Linear Programming VI : Interior-Point Method

Asst. Prof. Dr.-Ing. Sudchai Boonto October 4, 2023

Department of Control System and Instrumentation Engineering King Mongkut's Unniversity of Technology Thonburi Thailand

Objective

• Understand the interior-Point Methods

Convex Sets

Definition 6.1 Convex Sets

A sets \mathbb{R}_c is said to be **convex** if for every pair of points $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}_c$ and for every real number $0 \le \alpha \le 1$, the point

$$\mathbf{x} = \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2$$

is located in \mathbb{R}_c

convex set

nonconvex set

Convex Functions

Definition 6.2 Convex Functions

• A function $f(\mathbf{x})$ defined over a convex set \mathbb{R}_c is said to be convex if for every pair of points $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}_c$ and every real number $0 \le \alpha \le 1$, the inequality

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

hold. If $x_1 \neq x_2$ and

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) < \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

then $f(\mathbf{x})$ is said to be strictly convex.

• If $\psi(\mathbf{x})$ is defined over a convex set \mathbb{R}_c and $f(\mathbf{x}) = -\psi(\mathbf{x})$ is convex, then $\phi(\mathbf{x})$ is said to be concave. If $f(\mathbf{x})$ is strictly convex, $\psi(\mathbf{x})$ is strictly concave.

is located in \mathbb{R}_c

Theorem 6.3: Convexify of linear combination of convex function

lf

$$f(\mathbf{x}) = af_1(\mathbf{x}) + bf_2(\mathbf{x})$$

where $a, b \ge 0$ and $f_1(\mathbf{x}), f_2(\mathbf{x})$ are convex functions on the convex set \mathbb{R}_c , then $f(\mathbf{x})$ is convex on the set \mathbb{R}_c .

Proof: Since $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ are convex, and $a, b \ge 0$, then for $\mathbf{x} = \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2$, we have

$$af_1(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_1) \le a(\alpha f_1(\mathbf{x}_1) + (1-\alpha)f_1(\mathbf{x}_2))$$
$$af_2(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_1) \le b(\alpha f_1(\mathbf{x}_1) + (1-\alpha)f_1(\mathbf{x}_2))$$

Since,

$$f(\mathbf{x}) = af_1(\mathbf{x}) + bf_2(\mathbf{x})$$

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) = af_1(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) + bf_2(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2)$$

$$\leq \alpha(\underbrace{af_1(\mathbf{x}_1) + bf_2(\mathbf{x}_1)}_{f(\mathbf{x}_1)}) + (1 - \alpha)(\underbrace{af_1(\mathbf{x}_2) + af_2(\mathbf{x}_2)}_{f(\mathbf{x}_2)})$$

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

That is $f(\mathbf{x})$ is convex.

Theorem 6.4: Relation between convex functions and convex sets.

If f(x) is a convex function on a convex set \mathbb{R}_c , then the set

 $\mathcal{S}_c = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}_c, f(\mathbf{x}) \le K \}$

is convex for every real number K.

Proof: If $\mathbf{x}_1, \mathbf{x}_2 \in S_c$, then $f(\mathbf{x}_1) \leq K$ and $f(\mathbf{x}_2) \leq K$ from the definition of S_c . Since $f(\mathbf{x})$ is convex

$$\begin{aligned} f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) &\leq \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2) \leq \alpha K + (1 - \alpha)K \\ \text{or} \quad f(\mathbf{x}) \leq K \quad \text{for} \quad \mathbf{x} = \alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \quad \text{and} \quad 0 < \alpha < 1 \end{aligned}$$

Therefore $\mathbf{x} \in S_c$. That is, S_c is convex by virtue of the definition of convex set.

An alternative view of convexity can be generated by examining some theorems which involve the gradient and Hessian of $f(\mathbf{x})$.

Theorem 6.5: Property of convex functions relating to gradient

If $f(\mathbf{x}) \in \mathbb{C}^1$, then $f(\mathbf{x})$ is convex over a convex set \mathbb{R}_c if and only if $f(\mathbf{x}_1) \geq f(\mathbf{x}) + \mathbf{g}(\mathbf{x})^T (\mathbf{x}_1 - \mathbf{x})$ for all \mathbf{x} and $\mathbf{x}_1 \in \mathbb{R}_c$, where $\mathbf{g}(\mathbf{x})$ is the gradient of $f(\mathbf{x})$.

Proof:

 \cdot Show that if $f(\mathbf{x})$ is convex, then

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x})$$
$$f(\mathbf{x} + \alpha(\mathbf{x}_1 - \mathbf{x})) - f(\mathbf{x}) \le \alpha(f(\mathbf{x}_1) - f(\mathbf{x}))$$

As $\alpha \to 0$, the Taylor series of $f(\mathbf{x} + \alpha(\mathbf{x}_1 - \mathbf{x}))$ yields

$$f(\mathbf{x}) + \mathbf{g}(\mathbf{x})^T \alpha(\mathbf{x}_1 - \mathbf{x}) - f(\mathbf{x}) \le \alpha(f(\mathbf{x}_1) - f(\mathbf{x}))$$
$$f(\mathbf{x}_1) \ge f(\mathbf{x}) + \mathbf{g}(\mathbf{x})^T (\mathbf{x}_1 - \mathbf{x})$$
8/37

• If the inequality holds at points \mathbf{x} and $\mathbf{x}_2 \in \mathbb{R}_c$, then $f(\mathbf{x}_2) \geq f(\mathbf{x}) + \mathbf{g}(\mathbf{x})^T(\mathbf{x}_2 - \mathbf{x})$. Hence

$$\alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \ge \alpha f(\mathbf{x}) + \alpha \mathbf{g}(\mathbf{x})^T(\mathbf{x}_1 - \mathbf{x}) + (1-\alpha)f(\mathbf{x}) + (1-\alpha)\mathbf{g}(\mathbf{x})^T(\mathbf{x}_2 - \mathbf{x})$$

or

$$\alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{x})(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 - \mathbf{x})$$

With the substitution $\mathbf{x} = \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2$, we obtain

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

From the definition, $f(\mathbf{x})$ is convex.

The theorem 6.5 states the a linear approximation of $f(\mathbf{x})$ at point \mathbf{x}_1 based on the derivatives of $f(\mathbf{x})$ at \mathbf{x} underestimates the value of the function.

Theorem 10.6: Property of convex functions relating to the Hessian

A function $f(\mathbf{x}) \in \mathbb{C}^2$ is convex over a convex set \mathbb{R}_c if an only if the Hessian $\mathbf{H}(\mathbf{x})$ of $f(\mathbf{x})$ is positive semi-definite for $\mathbf{x} \in \mathbb{R}_c$

Proof: If $x_1 = x + d$ where x_1 and x are arbitrary points in \mathbb{R}_c , then the Taylor series yields

$$f(\mathbf{x}_1) = f(\mathbf{x}) + \mathbf{g}(\mathbf{x})^T(\mathbf{x}_1 - \mathbf{x}) + \frac{1}{2}\mathbf{d}^T\mathbf{H}(\mathbf{x} + \alpha \mathbf{d})\mathbf{d}$$

If $\mathbf{H}(\mathbf{x})$ is positive semidefinite everywhere in \mathbb{R}_c , then

$$\frac{1}{2}\mathbf{d}^T\mathbf{H}(\mathbf{x} + \alpha \mathbf{d})\mathbf{d} \ge 0 \text{ and so } f(\mathbf{x}_1) \ge f(\mathbf{x}) + \mathbf{g}(\mathbf{x})^T(\mathbf{x}_1 - \mathbf{x})$$

Then $f(\mathbf{x})$ is convex.

If $\mathbf{H}(\mathbf{x})$ is not positive semidefinite everywhere in \mathbb{R}_c , then a point \mathbf{x} and at least a \mathbf{d} exist such that

$$\begin{aligned} \mathbf{d}^T \mathbf{H}(\mathbf{x} + \alpha \mathbf{d}) \mathbf{d} &< 0 \\ f(\mathbf{x}_1) &< f(\mathbf{x}) + \mathbf{g}(\mathbf{x})^T (\mathbf{x}_1 - \mathbf{x}) \end{aligned}$$

and $f(\mathbf{x})$ is nonconvex from Theorem 6.5. Therefore, $f(\mathbf{x})$ is convex if and only if $\mathbf{H}(\mathbf{x})$ is positive semi-definite everywhere in \mathbb{R}_c .

Example: Check the following functions for convexity

(a)
$$f(\mathbf{x}) = e^{x_1} + x_2^2 + 5$$
 (b) $f(\mathbf{x}) = 3x_1^2 - 5x_1x_2 + x_2^2$ (c) $f(\mathbf{x}) = \frac{1}{4}x_1^4 - x_1^2 + x_2^2$
(d) $f(\mathbf{x}) = 50 + 10x_1 + x_2 - 6x_1^2 - 3x_2^2$

(a) The Hessian can be obtained as

$$\mathbf{H} = \begin{bmatrix} e^{x_1} & 0\\ 0 & 2 \end{bmatrix}$$

For $-\infty < x_1 < \infty$, **H** is positive definite and $f(\mathbf{x})$ is strictly convex.

12/37

(b) We have

$$\mathbf{H} = \begin{bmatrix} 6 & -5 \\ -5 & 2 \end{bmatrix}$$

Since ${f H}$ is indefinte, $f({f x})$ is neither convex nor concave.

(c) We get

$$\mathbf{H} = \begin{bmatrix} 3x_1^2 - 2 & 0\\ 0 & 2 \end{bmatrix}$$

For $x_1 \leq -\sqrt{2/3}$ and $x_1 \geq \sqrt{2/3}$, **H** is positive semi-definite and $f(\mathbf{x})$ is convex; for $x_1 < -\sqrt{2/3}$ and $x_1 > \sqrt{2/3}$. **H** is positive definite and f(x) is strictly convex; for $-\sqrt{2/3} < x_1 < \sqrt{2/3}$, **H** is indefinite, and $f(\mathbf{x})$ is neither convex nor concave.

Convex Functions : Optimization

Theorem 6.7: Relation between local and global minimizers in convex functions

If $f(\mathbf{x})$ is a convex function defined on a convex set \mathbb{R}_c , then

- (a) the set of points \mathbb{S}_c where $f(\mathbf{x})$ is minimum is convex;
- (b) any local minimizer of $f(\mathbf{x})$ is a global minimizer

Proof: (a) If F^* is a minimum of $f(\mathbf{x})$, then $\mathbb{S}_c = {\mathbf{x} : f(\mathbf{x}) \leq F^*, \mathbf{x} \in \mathbb{R}_c}$ is convex by virtue of Theorem 6.4

(b) If $\mathbf{x}^* \in \mathbb{R}_c$ is a local minimizer but there is another point $\mathbf{x}^{**} \in \mathbb{R}_c$ which is a global minimizer such that $f(\mathbf{x}^{**}) < f(\mathbf{x}^*)$ the one the line $\mathbf{x} = \alpha \mathbf{x}^{**} + (1 - \alpha) \mathbf{x}^*$

$$f(\alpha \mathbf{x}^{**} + (1-\alpha)\mathbf{x}^*) \le \alpha f(\mathbf{x}^{**}) + (1-\alpha)f(\mathbf{x}^*) < \alpha f(\mathbf{x}^*) + (1-\alpha)f(\mathbf{x}^*)$$

or $f(\mathbf{x}) < f(\mathbf{x}^*)$ for all α

This is contradicts the fact that \mathbf{x}^* is a local minimizer and so $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}_c$. Therefore, any local minimizers are located in a convex set, and all are global minimizers.

Convex Functions : Optimization

Theorem 6.8: Existence of a global minimizer in convex functions

If $f(\mathbf{x}) \in \mathbb{C}^1$ is a convex function on a convex set \mathbb{R}_c and there is a point \mathbf{x}^* such that

 $\mathbf{g}(\mathbf{x}^*)^T \mathbf{d} \ge 0$ where $\mathbf{d} = \mathbf{x}_1 - \mathbf{x}^*$

for all $\mathbf{x}_1 \in \mathbb{R}_c$, then \mathbf{x}^* is a global minimizer of $f(\mathbf{x})$.

Proof: From Theorem 6.6, we have $f(\mathbf{x}_1) \ge f(\mathbf{x}^*) + \mathbf{g}(\mathbf{x}^*)^T(\mathbf{x}_1 - \mathbf{x}^*)$ where $\mathbf{g}(\mathbf{x}^*)$ is the gradient of $f(\mathbf{x})$ at $\mathbf{x} = \mathbf{x}^*$. Since $\mathbf{g}(\mathbf{x}^*)^T(\mathbf{x}_1 - \mathbf{x}^*) \ge 0$, we have

$$f(\mathbf{x}_1) \ge f(\mathbf{x}^*)$$

and so \mathbf{x}^* is a local minimizer. By virtue of Theorem 6.7, \mathbf{x}^* is also a global minimizer. Similarly, if $f(\mathbf{x})$ is a strictly convex function and $\mathbf{g}(\mathbf{x}^*)^T \mathbf{d} > 0$, then \mathbf{x}^* is a strong global minimizer.

Duality : The Lagrangian

Consider an optimization problem in the standard form:

minimize $f(\mathbf{x})$ subject to $a_i^T \mathbf{x} - b = 0, \quad i = 1, \dots, p$ $\mathbf{c}_j(\mathbf{x}) \le 0, \quad j = 1, \dots q$

with variable $\mathbf{x} \in \mathbb{R}^n$, domain \mathcal{D} , and optimal value p^* .

The basic idea in Lagrangian duality is to take the constraints about into account by augmenting the objective function with a weighted sum of the constraint functions.

Lagrangian:

 $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}$, with dom $\mathcal{L} = \mathcal{D} \times \mathbb{R}^p \times \mathbb{R}^q$,

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{p} \lambda_i (\mathbf{a}_i^T \mathbf{x} - b_i) + \sum_{j=1}^{q} \mu_j c_j(\mathbf{x})$$

- weighted sum of objective and constraint functions
- · λ_i is Lagrange multiplier associated with $a_i^T \mathbf{x} b_i = 0$
- μ_j is Lagrange multiplier associated with $c_j(\mathbf{x}) \leq 0$.

16/37

Duality: The Lagrange dual function

The Lagrange dual function:

 $\mathbf{g}: \mathbb{R}^p imes \mathbb{R}^q o \mathbb{R}$ as the minimum value of the Lagrangian over \mathbf{x} : for $\lambda \in \mathbb{R}^p, \mu \in \mathbb{R}^q$,

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{x \in \mathcal{D}} \mathcal{L}(\mathbf{x}, \lambda, \mu) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f(\mathbf{x}) + \sum_{i=1}^{p} \lambda_i (\mathbf{a}_i^T \mathbf{x} - b_i) + \sum_{j=1}^{q} \mu_j c_j(x) \right)$$

 ${f g}$ is concave, it can be $-\infty$ for some ${m \lambda}, {m \mu}.$

Lagrange dual problem

The Lagrange dual problem with respect to the convex problem is defined as

 $\begin{array}{ll} \underset{\boldsymbol{\lambda},\boldsymbol{\mu}}{\text{maximize}} & q(\boldsymbol{\lambda},\boldsymbol{\mu}) \end{array}$

subject to $\mu \ge 0$

Duality: The Lagrange dual function

+ For any feasible ${f x}$ and any feasible $\{\lambda,\mu\}$ of the above maximize problem, we have

 $f(\mathbf{x}) \geq q(\boldsymbol{\lambda}, \boldsymbol{\mu})$

Because

$$\begin{split} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) &= f(\mathbf{x}) + \sum_{i=1}^{p} \lambda_i (\mathbf{a}_i^T \mathbf{x} - b_i) + \sum_{j=1}^{q} \mu_j c_j(\mathbf{x}) \\ &= f(\mathbf{x}) + \sum_{j=1}^{q} \mu_j c_j(\mathbf{x}) \leq f(\mathbf{x}) \quad \text{since } j(\mathbf{x}) \leq 0 \end{split}$$

Thus

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \leq \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \leq f(\mathbf{x})$$

Duality : Standard form LP

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge 0$

(1)

Dual function

• Lagrangian is $(\mathbf{x} \ge 0 \quad \Rightarrow -\mathbf{x} \le 0)$

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathbf{c}^T \mathbf{x} + \boldsymbol{\lambda}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) - \boldsymbol{\mu}^T \mathbf{x} = -\mathbf{b}^T \boldsymbol{\lambda} + (\mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda} - \boldsymbol{\mu})^T \mathbf{x}$$

• \mathcal{L} is affine in **x**, hence (The linear function is bounded from below only when it is identically zero. Then $\mathbf{g}(\boldsymbol{\lambda}, \boldsymbol{\mu}) = -\infty$ except when $\mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda} - \boldsymbol{\mu} = 0$)

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \begin{cases} -\mathbf{b}^T \boldsymbol{\lambda}, & \mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda} - \boldsymbol{\mu} = 0\\ -\infty, & \text{otherwise} \end{cases}$$

q is linear on affine domain $\{(\lambda, \mu) | \mathbf{A}^T \mu - \lambda + \mathbf{c} = 0\}$, hence concave Lower bound property: $p^* \ge -\mathbf{b}^T \lambda$ if $\mathbf{A}^T \lambda + \mathbf{c} \ge 0$. 19/37

Duality : Standard form LP

The Lagrange dual problem

The lagrange dual problem is defined as

 $\begin{array}{ll} \underset{\boldsymbol{\lambda},\boldsymbol{\mu}}{\text{maximize}} & q(\boldsymbol{\lambda},\boldsymbol{\mu}) \\ \\ \text{subject to} & \boldsymbol{\mu} \geq 0 \end{array}$

For the standard form LP, we have

 $\begin{array}{ll} \underset{\boldsymbol{\lambda},\boldsymbol{\mu}}{\operatorname{maximize}} & -\mathbf{b}^T \boldsymbol{\lambda} \\ \text{subject to} & \boldsymbol{\mu} > 0 \end{array}$

Since $\mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda} - \boldsymbol{\mu} = 0$ and $\boldsymbol{\mu} = \mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda}$, the above problem becomes

 $\begin{array}{ll} \underset{\boldsymbol{\lambda}}{\operatorname{maximize}} & -\mathbf{b}^T \boldsymbol{\lambda} \\ \text{subject to} & -\mathbf{c} - \mathbf{A}^T \boldsymbol{\lambda} \leq 0 \end{array}$

 $\begin{array}{ll} \underset{\boldsymbol{\lambda}}{\text{minimize}} \quad \mathbf{b}^T \boldsymbol{\lambda} \\ \text{subject to} \quad (-\mathbf{A}^T) \boldsymbol{\lambda} \leq \mathbf{c} \end{array}$

Primal-Dual Solutions and Central Path : Primal-Dual Solutions

The standard-form LP problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge 0 \end{array}$$
(2)

The dual problem is

maximize
$$\mathbf{h}(\boldsymbol{\lambda}) = -\mathbf{b}^T \boldsymbol{\lambda}$$

subject to $-\mathbf{A}^T \boldsymbol{\lambda} + \boldsymbol{\mu} = \mathbf{c}, \quad \boldsymbol{\lambda} \ge 0 \text{ (or) } \mathbf{A}^T \boldsymbol{\lambda} + \mathbf{c} \ge 0$ (3)

- Under what conditions will the solutions of these problems exist?
- How are the feasible points and solutions of the primal and dual related?
- $\cdot \ \mu \ge 0$

Primal-Dual Solutions and Central Path : Primal-Dual Solutions

- An LP problem is said to be **feasible** if its feasible region is not empty. The problem in (2) is said to be **strictly feasible** if there exists and **x** that satisfies $-\lambda^T \mathbf{A} + \boldsymbol{\mu} = \mathbf{c}$ with $\mathbf{x} \ge 0$
- The LP problem in (3) is said to be strictly feasible if there exist λ and μ that satisfy $-\lambda^T \mathbf{A} + \mu = \mathbf{c}$ with $\mu \ge 0$.
- It is known that ${f x}^*$ is a minimizer of the problem in (2) if and only if there exist ${f \lambda}^*$ and $\mu^*\geq 0$ such that

$$-\mathbf{A}^{T}\boldsymbol{\lambda}^{*} + \boldsymbol{\mu}^{*} = \mathbf{c}$$

$$\mathbf{A}\mathbf{x}^{*} = \mathbf{b}$$

$$x_{i}^{*}\boldsymbol{\mu}_{i}^{*} = 0 \text{ for } 1 \leq i \leq n$$

$$\mathbf{x}^{*} \geq 0, \quad \boldsymbol{\mu}^{*} \geq 0$$
(4)

• A set { $\mathbf{x}^*, \lambda^*, \mu^*$ } satisfying (4) is called a **primal-dual solution**. The set { $\mathbf{x}^*, \lambda^*, \mu^*$ } is a primal-dual solution if and only if \mathbf{x}^* solves the primal and { λ^*, μ^* } solves the dual.

Primal-Dual Solutions and Central Path : Primal-Dual Solutions

Theorem: 10.9 Existence of a primal-dual solution

A primal-dual solution exists if the primal and dual problems are both feasible.

Proof: If point \mathbf{x} is feasible for the LP problem and $\{\lambda, \mu\}$ is feasible for the LP problem, then set

$$\begin{aligned} -\boldsymbol{\lambda}^T \mathbf{b} &\leq -\boldsymbol{\lambda}^T \mathbf{b} + \boldsymbol{\mu}^T \mathbf{x} = -\boldsymbol{\lambda}^T \mathbf{A} \mathbf{x} + \boldsymbol{\mu}^T \mathbf{x} \\ &= (-\mathbf{A}^T \boldsymbol{\lambda} + \boldsymbol{\mu})^T \mathbf{x} = \mathbf{c}^T \mathbf{x} \end{aligned}$$

Since $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$ has a finite lower bound in the feasible region, there exists a set $\{\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*\}$ that satisfies (4). This \mathbf{x}^* solves the problem in (2). From above condition $\mathbf{h}(\boldsymbol{\lambda})$ has a finite upper bound and $\{\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*\}$ solves the problem in (3). Consequently, the set $\{\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*\}$ is a primal-dual solution.

Primal-Dual Solutions and Central Path: Primal-Dual Solutions

Theorem 6.10: Strict feasibility of primal-dual solutions

If the primal and dual problems are both feasible, then

- 1. solutions of the primal problem are bounded if the dual is strictly feasible:
- 2. solutions of the dual problem are bounded if the primal is strictly feasible:
- 3. primal-dual solutions are bounded if the primal and dual are both strictly feasible.

Proof: see reference 5.

Primal-Dual Solutions and Central Path: Primal-Dual Solutions

Duality gap From (4), we observe that

$$\mathbf{c}^T \mathbf{x}^* = [(\boldsymbol{\mu}^*)^T - (\boldsymbol{\lambda}^*)^T \mathbf{A}] \mathbf{x}^* = -(\boldsymbol{\lambda}^*)^T \mathbf{A} \mathbf{x}^* = -(\boldsymbol{\lambda}^*)^T \mathbf{b} \quad \Rightarrow \quad f(\mathbf{x}^*) = \mathbf{h}(\boldsymbol{\lambda}^*)$$

If we define the duality gap as

$$\delta(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{c}^T \mathbf{x} + \mathbf{b}^T \boldsymbol{\lambda}$$

Then the above equations imply that $\delta(\mathbf{x}, \boldsymbol{\lambda})$ is always nonnegative with $\delta(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$. For any feasible x and $\boldsymbol{\lambda}$, we have

 $\begin{aligned} \mathbf{c}^T \mathbf{x} &\geq \mathbf{c}^T \mathbf{x}^* \geq -\mathbf{b}^T \boldsymbol{\lambda}^* \geq -\mathbf{b}^T \boldsymbol{\lambda} \\ \mathbf{c}^T \mathbf{x} - \mathbf{c}^T \mathbf{x}^* \geq 0 \geq -\mathbf{b}^T \boldsymbol{\lambda}^* - \mathbf{c}^T \mathbf{x}^* \geq -\mathbf{b}^T \boldsymbol{\lambda} - \mathbf{c}^T \mathbf{x}^* \Longrightarrow \quad 0 \leq \mathbf{c}^T \mathbf{x} - \mathbf{c}^T \mathbf{x}^* \leq \delta(\mathbf{x}, \boldsymbol{\lambda}) \end{aligned}$

It indicates that the duality gap can serve as a bound on the closeness of $f(\mathbf{x})$ to $f(\mathbf{x}^*)$.

Primal-Dual Solutions and Central Path: Central Path

One of the important concept related to the primal-dual solutions is central path. By using (4), set $\{\mathbf{x}, \lambda, \mu\}$ with $\mathbf{x} \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^p$, and $\mu \in \mathbb{R}^n$ is a primal-dual solution if it satisfies the conditions

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \text{with } \mathbf{x} \ge 0$$
$$-\mathbf{A}^T \boldsymbol{\lambda} + \boldsymbol{\mu} = \mathbf{c} \quad \text{with } \boldsymbol{\mu} \ge 0$$
$$\mathbf{X}\boldsymbol{\mu} = 0 \tag{5}$$

where $\mathbf{X} = \text{diag}\{x_1, x_2, \dots, x_n\}$ The centeral path for a standard form LP problem is defined as a set of vectors $\{\mathbf{x}(\tau), \boldsymbol{\lambda}(\tau), \boldsymbol{\mu}(\tau)\}$ that satisfy the conditions

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \text{with } \mathbf{x} > 0$$
$$-\mathbf{A}^{T}\boldsymbol{\lambda} + \boldsymbol{\mu} = \mathbf{c} \quad \text{with } \boldsymbol{\mu} > 0 \tag{6}$$
$$\mathbf{X}\boldsymbol{\mu} = \tau \mathbf{e}$$

where au is a strictly positive scalar parameter, and $\mathbf{e} = [1 \ 1 \ \cdots \ 1]^T$

Primal-Dual Solutions and Central Path

- For each fixed $\tau > 0$, the vectors in the set $\{\mathbf{x}(\tau), \boldsymbol{\lambda}(\tau), \boldsymbol{\mu}(\tau)\}$ satisfying (6) can be viewed as sets of points in \mathbb{R}^n , \mathbb{R}^p , and \mathbb{R}^n , respectively.
- When τ varies, the corresponding points form a set of trajectories called the central path.
- By comparing (6) with (4), it is obvious that the centeral path is closely related to the primal-dual solutions. Every point on the central path is strictly feasible.
- The central path lies in the interior of the feasible regions of the problems in (2) and (3) and it approaches a primal-dual solution as $\tau \to 0$.
- Given $\tau > 0$, let $\{\mathbf{x}(\tau), \boldsymbol{\lambda}(\tau), \boldsymbol{\mu}(\tau)\}$ be on the central path. From (6), the duality gap $\delta[\mathbf{x}(\tau, \boldsymbol{\lambda}(\tau)]$ is given by

$$\begin{split} \delta[\mathbf{x}(\tau), \boldsymbol{\lambda}(\tau)] &= \mathbf{c}^T \mathbf{x}(\tau) + \mathbf{b}^T \boldsymbol{\lambda}(\tau) = [-\boldsymbol{\lambda}^T(\tau) \mathbf{A} + \boldsymbol{\mu}^T(\tau)] \mathbf{x}(\tau) + \mathbf{b}^T \boldsymbol{\lambda}(\tau) \\ &= \boldsymbol{\mu}^T(\tau) \mathbf{x}(\tau) = n\tau \end{split}$$

The central path converges linearly to zero a $\tau \to 0$. The objective function $\mathbf{c}^T \mathbf{x}(\tau)$, and $\mathbf{b}^T \boldsymbol{\lambda}(\tau)$ approach the same optimal value.

Primal-Dual Solutions and Central Path

Sketch the central path of the LP problem

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f(\mathbf{x}) = -2x_1 + x_2 - 3x_3\\ \text{subject to} & x_1 + x_2 + x_3 = 1\\ & x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{array}$

Solution: With $\mathbf{c} = \begin{bmatrix} -2 \ 1 \ -3 \end{bmatrix}^T$, $\mathbf{A} = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$, and $\mathbf{b} = 1$, (6) become

$$x_1 + x_2 + x_3 = 1$$
$$-\lambda + \mu_1 = -2$$
$$-\lambda + \mu_2 = 1$$
$$-\lambda + \mu_3 = -3$$

$$x_1\mu_1 = \tau, \ x_2\mu_2 = \tau, \ x_3\mu_3 = \tau$$

where $x_i > 0$ and $\mu_i > 0$ for i = 1, 2, 3.

28/37

Primal-Dual Solutions and Central Path

From above equations, we have

$$\mu_1 = -2 + \lambda \quad \mu_2 = 1 + \lambda \quad \mu_3 = -3 + \lambda$$

Hence $\mu_i > 0$ for $1 \le i \le 3$ if $\lambda > 3$. If we assume that $\lambda > 3$, then

$$\frac{1}{\lambda-2} + \frac{1}{\lambda+1} + \frac{1}{\lambda-3} = \frac{1}{\tau}$$

i.e.,

$$\frac{1}{\tau}\lambda^3 - \left(\frac{4}{\tau} + 3\right)\lambda^2 + \left(\frac{1}{\tau} + 8\right)\lambda + \left(\frac{6}{\tau} - 1\right) = 0$$

The central path can be constructed by finding a root of above equation that satisfies $\lambda > 3.$

Primal-Dual Solutions and Central Path : Central Path

Primal-Dual Interior Methods: Path-Following Method

We need to find τ_k to make $\{\mathbf{x}_k, \boldsymbol{\lambda}_k, \boldsymbol{\mu}_k\}$ approach the minimizer vertex. In this lecture, we introduce the method that simultaneously solves the primal and dual LP problems and has emerged as the modest efficient interior-point method for the LP problems.

- Consider the standard form LP problem in (2) and its dual (3). Let $\mathbf{w}_k = {\mathbf{x}_k, \mathbf{\lambda}_k, \mathbf{\mu}_k}$ where \mathbf{x}_k is strictly feasible for the primal and ${\mathbf{\lambda}_k, \mathbf{\mu}_k}$ is strictly feasible for the dual.
- We need to find the increment vector $\delta_w = \{\delta_x, \delta_\lambda, \delta_\mu\}$ such that the next iterate $\mathbf{w}_{k+1} = \{\mathbf{x}_{k+1}, \lambda_{k+1}, \mu_{k+1}\} = \{\mathbf{x}_k + \delta_x, \lambda_k + \delta_\lambda, \mu_k + \delta_\mu\}$ remains strictly feasible and approaches the central path defined by (3) with $\tau = \tau_{k+1} > 0$.
- The path-following method, a suitable δ_w is obtained as a first-order approximate solution of (6).

Primal-Dual Interior Methods: Path-Following Method

If \mathbf{w}_{k+1} satisfies (6) with $\tau = \tau_{k+1}$, then

$$\mathbf{A}(\mathbf{x}_{k} + \boldsymbol{\delta}_{x}) = \mathbf{b} \qquad \mathbf{A}\boldsymbol{\delta}_{x} = 0$$
$$-\mathbf{A}^{T}(\boldsymbol{\lambda}_{k} + \boldsymbol{\delta}_{\lambda}) + (\boldsymbol{\mu}_{k} + \boldsymbol{\delta}_{\mu}) = \mathbf{c} \qquad -\mathbf{A}^{T}\boldsymbol{\delta}_{\lambda} + \boldsymbol{\delta}_{\mu} = 0$$
$$\tilde{\mathbf{X}}(\boldsymbol{\mu}_{k} + \boldsymbol{\delta}_{\mu}) = \tau_{k+1}\mathbf{e} \qquad \Delta \mathbf{X}\boldsymbol{\mu}_{k} + X\boldsymbol{\delta}_{\mu} + \Delta \mathbf{X}\boldsymbol{\delta}_{\mu} = \tau_{k+1}\mathbf{e} - \mathbf{X}\boldsymbol{\mu}_{k}$$

where

$$\mathbf{X} = \operatorname{diag}\{x_1, x_2, \dots, x_n\}, \tilde{\mathbf{X}} = \operatorname{diag}\{x_1 + (\delta_x)_1, x_2 + (\delta_x)_2, \dots, x_n + (\delta_x)_n\},$$
$$\Delta \mathbf{X} = \operatorname{diag}\{(\delta_x)_1, (\delta_x)_2, \dots, (\delta_x)_n\}, \quad \tilde{\mathbf{X}} = \mathbf{X} + \Delta \mathbf{X}$$

By neglecting the $\Delta X \delta_{\mu}$ and let $\Delta X \mu_k = M \delta_x$ (we need to find δ_x), where $M = \text{diag}\{(\mu_k)_1, (\mu_k)_2, \dots, (\mu_k)_n\}$, we have

$$\mathbf{A}\boldsymbol{\delta}_{x}=0, \quad -\mathbf{A}^{T}\boldsymbol{\delta}_{\lambda}+\boldsymbol{\delta}_{\mu}=0, \quad \mathbf{M}\boldsymbol{\delta}_{x}+\mathbf{X}\boldsymbol{\delta}_{\mu}=\tau_{k+1}\mathbf{e}-\mathbf{X}\boldsymbol{\mu}_{k}$$
(7)

32/37

Primal-Dual Interior Methods: Path-Following Method

Solving (??) for ${oldsymbol{\delta}}_w$, we obtain

$$\begin{split} \delta_{\lambda} &= -\mathbf{Y}\mathbf{A}\mathbf{y} \\ \delta_{\mu} &= \mathbf{A}^{T}\delta_{\lambda} \\ \delta_{x} &= -\mathbf{y} - \mathbf{D}\delta_{\mu} \\ \mathbf{D} &= \mathbf{M}^{-1}\mathbf{X}, \quad \mathbf{Y} = (\mathbf{A}\mathbf{D}\mathbf{A}^{T})^{-1}, \quad \mathbf{y} = \mathbf{x}_{k} - \tau_{k+1}\mathbf{M}^{-1}\mathbf{e} \end{split}$$
(8)

where

$$\mathbf{M}^{-1}\mathbf{X}\boldsymbol{\mu}_{k} = \begin{bmatrix} 1/(\boldsymbol{\mu}_{k})_{1} & & \\ & \ddots & \\ & & 1/(\boldsymbol{\mu}_{k})_{n} \end{bmatrix} \begin{bmatrix} (\mathbf{x}_{k})_{1} & & \\ & \ddots & \\ & & (\mathbf{x}_{k})_{n} \end{bmatrix} \begin{bmatrix} (\boldsymbol{\mu}_{k})_{1} \\ \vdots \\ (\boldsymbol{\mu}_{k})_{n} \end{bmatrix}$$
$$= \mathbf{x}_{k}$$

Primal-Dual Interior Methods : Path-Following Method

Primal-dual path-following algorithm for the LP problem

- 1. Input **A** and a strictly feasible $\mathbf{w}_0 = {\mathbf{x}_0, \lambda_0, \mu_0}$. Set k = 0 and $\rho > \sqrt{n}$ (*n* is the dimension of \mathbf{x}), and initialize the tolerance ε for the duality gap.
- 2. If $\mu_k^T \mathbf{x}_k \leq \varepsilon$, output solution $\mathbf{w}^* = \mathbf{w}_k$ and stop; otherwise, continue with Step 3
- 3. Set $\tau_{k+1} = \frac{\mu_k^T \mathbf{x}_k}{n+\rho}$ and compute $\boldsymbol{\delta}_w = \{\boldsymbol{\delta}_x, \boldsymbol{\delta}_\lambda, \boldsymbol{\delta}_\mu\}$ using (??).
- 4. compute step size α_k as follow:

$$\alpha_k = (1 - 10^{-6})\alpha_{\max}, \quad \alpha_{\max} = \min(\alpha_p, \alpha_d)$$

where

$$\alpha_p = \min_{i \text{ with } (\delta_x)_i < 0} \left[-\frac{(\mathbf{x}_k)_i}{(\delta_x)_i} \right], \quad \alpha_d = \min_{i \text{ with } (\delta_\mu)_i < 0} \left[-\frac{(\boldsymbol{\mu}_k)_i}{(\delta_\mu)_i} \right]$$

Sketch the central path of the LP problem

minimize
$$f(\mathbf{x}) = -2x_1 + x_2 - 3x_3$$

subject to $x_1 + x_2 + x_3 = 1$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Solution: Find an initial \mathbf{w}_0 on the central path by using the method described in the previous example with $\tau_0 = 5$. The vector \mathbf{w}_0 obtained is $\{\mathbf{x}_0, \boldsymbol{\lambda}_0, \boldsymbol{\mu}_0\}$ with

$$\mathbf{x}_0 = \begin{bmatrix} 0.344506\\ 0.285494\\ 0.370000 \end{bmatrix}, \quad \boldsymbol{\lambda}_0 = 16.513519, \quad \boldsymbol{\mu}_0 = \begin{bmatrix} 14.513519\\ 17.513519\\ 13.513519 \end{bmatrix}$$

With $\rho = 7\sqrt{n}$ and $\varepsilon = 10^{-6}$, the algorithm will converges after eight iterations to the solution $\mathbf{x}^* = \begin{bmatrix} 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$

A nonfeasible-Initialization: Path-Following Method

If \mathbf{w}_{k+1} satisfies (6) with $\tau = \tau_{k+1}$, then

$$\begin{split} \mathbf{A}(\mathbf{x}_k + \boldsymbol{\delta}_x) &= \mathbf{b} \\ -\mathbf{A}^T(\boldsymbol{\lambda}_k + \boldsymbol{\delta}_\lambda) + (\boldsymbol{\mu}_k + \boldsymbol{\delta}_\mu) &= \mathbf{c} \\ & \tilde{\mathbf{X}}(\boldsymbol{\mu}_k + \boldsymbol{\delta}_\mu) = \tau_{k+1} e \end{split}$$

$$egin{aligned} \mathbf{A} oldsymbol{\delta}_x &= \mathbf{r}_p \ &-\mathbf{A}^T oldsymbol{\delta}_\lambda + oldsymbol{\delta}_\mu &= \mathbf{r}_d \ &\mathbf{M} oldsymbol{\delta}_x + \mathbf{X} oldsymbol{\delta}_\mu &= au_{k+1} \mathbf{e} - \mathbf{X} oldsymbol{\mu}_k \end{aligned}$$

where $\mathbf{r}_p = \mathbf{b} - \mathbf{A}\mathbf{x}_k$ and $\mathbf{r}_d = \mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda}_k - \boldsymbol{\mu}_k$ are the residuals for the primal and dual constraints, respectively.

$$\delta_{\lambda} = -\mathbf{Y}(\mathbf{A}\mathbf{y} + \mathbf{A}\mathbf{D}\mathbf{r}_{d} + \mathbf{r}_{p})$$

$$\delta_{\mu} = \mathbf{A}^{T}\delta_{\lambda} + r_{d}$$

$$\delta_{x} = -\mathbf{y} - \mathbf{D}\delta_{\mu}$$
(9)

Nonfeasible-Initialization Primal-Dual Path-Following Method

Nonfeasible-initialization Primal-dual path-following algorithm for the LP problem

- 1. Input **A**, **b**, **c**, and $w_0 = \{x_0, \lambda_0, \mu_0\}$. Set k = 0 and $\rho > \sqrt{n}$ (*n* is a dimension of *x*), and initialize the tolerance ε for the duality gap.
- 2. If $\mu_k^T \mathbf{x}_k \leq \varepsilon$, output solution $\mathbf{w}^* = \mathbf{w}_k$ and stop; otherwise, continue with Step 3
- 3. Set $\tau_{k+1} = \frac{\mu_k^T \mathbf{x}_k}{n+\rho}$ and compute $\boldsymbol{\delta}_w = \{\boldsymbol{\delta}_x, \boldsymbol{\delta}_\lambda, \boldsymbol{\delta}_\mu\}$ using (7).
- 4. compute step size α_k as follow:

$$\alpha_k = (1 - 10^{-6})\alpha_{\max} \quad \alpha_{\max} = \min(\alpha_p, \alpha_d)$$

where

$$\alpha_p = \min_{i \text{ with } (\delta_x)_i < 0} \left[-\frac{(\mathbf{x}_k)_i}{(\delta_x)_i} \right], \quad \alpha_d = \min_{i \text{ with } (\delta_\mu)_i < 0} \left[-\frac{(\boldsymbol{\mu}_k)_i}{(\delta_\mu)_i} \right]$$

Nonfeasible-Initialization Primal-Dual Path-Following Method Example

Sketch the central path of the LP problem

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f(\mathbf{x}) = -2x_1 + x_2 - 3x_3\\ \text{subject to} & x_1 + x_2 + x_3 = 1\\ & x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{array}$

Solution: The vector \mathbf{w}_0 , which is not feasible, is $\{\mathbf{x}_0, \boldsymbol{\lambda}_0, \boldsymbol{\mu}_0\}$ with

$$\mathbf{x}_{0} = \begin{bmatrix} 0.4\\ 0.3\\ 0.4 \end{bmatrix}, \quad \boldsymbol{\lambda}_{0} = -0.5, \quad \boldsymbol{\mu}_{0} = \begin{bmatrix} 1.0\\ 0.5\\ 1.0 \end{bmatrix}$$

With $\rho = 7\sqrt{n}$ and $\varepsilon = 10^{-6}$, the algorithm will converges after eight iterations to the solution $\mathbf{x}^* = \begin{bmatrix} 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$

Nonfeasible-Initialization Primal-Dual Path-Following Method Example

Reference

- Joaquim R. R. A. Martins, Andrew Ning, "Engineering Design Optimization," Cambridge University Press, 2021.
- 2. Mykel J. kochenderfer, and Tim A. Wheeler, "Algorithms for Optimization," The MIT Press, 2019.
- 3. Ashok D. Belegundu, Tirupathi R. Chandrupatla, "Optimization Concepts and Applications in Engineering," Cambridge University Press, 2019.
- Laurent Lessarn, "Introduction to Optimization," Lecture Note, University of Wisconsin–Madison.
- Andreas Antoniou and Wu-Sheng Lu, "Practical Optimization: Algorithms and Engineering Applications," 2nd edition, Springer, 2021.
- 6. Stephen Boyd and Lieven Vandenberghe "Convex Optimization," Cambridge University Press, 2004.