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Objective

• Understand the interior-Point Methods
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Convex Sets

Definition 6.1 Convex Sets
A sets Rc is said to be convex if for every pair of points x1,x2 ∈ Rc and for every real
number 0 ≤ α ≤ 1, the point

x = αx1 + (1− α)x2

is located in Rc

x1

x2

x1

x2

convex set nonconvex set
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Convex Functions

Definition 6.2 Convex Functions
• A function f(x) defined over a convex set Rc is said to be convex if for every
pair of points x1,x2 ∈ Rc and every real number 0 ≤ α ≤ 1 , the inequality

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

hold. If x1 ̸= x2 and

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2)

then f(x) is said to be strictly convex.

• If ψ(x) is defined over a convex set Rc and f(x) = −ψ(x) is convex, then ϕ(x)
is said to be concave. If f(x) is strictly convex, ψ(x) is strictly concave.

is located in Rc
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Convex Functions : Convexity

f(x)

x

f(x)

xx1 x2 x1 x2

Convex Nonconvex

Theorem 6.3: Convexify of linear combination of convex function
If

f(x) = af1(x) + bf2(x)

where a, b ≥ 0 and f1(x), f2(x) are convex functions on the convex set Rc , then f(x)
is convex on the set Rc . 5/37



Convex Functions : Convexity

Proof: Since f1(x) and f2(x) are convex, and a, b ≥ 0, then for x = αx1 + (1− α)x2 ,
we have

af1(αx1 + (1− α)x1) ≤ a(αf1(x1) + (1− α)f1(x2))

af2(αx1 + (1− α)x1) ≤ b(αf1(x1) + (1− α)f1(x2))

Since,

f(x) = af1(x) + bf2(x)

f(αx1 + (1− α)x2) = af1(αx1 + (1− α)x2) + bf2(αx1 + (1− α)x2)

≤ α(af1(x1) + bf2(x1)︸ ︷︷ ︸
f(x1)

) + (1− α)(af1(x2) + af2(x2)︸ ︷︷ ︸
f(x2)

)

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

That is f(x) is convex.
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Convex Functions : Convexity

Theorem 6.4: Relation between convex functions and convex sets.
If f(x) is a convex function on a convex set Rc , then the set

Sc = {x : x ∈ Rc, f(x) ≤ K}

is convex for every real number K .

Proof: If x1,x2 ∈ Sc , then f(x1) ≤ K and f(x2) ≤ K from the definition of Sc . Since
f(x) is convex

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ≤ αK + (1− α)K

or f(x) ≤ K for x = αx1 + (1− α)x2 and 0 < α < 1

Therefore x ∈ Sc . That is, Sc is convex by virtue of the definition of convex set.
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Convex Functions : Convexity

An alternative view of convexity can be generated by examining some theorems which
involve the gradient and Hessian of f(x).

Theorem 6.5: Property of convex functions relating to gradient

If f(x) ∈ C1 , then f(x) is convex over a convex set Rc if and only if
f(x1) ≥ f(x) + g(x)T (x1 − x) for all x and x1 ∈ Rc , where g(x) is the gradient of
f(x).

Proof:

• Show that if f(x) is convex, then

f(αx1 + (1− α)x) ≤ αf(x1) + (1− α)f(x)

f(x+ α(x1 − x))− f(x) ≤ α(f(x1)− f(x))

As α→ 0, the Taylor series of f(x+ α(x1 − x)) yields

f(x) + g(x)Tα(x1 − x)− f(x) ≤ α(f(x1)− f(x))

f(x1) ≥ f(x) + g(x)T (x1 − x) 8/37



Convex Functions : Convexity

• If the inequality holds at points x and x2 ∈ Rc , then
f(x2) ≥ f(x) + g(x)T (x2 − x). Hence

αf(x1) + (1− α)f(x2) ≥ αf(x) + αg(x)T (x1 − x)

+ (1− α)f(x) + (1− α)g(x)T (x2 − x)

or

αf(x1) + (1− α)f(x2) ≥ f(x) + gT (x)(αx1 + (1− α)x2 − x)

With the substitution x = αx1 + (1− α)x2 , we obtain

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

From the definition, f(x) is convex.
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Convex Functions : Convexity

The theorem 6.5 states the a linear approximation of f(x) at point x1 based on the
derivatives of f(x) at x underestimates the value of the function.

f(x1)

f(x)

∂f

∂x

(x1 − x)
∂f

∂x

x x1
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Convex Functions : Convexity

Theorem 10.6: Property of convex functions relating to the Hessian

A function f(x) ∈ C2 is convex over a convex set Rc if an only if the HessianH(x) of
f(x) is positive semi-definite for x ∈ Rc

Proof: If x1 = x+ d where x1 and x are arbitrary points in Rc , then the Taylor series
yields

f(x1) = f(x) + g(x)T (x1 − x) +
1

2
dTH(x+ αd)d

IfH(x) is positive semidefinite everywhere in Rc , then

1

2
dTH(x+ αd)d ≥ 0 and so f(x1) ≥ f(x) + g(x)T (x1 − x)

Then f(x) is convex.
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Convex Functions : Convexity
IfH(x) is not positive semidefinite everywhere in Rc , then a point x and at least a d

exist such that

dTH(x+ αd)d < 0

f(x1) < f(x) + g(x)T (x1 − x)

and f(x) is nonconvex from Theorem 6.5. Therefore, f(x) is convex if and only ifH(x)

is positive semi-definite everywhere in Rc .

Example: Check the following functions for convexity

(a) f(x) = ex1 + x22 + 5 (b) f(x) = 3x21 − 5x1x2 + x22 (c) f(x) = 1
4
x41 − x21 + x22

(d) f(x) = 50 + 10x1 + x2 − 6x21 − 3x22

(a) The Hessian can be obtained as

H =

[
ex1 0

0 2

]

For −∞ < x1 <∞,H is positive definite and f(x) is strictly convex.
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Convex Functions : Convexity
(b) We have

H =

[
6 −5

−5 2

]

SinceH is indefinte, f(x) is neither convex nor concave.

(c) We get

H =

[
3x21 − 2 0

0 2

]

For x1 ≤ −
√

2/3 and x1 ≥
√

2/3,H is positive semi-definite and f(x) is
convex; for x1 < −

√
2/3 and x1 >

√
2/3. H is positive definite and f(x) is

strictly convex; for −
√

2/3 < x1 <
√

2/3,H is indefinite, and f(x) is neither
convex nor concave.

13/37



Convex Functions : Optimization

Theorem 6.7: Relation between local and global minimizers in convex functions
If f(x) is a convex function defined on a convex set Rc , then

(a) the set of points Sc where f(x) is minimum is convex;

(b) any local minimizer of f(x) is a global minimizer

Proof: (a) If F ∗ is a minimum of f(x), then Sc = {x : f(x) ≤ F ∗,x ∈ Rc} is convex
by virtue of Theorem 6.4
(b) If x∗ ∈ Rc is a local minimizer but there is another point x∗∗ ∈ Rc which is a
global minimizer such that f(x∗∗) < f(x∗) the one the line x = αx∗∗ + (1− α)x∗

f(αx∗∗ + (1− α)x∗) ≤ αf(x∗∗) + (1− α)f(x∗) < αf(x∗) + (1− α)f(x∗)

or f(x) < f(x∗) for all α
This is contradicts the fact that x∗ is a local minimizer and so f(x) ≥ f(x∗) for all
x ∈ Rc . Therefore, any local minimizers are located in a convex set, and all are global
minimizers.
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Convex Functions : Optimization

Theorem 6.8: Existence of a global minimizer in convex functions

If f(x) ∈ C1 is a convex function on a convex set Rc and there is a point x∗ such that

g(x∗)Td ≥ 0 where d = x1 − x∗

for all x1 ∈ Rc , then x∗ is a global minimizer of f(x).

Proof: From Theorem 6.6, we have f(x1) ≥ f(x∗) + g(x∗)T (x1 − x∗) where g(x∗) is
the gradient of f(x) at x = x∗ . Since g(x∗)T (x1 − x∗) ≥ 0, we have

f(x1) ≥ f(x∗)

and so x∗ is a local minimizer. By virtue of Theorem 6.7, x∗ is also a global minimizer.
Similarly, if f(x) is a strictly convex function and g(x∗)Td > 0, then x∗ is a strong
global minimizer.
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Duality : The Lagrangian
Consider an optimization problem in the standard form:

minimize f(x)

subject to aTi x− b = 0, i = 1, . . . , p

cj(x) ≤ 0, j = 1, . . . q

with variable x ∈ Rn , domain D, and optimal value p∗ .
The basic idea in Lagrangian duality is to take the constraints about into account by
augmenting the objective function with a weighted sum of the constraint functions.

Lagrangian:
L : Rn × Rp × Rq → R, with dom L = D × Rp × Rq ,

L(x,λ,µ) = f(x) +

p∑
i=1

λi(a
T
i x− bi) +

q∑
j=1

µjcj(x)

• weighted sum of objective and constraint functions

• λi is Lagrange multiplier associated with aTi x− bi = 0

• µj is Lagrange multiplier associated with cj(x) ≤ 0. 16/37



Duality: The Lagrange dual function

The Lagrange dual function:
g : Rp ×Rq → R as the minimum value of the Lagrangian over x : for λ ∈ Rp,µ ∈ Rq ,

q(λ,µ) = inf
x∈D

L(x, λ, µ) = inf
x∈D

f(x) + p∑
i=1

λi(a
T
i x− bi) +

q∑
j=1

µjcj(x)


g is concave, it can be −∞ for some λ,µ.

Lagrange dual problem
The Lagrange dual problem with respect to the convex problem is defined as

maximize
λ,µ

q(λ,µ)

subject to µ ≥ 0
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Duality: The Lagrange dual function
• For any feasible x and any feasible {λ,µ} of the above maximize problem, we
have

f(x) ≥ q(λ,µ)

Because

L(x,λ,µ) = f(x) +

p∑
i=1

λi(a
T
i x− bi) +

q∑
j=1

µjcj(x)

= f(x) +

q∑
j=1

µjcj(x) ≤ f(x) since j(x) ≤ 0

Thus

q(λ,µ) = inf
x

L(x,λ,µ) ≤ L(x,λ,µ) ≤ f(x)
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Duality : Standard form LP

minimize cTx

subject to Ax = b, x ≥ 0
(1)

Dual function

• Lagrangian is (x ≥ 0 ⇒ −x ≤ 0)

L(x,λ,µ) = cTx+ λT (Ax− b)− µTx = −bTλ+ (c+ATλ− µ)Tx

• L is affine in x, hence (The linear function is bounded from below only when it
is identically zero. Then g(λ,µ) = −∞ except when c+ATλ− µ = 0)

q(λ,µ) = inf
x

L(x,λ,µ) =

−bTλ, c+ATλ− µ = 0

−∞, otherwise

q is linear on affine domain {(λ,µ)|ATµ− λ+ c = 0}, hence concave

Lower bound property: p∗ ≥ −bTλ if ATλ+ c ≥ 0. 19/37



Duality : Standard form LP

The Lagrange dual problem
The lagrange dual problem is defined as

maximize
λ,µ

q(λ,µ)

subject to µ ≥ 0

For the standard form LP, we have

maximize
λ,µ

− bTλ

subject to µ ≥ 0

Since c+ATλ− µ = 0 and µ = c+ATλ, the above problem becomes

maximize
λ

− bTλ

subject to − c−ATλ ≤ 0

minimize
λ

bTλ

subject to (−AT )λ ≤ c
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions
The standard-form LP problem

minimize
x

f(x) = cTx

subject to Ax = b, x ≥ 0
(2)

The dual problem is

maximize
λ

h(λ) = −bTλ

subject to −ATλ+ µ = c, λ ≥ 0 (or) ATλ+ c ≥ 0

(3)

• Under what conditions will the solutions of these problems exist?

• How are the feasible points and solutions of the primal and dual related?

• µ ≥ 0
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions
• An LP problem is said to be feasible if its feasible region is not empty. The
problem in (2) is said to be strictly feasible if there exists and x that satisfies
−λTA+ µ = c with x ≥ 0

• The LP problem in (3) is said to be strictly feasible if there exist λ and µ that
satisfy −λTA+ µ = c with µ ≥ 0.

• It is known that x∗ is a minimizer of the problem in (2) if and only if there exist
λ∗ and µ∗ ≥ 0 such that

−ATλ∗ + µ∗ = c

Ax∗ = b

x∗i µ
∗
i = 0 for 1 ≤ i ≤ n

x∗ ≥ 0, µ∗ ≥ 0

(4)

• A set {x∗,λ∗,µ∗} satisfying (4) is called a primal-dual solution. The set
{x∗,λ∗,µ∗} is a primal-dual solution if and only if x∗ solves the primal and
{λ∗,µ∗} solves the dual.
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Primal-Dual Solutions and Central Path : Primal-Dual Solutions

Theorem: 10.9 Existence of a primal-dual solution
A primal-dual solution exists if the primal and dual problems are both feasible.

Proof: If point x is feasible for the LP problem and {λ,µ} is feasible for the LP
problem, then set

−λTb ≤ −λTb+ µTx = −λTAx+ µTx

= (−ATλ+ µ)Tx = cTx

Since f(x) = cTx has a finite lower bound in the feasible region, there exists a set
{x∗,λ∗,µ∗} that satisfies (4). This x∗ solves the problem in (2). From above
condition h(λ) has a finite upper bound and {λ∗,µ∗} solves the problem in (3).
Consequently, the set {x∗,λ∗,µ∗} is a primal-dual solution.
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Primal-Dual Solutions and Central Path: Primal-Dual Solutions

Theorem 6.10: Strict feasibility of primal-dual solutions
If the primal and dual problems are both feasible, then

1. solutions of the primal problem are bounded if the dual is strictly feasible:

2. solutions of the dual problem are bounded if the primal is strictly feasible:

3. primal-dual solutions are bounded if the primal and dual are both strictly
feasible.

Proof: see reference 5.
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Primal-Dual Solutions and Central Path: Primal-Dual Solutions

Duality gap From (4), we observe that

cTx∗ = [(µ∗)T − (λ∗)TA]x∗ = −(λ∗)TAx∗ = −(λ∗)Tb ⇒ f(x∗) = h(λ∗)

If we define the duality gap as

δ(x,λ) = cTx+ bTλ

Then the above equations imply that δ(x,λ) is always nonnegative with
δ(x∗,λ∗) = 0. For any feasible x and λ, we have

cTx ≥ cTx∗ ≥ −bTλ∗ ≥ −bTλ

cTx− cTx∗ ≥ 0 ≥ −bTλ∗ − cTx∗ ≥ −bTλ− cTx∗ =⇒ 0 ≤ cTx− cTx∗ ≤ δ(x,λ)

It indicates that the duality gap can serve as a bound on the closeness of f(x) to
f(x∗).
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Primal-Dual Solutions and Central Path: Central Path

One of the important concept related to the primal-dual solutions is central path. By
using (4), set {x,λ,µ} with x ∈ Rn , λ ∈ Rp , and µ ∈ Rn is a primal-dual solution if it
satisfies the conditions

Ax = b with x ≥ 0

−ATλ+ µ = c with µ ≥ 0

Xµ = 0

(5)

where X = diag{x1, x2, . . . , xn} The centeral path for a standard form LP problem is
defined as a set of vectors {x(τ),λ(τ),µ(τ)} that satisfy the conditions

Ax = b with x > 0

−ATλ+ µ = c with µ > 0

Xµ = τe

(6)

where τ is a strictly positive scalar parameter, and e = [1 1 · · · 1]T
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Primal-Dual Solutions and Central Path

• For each fixed τ > 0, the vectors in the set {x(τ),λ(τ),µ(τ)} satisfying (6) can
be viewed as sets of points in Rn , Rp , and Rn , respectively.

• When τ varies, the corresponding points form a set of trajectories called the
central path.

• By comparing (6) with (4), it is obvious that the centeral path is closely related
to the primal-dual solutions. Every point on the central path is strictly feasible.

• The central path lies in the interior of the feasible regions of the problems in (2)
and (3) and it approaches a primal-dual solution as τ → 0.

• Given τ > 0 , let {x(τ),λ(τ),µ(τ)} be on the central path. From (6), the duality
gap δ[x(τ,λ(τ)] is given by

δ[x(τ),λ(τ)] = cTx(τ) + bTλ(τ) = [−λT (τ)A+ µT (τ)]x(τ) + bTλ(τ)

= µT (τ)x(τ) = nτ

The central path converges linearly to zero a τ → 0. The objective function
cTx(τ), and bTλ(τ) approach the same optimal value.
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Primal-Dual Solutions and Central Path

Sketch the central path of the LP problem

minimize
x

f(x) = −2x1 + x2 − 3x3

subject to x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Solution: With c = [−2 1 − 3]T , A = [1 1 1], and b = 1, (6) become

x1 + x2 + x3 = 1

−λ+ µ1 = −2

−λ+ µ2 = 1

−λ+ µ3 = −3

x1µ1 = τ, x2µ2 = τ, x3µ3 = τ

where xi > 0 and µi > 0 for i = 1, 2, 3.
28/37



Primal-Dual Solutions and Central Path

From above equations, we have

µ1 = −2 + λ µ2 = 1 + λ µ3 = −3 + λ

Hence µi > 0 for 1 ≤ i ≤ 3 if λ > 3. If we assume that λ > 3, then

1

λ− 2
+

1

λ+ 1
+

1

λ− 3
=

1

τ

i.e.,

1

τ
λ3 −

(
4

τ
+ 3

)
λ2 +

(
1

τ
+ 8

)
λ+

(
6

τ
− 1

)
= 0

The central path can be constructed by finding a root of above equation that satisfies
λ > 3.
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Primal-Dual Solutions and Central Path : Central Path
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Primal-Dual Interior Methods: Path-Following Method

We need to find τk to make {xk,λk,µk} approach the minimizer vertex. In this
lecture, we introduce the method that simultaneously solves the primal and dual LP
problems and has emerged as the modest efficient interior-point method for the LP
problems.

• Consider the standard form LP problem in (2) and its dual (3). Let
wk = {xk,λk,µk} where xk is strictly feasible for the primal and {λk,µk} is
strictly feasible for the dual.

• We need to find the increment vector δw = {δx, δλ, δµ} such that the next
iterate wk+1 = {xk+1,λk+1,µk+1} = {xk + δx,λk + δλ,µk + δµ} remains
strictly feasible and approaches the central path defined by (3) with
τ = τk+1 > 0.

• The path-following method, a suitable δw is obtained as a first-order
approximate solution of (6).
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Primal-Dual Interior Methods: Path-Following Method

If wk+1 satisfies (6) with τ = τk+1 , then

A(xk + δx) = b

−AT (λk + δλ) + (µk + δµ) = c

X̃(µk + δµ) = τk+1e

Aδx = 0

−AT δλ + δµ = 0

∆Xµk +Xδµ +∆Xδµ = τk+1e−Xµk

where

X = diag{x1, x2, . . . , xn}, X̃ = diag{x1 + (δx)1, x2 + (δx)2, . . . , xn + (δx)n},

∆X = diag{(δx)1, (δx)2, . . . , (δx)n}, X̃ = X+∆X

By neglecting the ∆Xδµ and let ∆Xµk = Mδx (we need to find δx) , where
M = diag{(µk)1, (µk)2, . . . , (µk)n}, we have

Aδx = 0, −AT δλ + δµ = 0, Mδx +Xδµ = τk+1e−Xµk (7)
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Primal-Dual Interior Methods: Path-Following Method

Solving (??) for δw , we obtain

δλ = −YAy

δµ = AT δλ

δx = −y −Dδµ

D = M−1X, Y = (ADAT )−1, y = xk − τk+1M
−1e

(8)

where

M−1Xµk =


1/(µk)1

. . .
1/(µk)n



(xk)1

. . .
(xk)n



(µk)1
...

(µk)n


= xk
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Primal-Dual Interior Methods : Path-Following Method

Primal-dual path-following algorithm for the LP problem

1. Input A and a strictly feasible w0 = {x0,λ0,µ0}. Set k = 0 and ρ >
√
n (n is

the dimension of x), and initialize the tolerance ε for the duality gap.

2. If µT
k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue with Step

3

3. Set τk+1 =
µT

k xk

n+ρ
and compute δw = {δx, δλ, δµ} using (??).

4. compute step size αk as follow:

αk = (1− 10−6)αmax, αmax = min(αp, αd)

where

αp = min
i with (δx)i<0

[
−
(xk)i

(δx)i

]
, αd = min

i with (δµ)i<0

[
−
(µk)i

(δµ)i

]
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Primal-Dual Interior Methods: Path-Following Method Example

Sketch the central path of the LP problem

minimize
x

f(x) = −2x1 + x2 − 3x3

subject to x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Solution: Find an initial w0 on the central path by using the method described in the
previous example with τ0 = 5. The vector w0 obtained is {x0,λ0,µ0} with

x0 =

0.3445060.285494

0.370000

 , λ0 = 16.513519, µ0 =

14.51351917.513519

13.513519



With ρ = 7
√
n and ε = 10−6 , the algorithm will converges after eight iterations to the

solution x∗ =
[
0.000000 0.000000 1.000000

]
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A nonfeasible-Initialization: Path-Following Method

If wk+1 satisfies (6) with τ = τk+1 , then

A(xk + δx) = b

−AT (λk + δλ) + (µk + δµ) = c

X̃(µk + δµ) = τk+1e

Aδx = rp

−AT δλ + δµ = rd

Mδx +Xδµ = τk+1e−Xµk

where rp = b−Axk and rd = c+ATλk − µk are the residuals for the primal and
dual constraints, respectively.

δλ = −Y(Ay +ADrd + rp)

δµ = AT δλ + rd

δx = −y −Dδµ

(9)
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Nonfeasible-Initialization Primal-Dual Path-Following Method

Nonfeasible-initialization Primal-dual path-following algorithm for the LP problem

1. Input A,b, c, and w0 = {x0, λ0, µ0}. Set k = 0 and ρ >
√
n (n is a dimension

of x), and initialize the tolerance ε for the duality gap.

2. If µT
k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue with Step

3

3. Set τk+1 =
µT

k xk

n+ρ
and compute δw = {δx, δλ, δµ} using (7).

4. compute step size αk as follow:

αk = (1− 10−6)αmax αmax = min(αp, αd)

where

αp = min
i with (δx)i<0

[
−
(xk)i

(δx)i

]
, αd = min

i with (δµ)i<0

[
−
(µk)i

(δµ)i

]
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Nonfeasible-Initialization Primal-Dual Path-Following Method
Example

Sketch the central path of the LP problem

minimize
x

f(x) = −2x1 + x2 − 3x3

subject to x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Solution: The vector w0 , which is not feasible, is {x0,λ0,µ0} with

x0 =

0.40.3

0.4

 , λ0 = −0.5, µ0 =

1.00.5

1.0



With ρ = 7
√
n and ε = 10−6 , the algorithm will converges after eight iterations to the

solution x∗ =
[
0.000000 0.000000 1.000000

]
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Nonfeasible-Initialization Primal-Dual Path-Following Method
Example
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