 Iterations

40 / 42



Compare Four Methods

Minimizing of bean function f(x1, x2) = −e(−(x1x2−1.5)2−(x2−1.5)2)

x1

−1 0 1 2 3

x 2

−1

0

1

2

3

x1

−1 0 1 2 3

x 2

−1

0

1

2

3

x1

−1 0 1 2 3

x 2

−1

0

1

2

3

x1

−1 0 1 2 3

x 2

−1

0

1

2

3

SD with 10 Iterations

LM with 6 Iterations

Newton with 15 Iterations

Newton+ex LS with 5 Iterations

Newton+ap LS with 500 Iterations

DFP with 8 Iterations

BFGS with 8 Iterations

L-BFGS m=3 with 8 Iterations

L-BFGS m=1 with 8 Iterations

41 / 42



Reference

1. Joaquim R. R. A. Martins, and Andrew Ning, ”Engineering Design Optimization,”

Cambridge University Press, 2021.

2. Jorge Nocedal, and Stephen J. Wright, ”Numerical Optimization,” 2nd, Springer,

2026

3. Mykel J. Kochenderfer, and Tim A. Wheeler, ”Algorithms for Optimization,” The

MIT Press, 2019

42 / 42


