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Objective

At the end of this chapter you should be able to:

• Describe and implement the constrained optimization problems

• Understand the concept of Lagrange multipliers

• Understand the Karush-Kuhn-Tucker conditions
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Notation and Basic Assumptions

Constrained Optimization Problem

minimize
x

f(x)

subject to hi(x) = 0 for i = 1, 2, . . . , p

gj(x) ≤ 0 for j = 1, 2, . . . , q

where hi(x) is a equality constraint, and gj(x) is the vector of inequality con-
straint.

Consider a two-variable problem

minimize
x1,x2

f(x1, x2) = x2
1 −

1

2
x1 − x2 − 2

subject to g1(x1, x2) = x2
1 − 4x1 + x2 + 1 ≤ 0

g2(x1, x2) =
1

2
x2
1 + x2

2 − x1 − 4 ≤ 0 3/35



Notation and Basic Assumptions
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A graphical method can be used to solve simple problems. However, it is difficult or
impossible to use such a method for more constrained functions and
high-dimensional systems.
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Notation and Basic Assumptions

• For unconstrained gradient-based optimization, we only require the gradient of
the objective, ∇f(x). To solve a constrained problem, we also require the
gradients of all the constraints. Because the constraints are vectors, their
derivatives yield a Jacobian matrix. For the equality constraints, we have

Jh =
∂h

∂x
=


∂h1
∂x1

· · · ∂h1
∂xn

...
. . .

...
∂hp

∂x1
· · · ∂hp

∂xn


︸ ︷︷ ︸

p×n

=


∇hT

1

...
∇hT

p



• Similarly, the Jacobian of the inequality constraints is an (q × n) matrix.
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n-dimension space

There are several essential linear algebra concepts for constrained optimization.

• The span of a set of vectors is the space formed by all points that can be
obtained by a linear combination of those vectors.

• The null space of a matrix A is the set of all n-dimensional vector p such that
Ap = 0.

u

w

v

αu+ βv + γw

Span in three-dimensional space.

a1
a2

p

Nullspace of a 2× 3 matrix A of rank 2, where a1

and a2 are the row vectors of A.
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Hyperplanes and Half-space

vTp > 0v

x0

vTp < 0

vTp = 0
vTp = 0 v

vTp > 0

vTp < 0

x0

• In n dimensions, a hyperplane of n− 1 dimensions divides the space into two
half-spaces: in one of these, vTp > 0, and in the other, vTp < 0.

• Each half-space is closed if it includes the hyperplane (vTp = 0) and open
otherwise.
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Hyperplanes and Half-space

h1 = 0

∇h2

∇h1

h2 = 0

x∗

• The function gradient at the point on the isosurface is locally perpendicular to
the isosurface. The gradient vector defines the tangent hyperplane and the
point.

• The set of points such that ∇fT p = 0. 8/35



Hyperplanes and Half-space

u

v αu+ βv

α, β ≥ 0

x

a1

a2

• The intersection of multiple half-spaces yields a polyhedral cone.

• A polyhedral cone is the set of all the points that can be obtained by the linear
combination of a given set of vectors using nonnegative coefficients.
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Equality Constraints

For the unconstrained case, by taken a first-order Taylor series expansion of the
objective function with some step p that is small enough by neglecting the
second-order term:

f(x+ p) ≈ f(x) +∇f(x)Tp

At the minimum point x∗ , we should have

f(x∗ + p) ≥ f(x∗) ⇒ ∇f(x∗)Tp ≥ 0

For unconstraint problem, ∇fTp ≥ 0 is satisfied if ∇f(x∗) = 0

∇f Tp = 0

∇f
∇f Tp>0

∇f Tp<0

The gradient f(x), which is the direction of
steepest function increase, splits the
design space into two halves. All p
direction that make the function decrease
always make ∇fTp < 0 except when
∇fTp = 0. 10/35



Equality Constraints

• For constrained problem, the function increase condition still applies, but p
must also be a feasible direction. To find the feasible directions, we use a
first-order Taylor series expansion for each equality constraint function as

hj(x+ p) ≈ hj(x) +∇hj(x)
Tp, j = 1, . . . , p

• x is a feasible point, then hj(x) = 0 for all constraints j, then

∇hj(x)
Tp = 0, for all j = 1, . . . , p

• The direction p is feasible when it is orthogonal to all equality constraint
gradients. Or,

Jh(x)p = 0

• Any feasible direction has to lie in the nullspace of the Jacobian of the
constraints, Jh . 11/35



Equality Constraints

• For constrained optimality, we need to satisfy both ∇f(x∗)Tp ≥ 0 and
Jh(x)p = 0

• For equality constraints, if a direction p is feasible, then −p must also be
feasible (from Taylor series), Therefore, the only way to satisfy ∇f(x∗)Tp ≥ 0 is
if ∇f(x)Tp = 0.

1st order condition

For x∗ to be constrained optimum, we require

∇f(x∗)Tp = 0 for all p such that Jh(x
∗)p = 0

• On other words, the projection of the objective function gradient onto the
feasible space must vanish.
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Equality Constraints

p

∇f

∇fT p

∇h1

∇h2 p

∇f

∇fT p = 0

∇h1

∇h2

• The objective function gradient must be a linear combination of the gradients of
the constraints. (left) we still have decent direction. (right) x is optimal.

• We can write

∇f(x∗) = −
p∑

j=1

λj∇hj(x
∗)

• λj are called the Lagrange multipliers. For equality constraints, the sign of
Lagrange multipliers is arbitrary. 13/35



Equality Constraints

It is more convenient to use Lagrangian function:

L(x, λ) = f(x) + h(x)Tλ

∇xL = ∇f(x) + Jh(x)
Tλ = 0, ∇λ = h(x) = 0

With the Lagrangian function, we have transformed a constrained problem into an
unconstrained problem by adding new variables, λ.

1st-order optimality conditions

The optimality conditions for the equality constrained case are

∇f(x∗) = −Jh(x)
Tλ

h(x) = 0

This conditions assumes that the gradients of the constraints are linearly
independent; that is, Jh has full row rank.
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Equality Constraints

The set of equality constraints

h1(x) = 0, h2(x) = 0, · · · , hp(x) = 0

h(x) =
[
h1(x) h2(x) · · · hp(x)

]T
,h(x) = 0

Regular point

A point x is called a regular point of the constraintsh(x) if x satisfiesh(x) = 0

and column vectors ∇h1(x), ∇h2(x), · · · ,∇hp(x) are linearly independent.

• The definition states that x is a regular point of the constraints if it is a solution
of h(x) = 0 and the Jacobian Jh =

[
∇h1(x) ∇h2(x) · · · ∇hp(x)

]T
• It is impossible for x to be a regular point of the constraints if p > n. It is the
upper bound for the number of independent equality constraints, i.e., p ≤ n.
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Equality Constraints

The constraint qualification condition does not hold in this case because the
gradients of the two constraints not linearly independent.

h1 = 0

∇h2

∇h1

h2 = 0

x∗

The optimality conditions using first-oder conditions is a necessary but not sufficient.
We need the Hessian of the objective function to be positive definite.

HL = Hf +

p∑
j=1

λjHhj

16/35



Equality Constraints

2st-order optimality conditions

The second-order sufficient conditions are as follows:

pTHLp > 0 for all p such that Jhp = 0

This conditions assumes that the gradients of the constraints are linearly
independent; that is, Jh has full row rank.
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Equality Constraints

Discuss and sketch the feasible region described by the equality constraints

−x1 + x3 − 1 = 0

x2
1 + x2

2 − 2x1 = 0

The Jacobian of the constraints is given by

Jh(x) =

[
−1 0 1

2x1 − 2 2x2 0

]

which has rank 2 by giving any values of x2 .

• The Jh(x) has rank less than 2 when x =
[
1 0 x3

]T
.

• Sine x =
[
1 0 x3

]T
does not satisfy the circle constrain, any point x

satisfying both constraints is regular. (make Jh has full row rank.)
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Equality Constraints: Example I

Consider a constrained problem with a linear objective function and a quadratic
equality constraint:

minimize
x

f(x) = x1 + 2x2

subject to h(x) =
1

4
x2
1 + x2

2 − 1 = 0

The Lagrangian is

L(x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x2
1 + x2

2 − 1

)

Then,

∇Lx =

[
1 + 1

2
λx1

2 + 2λx2

]
=

[
0

0

]

∇Lλ =
1

4
x2
1 + x2

2 − 1 = 0

We have x1 = −2/λ, and x2 = −1/λ, then λ = ±
√
2. 19/35



Equality Constraints: Example I

For each λA =
√
2 and λB = −

√
2, we obtain two possible solutions:

x1

−3 −2 −1 0 1 2 3

x 2

−2

−1

0

1

2

∇f

xA

∇h

∇f

xB

∇h
 Maximum

 Minimum

xA =

[
x1

x2

]
=

[
−
√
2

−
√
2

2

]
, λA =

√
2

xB =

[
x1

x2

]
=

[√
2

√
2
2

]
, λB = −

√
2

• The Hessian of the Lagrangian is

HL =

[
1
2
λ 0

0 2λ

]

• It is clear thatH is positive for xA , and
negative for xB . Then xA is a minimum
point, and xB is a maximum point.
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Equality Constraints: Example II

Consider the following problem:

minimize
x

f(x) = x2
1 + 3(x2 − 2)2

subject to h(x) = βx2
1 − x2 = 0,

where β is a parameter that we will vary to change the characteristics of the constraint.
The Lagrangian for this problem is

L(x, λ) = x2
1 + 3(x2 − 2)2 + λ

(
βx2

1 − x2

)
∇xL =

[
2x1(1 + λβ)

6(x2 − 2)− λ

]
= 0

∇λL = βx2
1 − x2 = 0

Form 2x1(1 + λβ) = 0 we get x1 = 0 , then the solution is
[
x1 x2 λ

]
=

[
0 0 −12

]
, which is independent of β.
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Equality Constraints: Example II

To determine if this is a minimum, we must check the second-order conditions by
evaluating the Hessian of the Lagrangian,

HL =

[
2(1− 12β) 0

0 6

]

• The feasible directions are all p such that JT
hp = 0. Here JT

h =
[
2βx1 −1

]
,

yielding Jh(x
∗) =

[
0 −1

]T
• The feasible directions at the solution can be represented as p =

[
α 0

]T
,

where α is any number.

• For positive curvature in the feasible directions, we require that

pTHLp = 2α2(1− 12β) > 0

β <
1

12
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Inequality Constraints

We can use some of the concepts from the equality constrained optimality conditions
for inequality constrained problems.

• An inequality constraint j is feasible when gj(x
∗) ≤ 0 and it is said to be active

if gj(x∗) = 0 and inactive if gi(x∗) < 0.

• Based on the Taylor series, for any small enough feasible step p, we get the
condition

f(x∗ + p) = f(x∗) +∇f(x∗)Tp

∇f(x∗)Tp ≥ 0, since x is the optimal point.

• The decent directions, if it is feasible, is in the open half-space defined by the
hyperplane tangent to the gradient of the objective.

• Consider the Taylor series of the inequality constraints

gj(x+ p) ≈ gj(x) +∇gj(x)
Tp ≤ 0, j = 1, . . . , q
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Inequality Constraints

There are two possibilities to consider for each inequality constraint: inactive
gj(x) < 0 or active gj(x) = 0.

• If the constraint is inactive we can take a step p in any direction and remain
feasible as long as the step is small enough.

• Inequality constraints do not need the nullspace of the Jacobian matrix. From

gj(x+ p) ≈ gj(x) +∇gj(x)
Tp ≤ 0, j = 1, . . . , q

if constraint j is active (gj(x) = 0), then the nearby point gj(x+ p) is only
feasible if ∇gj(x)

Tp ≤ 0 for all constraints j that are active. In matrix form, we
can write Jg(x)p ≤ 0, where the Jacobian matrix includes only the gradients of
the active constraints.
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Inequality Constraints

x

∇g1
∇g2

Feasible
directions

JT
g σ, σ ≥ 0

• The set of feasible directions that satisies all active
constraints is the intersection of all the closed
half-spaces defined by the inequality constraints, that
is all p such that Jg(x)p ≤ 0.

• The intersection of the feasible directions forms a
polyhedral cone.

• To find the cone of feasible directions, first consider
the cone formed by the active inequality constraint
gradients (shown in gray).

The cone is defined by all vectors d such that

d = JT
g σ =

q∑
j=1

σj∇gj , where σj ≥ 0

A direction p is feasible if pTd ≤ 0 for all d in the cone. The set of all feasible
directions forms the polar cone of the cone defined above and is shown in blue.
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Inequality Constraints: Farkas’ lemma

x

∇g1
∇g2

Feasible
descent

directions

JT
g σ, σ ≥ 0

−∇f

∇f

∇g1
∇g2−∇f

∇f

We need to establish under which condition there
is no feasible descent direction or when is there no
intersection between the cone of feasible directions
and the open half-space of descent direction?

• There exists a p such that Jgp ≤ 0 and
∇fTp < 0 (a descent direction is feasible.
(above))

• There exists a σ such that JT
g σ = −∇f with

σ ≥ 0 (This corresponds to
optimality.(below))

• The optimality criterion for inequality
constraints:

∇f + Jg(x)
T σ = 0, with σ ≥ 0
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Inequality Constraints: Farkas’ lemma

• The criteria of the inequality constraints is similar to the equality constraints.
However, σ corresponds to the Lagrange multipliers for the inequality
constraints and carries the additional restriction that σ ≥ 0 (nonnegative)

• If equality constraints are present, the conditions for the inequality constraints
apply only in the subspace of the directions feasible with respect to the equality
constraints.

• We can add all inequality constraints (we don’t know which one we should use.)
to the Lagrangian by replacing them with the equality constraint as

gj + s2j = 0, j = 1, . . . , q

where sj is a new unknown associated with each inequality constraint called a
slack variable. This variable must be positive.

• If sj = 0, the corresponding inequality constraint is active (gj = 0), and when
sj ̸= 0, the corresponding constraint is inactive.
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The Lagrangian

The Lagrangian including both equality and inequality constraints is

L(x,λ,σ, s) = f(x) + λTh(x) + σT (g(x) + s⊙ s) ,

where σ represents the Lagrange multipliers associated with the inequality
constraints. The ⊙ is represented the element-wise multiplication of s.
At the stationary point

∇xL = 0 ⇒
∂L
∂xi

=
∂f

∂xi
+

p∑
l=1

λl
∂hl

∂xi
+

q∑
j=1

σj
∂gj

∂xi
= 0, i = 1, . . . , n

∇λL = 0 ⇒
∂L
∂λl

= hl = 0, l = 1, . . . , p

∇σL = 0 ⇒
∂L
∂σj

= gj + s2j = 0, j = 1, . . . , q

∇sL = 0 ⇒
∂L
∂sj

= 2σjsj = 0, j = 1, . . . , q

The last one is call complementary slackness condition. It can help us to distinguish
the active constraints from the inactive constraint.
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Karush-Kuhn-Tucker (KKT) condition

KKT 1st-order condition

∇f + JT
hλ+ JT

gσ = 0

h = 0

g + s⊙ s = 0

σ ⊙ s = 0

σ ≥ 0

2nd-order condition

pTHLp > 0 for all p such that:

Jhp = 0

Jgp ≤ 0 for the active constraints.
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Problem with one inequality constraint

Consider a problem

minimize
x

f(x) = x1 + 2x2

subject to g(x) =
1

4
x2
1 + x2

2 − 1 ≤ 0

The Lagrangian for this problem is

L(x1, x2, σ, s) = x1 + 2x2 + σ

(
1

4
x2
1 + x2

2 − 1 + s2
)

x1

−3 −2 −1 0 1 2 3

x 2

−2

−1

0

1

2

∇f

xA

∇g

∇f

xB

∇g
 Maximum

 Minimum

• Inequality constrained problem with
linear objective.

• Feasible space within a ellipse.
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Problem with one inequality constraint

Differentiating the Lagrangian with respect to all the variables, we get the first-order
optimality conditions

∂L
∂x1

= 1 +
1

2
σx1 = 0,

∂L
∂x2

= 2 + 2σx2 = 0

∂L
∂σ

=
1

4
x2
1 + x2

2 − 1 = 0,
∂L
∂s

= 2σs = 0

The last equation, we can set s = 0 (meaning the constraint is active) and σ = 0

(meaing the constraint is inactive). However, σ cannot be zero because the first two
equation will not yield a solution. Setting that s = 0 and σ ̸= 0, we can solve the
equations to obtain:

xA =

x1

x2

σ

 =

−
√
2

−
√
2
2√
2

 , xB =

x1

x2

σ

 =


√
2

√
2

2

−
√
2


According to the KKT conditions, the Lagrange multiplier σ must be nonnegative. Point
xA satisfies this condition. There is no feasible descent direction a xA . 31/35



Problem with two inequality constraint

Consider
minimize

x
f(x) = x1 + 2x2

subject to g1(x) =
1

4
x2
1 + x2

2 − 1 ≤ 0

g2(x) = −x2 ≤ 0.

The Lagrangian for this problem is

L(x, σ, s) = x1 + 2x2 + σ1

(
1

4
x2
1 + x2

2 − 1 + s21

)
+ σ2

(
−x2 + s22

)
Differentiating the Lagrangian with respect to all the variables, we get the first-order
optimality conditions

∂L
∂x1

= 1 +
1

2
σ1x1 = 0,

∂L
∂x2

= 2 + 2σ1x2 − σ2 = 0

∂L
∂σ1

=
1

4
x2
1 + x2

2 − 1 + s21 = 0,
∂L
∂σ2

= −x2 + s22 = 0

∂L
∂s1

= 2σ1s1 = 0,
∂L
∂s2

= 2σ2s2 = 0
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Problem with two inequality constraint

We have two complementary slackness conditions, which yield the four potential
combinations listed below:

Assumption Meaning x1 x2 σ1 σ2 s1 s2 Point

s1 = 0 g1 is active -2 0 1 2 0 0 x∗

s2 = 0 g2 is active 2 0 -1 2 0 0 xC

σ1 = 0 g1 is inactive - - - - - -
σ2 = 0 g2 is inactive

s1 = 0 g1 is active √
2

√
2

2
−
√
2 0 0 2−

1
4 xB

σ2 = 0 g2 is inactive

σ1 = 0 g1 is inactive - - - - - -
s2 = 0 g2 is active

Assuming that both constraints are active yields two possible solutions (x∗ and xC )
cooresponding to two different Lagrange multipliers. According to the KKT conditions,
the Lagrange multipliers for all active inequality constraints have to be positive, so
only the solution with σ1 = 1(x∗) is a candidate for a minimum. 33/35



Problem with two inequality constraint

The feasible region is the top half of the ellipse, as show below

x1

−3 −2 −1 0 1 2 3

x 2

−2

−1

0

1

2

∇f

∇g1

∇g2

x ∗

∇f

∇g1

∇g2

xC

∇f
∇g1

xB

 Minimum
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