Linear Programming III : Simplex Method II

Asst. Prof. Dr.-Ing. Sudchai Boonto September 20, 2023

Department of Control System and Instrumentation Engineering King Mongkut's Unniversity of Technology Thonburi Thailand

Objective

- Linear programming (LP) problems occur in a diverse range of real-life applications in economic analysis and planning, operations research, computer science, medicine, and engineering.
- These prolems, it is known that nay minima occur at the vertices of the feasible region and can be determined through a "brute-force" or exhaustive approach by evaluating the objective function at all the vertices of the feasible region.
- The number of variables involved in practical LP problem is often vary large and an exhaustive approach would entail a considerable amount of computation.
- In 1947, Dantzig developed a method for solving LP problems known as the *simplex method*. He solved this problem because he came to the class late and thought an unsolved problem on a blackboard was homework.
- Named one of the "Top 10 algorithms of the 20th century" by Computing in Science & Engineering magazine. Full list at: https://www.siam.org/pdf/news/637.pdf
- The simplex method has been the primary method for solving LP problems since its introduction.

Simplex Method for Alternative Form: Degenerative Case

Simple Method for Standard Form

- At a degenerate vertex, x_k, the number of active constraints is larger than n minus the dimension of the variable vector x. Consequently, the number of rows in matrix A_{ak} is larger than n.
- The Matrix \mathbf{A}_{a_k} should be replaced in Step 2 and 3 of the Algorithm.
- The matrix \mathbf{A}_{a_k} will replaced with $\hat{\mathbf{A}}_{ak}$ that is composed of *n* linearly independent rows of \mathbf{A}_{a_k} .
- The set of constraints corresponding to the rows in $\hat{\mathbf{A}}_{a_k}$ is called a *working set* of active constraints and in the literature $\hat{\mathbf{A}}_{a_k}$ is often referred to as a *working-set matrix*.
- Associated with $\hat{\mathbf{A}}_{a_k}$ is The working index set denoted as

$$\mathcal{W}_k = \{w_1, w_2, \dots, w_n\}$$

• The index set \mathcal{I}_k is redefined as

$$\mathcal{I}_k = \{i : i \notin \mathcal{W}_k \text{ and } \mathbf{a}_i^T \mathbf{d}_k > 0\}$$

Simplex algorithm for the alternative-form LP problem, degenerate vertices

- 1. Input vertex \mathbf{x}_0 , and form a working-set matrix $\hat{\mathbf{A}}_{a_0}$ and a working-index set \mathcal{W}_0 . Set k = 0.
- 2. Solve $\hat{\mathbf{A}}_{a_k}^T \boldsymbol{\mu}_k = -\mathbf{c}$ for $\boldsymbol{\mu}_k$. If $\boldsymbol{\mu}_k \ge 0$, stop (vertex \mathbf{x}_k is a minimizer); otherwise, select index l using $l = \min_{w_i \in \mathcal{W}_k, (\mu_k)_i < 0} (w_i)$
- 3. Solve $\hat{\mathbf{A}}_{a_k} \mathbf{d}_k = -\mathbf{e}_l$ for \mathbf{d}_k .
- 4. Form index set \mathcal{I}_k using $\mathcal{I}_k = \{i : i \notin \mathcal{W}_k \text{ and } \mathbf{a}_i^T \mathbf{d}_k > 0\}$. If \mathcal{I}_k is empty, stop (the objective function tends to $-\infty$ in the feasible region).
- 5. Compute the residual vector $\mathbf{r}_k = \mathbf{A}\mathbf{x}_k \mathbf{b} = (r_i)_{i=1}^p$ parameter $\delta_i = \frac{-r_i}{\mathbf{a}_i^T \mathbf{d}_k}$ for $i \in \mathcal{I}_k$ and $\alpha_k = \min_{i \in \mathcal{I}_k} (\delta_i)$. Record index i^* as $i^* = \min_{\delta_i = \alpha_k} (i)$
- 6. Set $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$. Update $\hat{\mathbf{A}}_{a_{k+1}}$ by deleting row \mathbf{a}_l^T and adding row $\mathbf{a}_{i^*}^T$ and update index set \mathcal{W}_{k+1} accordingly. Set k = k + 1 and repeat for Step 2.

Solve the LP problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f(\mathbf{x}) = -2x_1 - 3x_2 + x_3 + 12x_4\\ \text{subject to} & -x_1 \leq 0, -x_2 \leq 0, -x_3 \leq 0, -x_4 \leq 0\\ & -2x_1 - 9x_2 + x_3 + 9x_4 \leq 0\\ & \frac{1}{3}x_1 + x_2 - \frac{1}{3}x_3 - 2x_4 \leq 0 \end{array}$$

• We start with $\mathbf{x}_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ which is obviously a degenerate vertex. (6 active constraints) Appling the algorithm, the first iteration results in the following computations:

$$\hat{\mathbf{A}}_{a_0} = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad \mathcal{W} = \{1, 2, 3, 4\}$$

- $\hat{\mathbf{A}}_{a_0}^T \mu_0 = \begin{bmatrix} 2 & 3 & -1 & -12 \end{bmatrix}^T \Longrightarrow \mu_0 = \begin{bmatrix} -2 & -3 & 1 & 12 \end{bmatrix}^T$. The lowest absolute value is at l = 1 (from 1 and 2).
- $\hat{\mathbf{A}}_{a_0} \mathbf{d}_0 = -\mathbf{e}_1 \Longrightarrow \mathbf{d}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$. We have $\mathbf{r}_0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$. $\mathcal{I}_0 = \{i : i \notin \mathcal{W}_k \text{ and } \mathbf{a}_i^T \mathbf{d}_k > 0\} \ i = 5 \text{ or } 6$ that are not in \mathcal{W} , but only $\mathbf{a}_6^T \mathbf{d}_0 = \frac{1}{3}$ is positive. $\mathcal{I}_0 = \{6\}$. $\alpha_0 = 0$ and $i^* = 6$

$$\mathbf{x}_{1} = \mathbf{x}_{0} = \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, \quad \hat{\mathbf{A}}_{a_{1}} = \begin{bmatrix} \frac{1}{3} & 1 & -\frac{1}{3} & -2\\0 & -1 & 0 & 0\\0 & 0 & -1 & 0\\0 & 0 & 0 & -1 \end{bmatrix}, \quad \mathcal{W}_{1} = \{6, 2, 3, 4\}$$

• Note that although $\mathbf{x}_1 = \mathbf{x}_0$, $\hat{\mathbf{A}}_{a_1}$ differs from $\hat{\mathbf{A}}_{a_0}$. Repeating from Step 2, the second iteration (k = 1) gives $\boldsymbol{\mu}_1 = \begin{bmatrix} 6 & 3 & -1 & 0 \end{bmatrix}^T$, l = 3, $\mathbf{d}_1 = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T$, $\mathbf{r}_1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$

 $\cdot i = 1, 5 \notin \mathcal{W}$ and

$$\mathbf{a}_{1}^{T}\mathbf{d}_{1} = \begin{bmatrix} -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} = -1$$
$$\mathbf{a}_{5}^{T}\mathbf{d}_{1} = \begin{bmatrix} -2 & -9 & 1 & 9 \end{bmatrix} \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} = -1$$

we have $\mathcal{I}_1 = \{ \varnothing \}$

+ \mathcal{I}_1 is an empty set. Therefore, in the feasible region the objective function tends to $-\infty.$

Simplex Method for Alternative Form: Degenerative Case

Simple Method for Standard Form

Consider an example of the standard LP problem:

minimize
$$f(\mathbf{x}) = x_1 - 2x_2 - x_4$$

subject to $3x_1 + 4x_2 + x_3 = 9$
 $2x_1 + x_2 + x_4 = 6$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$

We have

$$\mathbf{A} = \begin{bmatrix} 3 & 4 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 9 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{x} \in \mathbb{R}^4, \quad p = 2$$

The p equality constraints can be used to express p dependent variables in terms of n - p independent variables. Assume **B** is a matrix that consists of p linearly independent column of **A**. The we have

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Longrightarrow \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{B} \mid \mathbf{N} \end{bmatrix} \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix} = \begin{bmatrix} 3 & 4 & | & 1 & 0 \\ 2 & 1 & | & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ -x_3 \\ x_4 \end{bmatrix} = \mathbf{B}\mathbf{x}_B + \mathbf{N}\mathbf{x}_N = \mathbf{b}$$

- The variables contained in \mathbf{x}_B and \mathbf{x}_N are called basic and non basic variables, respectively.
- + ${\bf B}$ is nonsingular, we can express the basic variables in terms of the nonbasic variables as

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N$$
 11/40

- At vertex \mathbf{x}_k , there is at least n active constraints. In addition to the p equality constraints, there are at least n p inequality constraints that become active in \mathbf{x}_k .
- Therefore, for the standard-form LP problem a vertex contains at least n-p zero components.

Theorem: Linear independence of columns in matrix ${f A}$

The columns of \mathbf{A} corresponding to strictly positive of a vertex \mathbf{x}_k are linearly independent.

Proof: Let $\hat{\mathbf{B}}$ be formed by the columns of \mathbf{A} that correspond to strictly positive components of \mathbf{x}_k ($\mathbf{x}_k \ge 0$), and let $\hat{\mathbf{x}}_k$ be the collection of the positive components of \mathbf{x}_k . If $\hat{\mathbf{B}}\hat{\mathbf{w}} = 0$ for some nonzero $\hat{\mathbf{w}}$, then it follows that

$$\mathbf{A}\mathbf{x}_k = \hat{\mathbf{B}}\hat{\mathbf{x}}_k = \hat{\mathbf{B}}(\hat{\mathbf{x}} + \alpha \hat{\mathbf{w}}) = \mathbf{b}$$
 for any scalar α

Since $\hat{\mathbf{x}}_k > 0$, there exists a sufficiently small $\alpha_+ > 0$ such that

$$\hat{\mathbf{y}}_k = \hat{\mathbf{x}}_k + \alpha \hat{\mathbf{w}} > 0$$
 for $-\alpha_+ \le \alpha \le \alpha_+$.

 $\mathbf{y} \in \mathbb{R}^{n \times 1}$ be such that the components of \mathbf{y}_k corresponding to $\hat{\mathbf{x}}_k$ are equal to the components of $\hat{\mathbf{y}}_k$ and the remaining correspondents of \mathbf{y}_k are zero. Note that with $\alpha = 0$, $\mathbf{y}_k = \mathbf{x}_k$ is a vertex, and when α varies from $-\alpha_+$ to α_+ , vertex x_k would lie between two feasible points on a straight line, which is a contradiction. Hence $\hat{\mathbf{w}}$ must be zero and the columns of $\hat{\mathbf{B}}$ are linearly independent.

Consider

minimize
$$f(\mathbf{x}) = -x_1 - 2x_2$$

subject to $-2x_1 + x_2 + x_3 = 2$
 $-x_1 + x_2 + x_4 = 3$
 $x_1 + x_5 = 3$
 $\mathbf{x} \ge 0$

There are five variables, however we need only three basic variables.

$$\mathbf{Ax} = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$$

$$\mathbf{x}_{3} = \begin{bmatrix} 0 & 3 & -1 & 0 & 3 \end{bmatrix}^{T}$$

$$x_{1}, x_{3} = 0 \text{ for the basic infeasible solution}$$

$$\mathbf{x}_{1} = \begin{bmatrix} 0 & 0 & 2 & 3 & 3 \end{bmatrix}^{T}$$

$$x_{1}, x_{2} = 0 \text{ for the basic feasible solution}$$

$$\mathbf{x}_{5} = \begin{bmatrix} 3 & 6 & 2 & 0 & 0 \end{bmatrix}^{T}$$

$$x_{4}, x_{5} = 0 \text{ for the basic feasible solution}$$

- Using above theorem, we can use the columns of $\hat{\mathbf{B}}$ as a set of core basis vectors to construct a nonsingular square matrix \mathbf{B} . If $\hat{\mathbf{B}}$ already contains p columns, we assume that $\mathbf{B} = \hat{\mathbf{B}}$, otherwise, we augment $\hat{\mathbf{B}}$ with additional columns of \mathbf{A} to obtain a square nonsingular \mathbf{B} .
- Let the index set associated with **B** at \mathbf{x}_k be denoted as $\mathcal{I}_\beta = \{\beta_1, \beta_2, \dots, \beta_p\}$. With matrix **B** so formed, matrix **N** can be constructed with those n - p columns of **A** that are not in **B**. Let $\mathcal{I}_N = \{v_1, v_2, \dots, v_{n-p}\}$ be the index set for the columns of **N** and let \mathbf{I}_N be the $(n - p) \times n$ matrix composed of rows v_1, v_2, \dots, v_{n-p} of the $n \times n$ identity matrix.
- It is clear that at vertex \mathbf{x}_k the active constrain matrix \mathbf{A}_{a_k} contains the working-set matrix

$$\hat{\mathbf{A}}_{a_k} = \begin{bmatrix} \mathbf{A} \\ \mathbf{I}_N \end{bmatrix}$$

- It can be shown that matrix \hat{A}_{a_k} is nonsingular. If $\hat{A}_{a_k}\mathbf{x} = 0$ for some \mathbf{x} , then we have

$$\mathbf{B}\mathbf{x}_B + \mathbf{N}\mathbf{x}_N = 0 \text{ and } \mathbf{x}_N = 0 \implies \mathbf{x}_B = -\mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N = 0$$

 $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B & \mathbf{x}_N \end{bmatrix}^T = 0.$

Therefore, $\hat{\mathbf{A}}_{a_k}$ is nonsingular. In summary, at a vertex \mathbf{x}_k a working set of active constraints for the application of the simplex method can be obtained with three simple steps as follows:

- 1. Select the columns in matrix \mathbf{A} that correspond to the strictly positive components of \mathbf{x}_k to form matrix $\hat{\mathbf{B}}$.
- 2. If the number of columns in $\hat{\mathbf{B}}$ is equal to p, take $\mathbf{B} = \hat{\mathbf{B}}$; otherwise, $\hat{\mathbf{B}}$ is augmented with additional columns of \mathbf{A} to form a square nonsingular matrix \mathbf{B} .
- 3. Determine the index set \mathcal{I}_n and form matrix \mathbf{I}_N .

Identify working sets of active constraints at vertex $\mathbf{x} = [3 \ 0 \ 0 \ 0]^T$ for the LP problem

minimize
$$f(\mathbf{x}) = x_1 - 2x_2 - x_4$$

subject to $3x_1 + 4x_2 + x_3 = 9$
 $2x_1 + x_2 + x_4 = 6$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$

Solution Using $\mathbf{r} = \mathbf{A}\mathbf{x} - \mathbf{b}$, we can verify that the point $\mathbf{x} = [3 \ 0 \ 0 \ 0]^T$ is a degenerate vertex at which there are five active constraints. (count the zero element in \mathbf{r}). Since x_1 is the only strictly positive component, $\hat{\mathbf{B}}$ contains only the first column of \mathbf{A} , i.e., $\mathbf{B} = \begin{bmatrix} 3 & 2 \end{bmatrix}^T$. Matrix $\hat{\mathbf{B}}$ can be augmented, by using the second column of \mathbf{A} to generate a nonsingular $\hat{\mathbf{B}} = \mathbf{B}$ as

$$\mathbf{B} = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$$

This leads to

$$\mathcal{I}_N = \{3,4\} \quad \text{and} \quad \hat{\mathbf{A}}_a = \begin{bmatrix} 3 & 4 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The vertex \mathbf{x} is degenerate, matrix $\hat{\mathbf{A}}_a$ is not unique. There are two possibilities for augmenting $\hat{\mathbf{B}}$. Using the third column of \mathbf{A} for the augmentation, we have

$$\mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix}, \ \mathcal{I}_N = \{2, \ 4\}, \ \hat{\mathbf{A}}_a = \begin{bmatrix} 3 & 4 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Alternatively, augmenting $\hat{\mathbf{B}}$ with the fourth column of \mathbf{A} yields

$$\mathbf{B} = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, \ \mathcal{I}_N = \{2, 3\}, \text{ and } \hat{\mathbf{A}}_a = \begin{bmatrix} 3 & 4 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

It can be easily verified that all three $\hat{\mathbf{A}}_a$'s are nonsingular.

We could change steps 2 and 3 of the previous simplex algorithm to reduce the computational complexity.

• At a vertex \mathbf{x}_k , the nonsingularity of the working-set matrix $\hat{\mathbf{A}}_{a_k}$ given by

 $\hat{\mathbf{A}}_{a_k} = \begin{bmatrix} \mathbf{A} \\ \mathbf{I}_N \end{bmatrix}$ implies that there exist $\boldsymbol{\lambda}_k \in \mathbb{R}^{p imes 1}$ and $\hat{\boldsymbol{\mu}}_k \in \mathbb{R}^{(n-p) imes 1}$ such that

$$\mathbf{c} = \hat{\mathbf{A}}_{a_k}^T \begin{bmatrix} -\boldsymbol{\lambda}_k \\ \hat{\mu}_k \end{bmatrix} = -\mathbf{A}^T \boldsymbol{\lambda}_k + \mathbf{I}_N^T \hat{\mu}_k$$

If $\mu_k \in \mathbb{R}^{n \times 1}$ is the vector with zero basic variables and the components of $\hat{\mu}_k$ as its nonbasic variables, then the above equation can be expressed as

$$\mathbf{c} = -\mathbf{A}^T \boldsymbol{\lambda}_k + \boldsymbol{\mu}_k$$

The vertex \mathbf{x}_k is a minimizer if and only if $\hat{\boldsymbol{\mu}}_k \geq 0$.

 If we use a permutation matrix P to rearrange the components of c in accordance with the partition of x_k into basic and nonbasic variables then

$$\mathbf{Pc} = \begin{bmatrix} \mathbf{c}_B \\ \mathbf{c}_N \end{bmatrix} = -\mathbf{P}\mathbf{A}^T \boldsymbol{\lambda}_k + \mathbf{P}\mathbf{I}_N^T \hat{\boldsymbol{\mu}}_k = -\begin{bmatrix} \mathbf{B}^T \\ \mathbf{N}^T \end{bmatrix} \boldsymbol{\lambda}_k + \begin{bmatrix} 0 \\ \hat{\boldsymbol{\mu}}_k \end{bmatrix}$$

It follows that

$$\mathbf{B}^T \boldsymbol{\lambda}_k = -\mathbf{c}_B$$
 and $\hat{\boldsymbol{\mu}}_k = \mathbf{c}_N + \mathbf{N}^T \boldsymbol{\lambda}_k$

Since **B** is nonsingular, λ_k and $\hat{\mu}_k$ can be computed. The size of the matrix is $p \times p$, which is much smaller than $n \times n$ of the simplex method for the non-standard form.

- If some entry in $\hat{\mu}_k$ is negative, then \mathbf{x}_k is not a minimizer and a search direction \mathbf{d}_k needs to be determined. Note the Lagrange multipliers $\hat{\mu}_k$ are not related to the equality constraints in $\mathbf{A}\mathbf{x} = \mathbf{b}$ but are related to those bound constraints $\mathbf{x} \geq 0$ that are active and are associated with the nonbasic variables.
- If the search direction \mathbf{d}_k is partitioned according to the basic and nonbasic variables, \mathbf{x}_B and \mathbf{x}_N , into $\mathbf{d}_k^{(\mathbf{B})}$ and $\mathbf{d}_k^{(\mathbf{N})}$, respectively, and if $(\hat{\boldsymbol{\mu}}_k)_l < 0$, then assigning

 $\mathbf{d}_k^{(\mathbf{N})} = \mathbf{e}_l$ where \mathbf{e}_l is the lth column of the $(n-p) \times (n-p)$ identity matrix.

 \mathbf{d}_k makes the v_l th constraint inactive without affecting other bound constraints that are associated with the nonbasic variables.

- In order to assure the feasibility of \mathbf{d}_k , it is also required that $\mathbf{Ad}_k = 0$. This requirement can be described as

$$\mathbf{A}\mathbf{d}_k = \mathbf{B}\mathbf{d}_k^{(\mathbf{B})} + \mathbf{N}\mathbf{d}_k^{(\mathbf{N})} = \mathbf{B}\mathbf{d}_k^{(\mathbf{B})} + \mathbf{N}\mathbf{e}_l = 0$$

 $\cdot ~ \mathbf{d}_k^{(\mathbf{B})}$ can determined by solving the system of equations

$$\mathbf{Bd}_k^{(\mathbf{B})} = -\mathbf{a}_{v_l}$$
 where $\mathbf{a}_{v_l} = \mathbf{Ne}_l$

Altogether we can determine the search direction d_k . It follows that

$$\mathbf{c}^T \mathbf{d}_k = -\boldsymbol{\lambda}_k^T \mathbf{A} \mathbf{d}_k + \hat{\boldsymbol{\mu}}_k^T \mathbf{I}_N d_k = \hat{\boldsymbol{\mu}}_k^T \mathbf{d}_k^{(\mathbf{N})} = \hat{\boldsymbol{\mu}}_k^T \mathbf{e}_l = (\hat{\boldsymbol{\mu}}_k)_l < 0$$

Therefore, \mathbf{d}_k is a feasible descent direction.

• To determine the step size α_k , we note that a point $\mathbf{x}_k + \alpha \mathbf{d}_k$ with any α satisfies the constraints $\mathbf{A}\mathbf{x} = \mathbf{b}$, i.e.

$$\mathbf{A}(\mathbf{x}_k + \alpha \mathbf{d}_k) = \mathbf{A}\mathbf{x}_k + \alpha \mathbf{A}\mathbf{d}_k = \mathbf{b}$$

The only constraints that are sensitive to step size α_k are those that are associated with the basic variables and are decreasing along direction \mathbf{d}_k .

- When limited to the basic variables, \mathbf{d}_k becomes $\mathbf{d}_k^{(\mathbf{B})}$. Since the normals of the constraints in $\mathbf{x} \geq 0$ are simply coordinate vectors, a bound constraint associated with a basic variable is decreasing along \mathbf{d}_k if the associated component in $\mathbf{d}_k^{(\mathbf{B})}$ is negative.
- The special structure of the inequality constraints in $\mathbf{x} \ge 0$ implies that the residual vector, when limited to basic variables in \mathbf{x}_B , is \mathbf{x}_B itself.
- The above analysis lead to a simple step that can be used to determine the index set

$$\begin{split} \mathcal{I}_k &= \{i: (\mathbf{d}_k^{(\mathbf{B})})_i < 0\} \text{ and, if } \mathcal{I} \text{ is not empty} \\ \alpha_k &= \min_{i \in \mathcal{I}_k} \left[\frac{(\mathbf{x}_k^{(\mathbf{B})})_i}{(-\mathbf{d}_k^{(\mathbf{B})})_i} \right] \end{split}$$

where $\mathbf{x}_k^{(\mathbf{B})}$ denotes the vector for the basic variables of \mathbf{x}_k .

- If i^* is the index in \mathcal{I}_k that achieves α_k , then the i^* th component of $\mathbf{x}_k^{(\mathbf{B})} + \alpha_k \mathbf{d}_k^{(\mathbf{B})}$ is zero. This zero component is then interchanged with the *l*th component of $\mathbf{x}_k^{(\mathbf{N})}$, which is now not zero but α_k .
- The vector $\mathbf{x}_{k}^{(\mathbf{B})} + \alpha \mathbf{d}_{k}^{(\mathbf{B})}$ after this updating becomes $\mathbf{x}_{k+1}^{(\mathbf{B})}$ and $\mathbf{x}_{k+1}^{(\mathbf{N})}$ remains a zero vector. Matrices \mathbf{B} and \mathbf{N} as well as the associated index sets \mathcal{I}_{B} and \mathcal{I}_{N} also need to be updated accordingly.

Simplex algorithm for the standard-form LP problem

- 1. Input vertex \mathbf{x}_0 set k = 0, and form $\mathbf{B}, \mathbf{N}, \mathbf{x}_0^{(\mathbf{B})}, \mathcal{I}_B = \{\beta_1^{(0)}, \beta_2^{(0)}, \dots, \beta_p^{(0)}, \text{and} \mathcal{I}_N = \{v_1^{(0)}, v_2^{(0)}, \dots, v_{n-p}^{(0)}\}.$
- 2. Partition vector \mathbf{c} into \mathbf{c}_B and \mathbf{c}_N . Solve $\mathbf{B}^T \lambda_k = -\mathbf{c}_B$ for λ_k and compute $\hat{\boldsymbol{\mu}}_k$ using

$$\hat{\boldsymbol{\mu}}_k = \mathbf{c}_N + \mathbf{N}^T \boldsymbol{\lambda}_k$$

If $\hat{\mu}_k \ge 0$, stop (\mathbf{x}_k is a vertex minimizer); otherwise, select the index l that corresponds to the most negative component in $\hat{\mu}_k$.

- 3. Solve $\mathbf{Bd}_k^{(\mathbf{B})} = -\mathbf{a}_{v_l}$ for $\mathbf{d}_k^{(\mathbf{B})}$ where \mathbf{a}_{v_l} is the $v_l^{(k)}$ th column of \mathbf{A} .
- 4. Form index set \mathcal{I}_k in $\mathcal{I}_k = \{i : (\mathbf{d}_k^{(\mathbf{B})})_i < 0\}$. If \mathcal{I}_k is empty then stop (the objective function tends to $-\infty$ in the feasible region); otherwise, compute α_k using $\alpha_k = \min_{i \in \mathcal{I}_k} \left[\frac{(\mathbf{x}_k^{(\mathbf{B})})_i}{(-\mathbf{d}_k^{(\mathbf{B})})_i} \right]$

- 4. (cont.) and record the index i^* with $\alpha_k = \frac{(\mathbf{x}_k^{(B)})_i^*}{(-\mathbf{d}_k^{(B)})_i^*}$
- 5. Compute $\mathbf{x}_{k+1}^{(\mathbf{B})} = \mathbf{x}_{k}^{(\mathbf{B})} + \alpha_{k} \mathbf{d}_{k}^{(\mathbf{B})}$ and replace its *i**th zero component by α_{k} . Set $\mathbf{x}_{k+1}^{(\mathbf{N})} = 0$. Update **B** and **N** by interchanging the *l*th column of **N** with the *i**th column of **B**.
- 6. Update \mathcal{I}_B and \mathcal{I}_N by interchanging index $v_l^{(k)}$ of \mathcal{I}_N with index $\beta_{i^*}^{(\mathbf{B})}$ of \mathcal{I}_B . Use the $\mathbf{x}_{k+1}^{(\mathbf{B})}$ and $\mathbf{x}_{k+1}^{(\mathbf{N})}$ obtained in Step 5 in conjunction with \mathcal{I}_B and \mathcal{I}_N to form \mathbf{x}_{k+1} . Set k = k + 1 and repeat form Step 2.

Solve the standard-form LP problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f(\mathbf{x}) = 2x_1 + 9x_2 + 3x_3\\ \text{subject to} & -2x_1 + 2x_2 + x_3 - x_4 & = 1\\ & & x_1 + 4x_2 - x_3 - x_5 & = 1\\ & & x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0 \end{array}$$

Solution: We have

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & 1 & -1 & 0 \\ 1 & 4 & -1 & 0 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \text{ and } \mathbf{c} = \begin{bmatrix} 2 & 9 & 3 & 0 & 0 \end{bmatrix}^T$$

To identify a vertex, we set $x_1 = x_3 = x_4 = 0$ and solve the system

$$\begin{bmatrix} 2 & 0 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \text{ for } x_2 \text{ and } x_5.$$

29/40

We have $x_2 = 1/2$ and $x_5 = 1$; hence $\mathbf{x}_0 = \begin{bmatrix} 0 & \frac{1}{2} & 0 & 0 & 1 \end{bmatrix}^T$ is a vertex. Associated with \mathbf{x}_0 are $\mathcal{I}_B = \{2, 5\}$, $\mathcal{I}_N = \{1, 3, 4\}$

$$\mathbf{B} = \begin{bmatrix} 2 & 0 \\ 4 & -1 \end{bmatrix}, \quad \mathbf{N} = \begin{bmatrix} -2 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}, \text{ and } x_0^{(\mathbf{B})} = \begin{bmatrix} \frac{1}{2} & 1 \end{bmatrix}^T$$

Partitioning c into

$$\mathbf{c}_B = \begin{bmatrix} 9 & 0 \end{bmatrix}^T$$
 and $\mathbf{c}_N = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^T$

and solving $\mathbf{B}^T \boldsymbol{\lambda}_0 = -\mathbf{c}_B$ for $\boldsymbol{\lambda}_0$, we obtain $\boldsymbol{\lambda}_0 = \begin{bmatrix} -\frac{9}{2} & 0 \end{bmatrix}^T$. Hence

$$\hat{\boldsymbol{\mu}}_0 = \mathbf{c}_N + \mathbf{N}^T \boldsymbol{\lambda}_0 = \begin{bmatrix} 2\\3\\0 \end{bmatrix} + \begin{bmatrix} -2 & 1\\1 & -1\\-1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{9}{2}\\0 \end{bmatrix} = \begin{bmatrix} 11\\-\frac{2}{3}\\\frac{9}{2} \end{bmatrix}$$

Since $(\hat{\mu}_0)_2 < 0$, x_0 is not a minimizer, and l = 2. Next, we solve $\mathbf{Bd}_0^{(B)} = -\mathbf{a}_{v_2}$ for $\mathbf{d}_0^{(\mathbf{B})}$ with $v_2^{(0)} = 3$ and $\mathbf{a}_3 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$, which yields

$$\mathbf{d}_0^{(\mathbf{B})} = \begin{bmatrix} -\frac{1}{2} \\ -3 \end{bmatrix} \text{ and } \mathcal{I}_0 = \{1,2\}$$

Hence

$$\alpha_0 = \min\left(1,\frac{1}{3}\right) = \frac{1}{3} \text{ and } i^* = 2$$

To find $\mathbf{x}_1^{(\mathbf{B})}$, we compute

$$\mathbf{x}_0^{(\mathbf{B})} + \alpha_0 \mathbf{d}_0^{(\mathbf{B})} = \begin{bmatrix} \frac{1}{3} \\ 0 \end{bmatrix}$$

Replace i^* th component by α_0 , i.e.,

$$\mathbf{x}_1^{(\mathbf{B})} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$
 with $\mathbf{x}_1^{(\mathbf{N})} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Update ${\bf B}$ and ${\bf N}$ as

$$\mathbf{B} = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix} \text{ and } \mathbf{N} = \begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

and update \mathcal{I}_B and \mathcal{I}_N as $\mathcal{I}_B = \{2, 3\}$ and $\mathcal{I}_N = \{1, 5, 4\}$. The vertex obtained is $\mathbf{x}_1 = \begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 \end{bmatrix}^T$ to compute the first iteration. The second iteration starts with the partitioning of \mathbf{c} into

$$\mathbf{c}_B = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$$
 and $\mathbf{c}_N = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$

Solving
$$\mathbf{B}^T \boldsymbol{\lambda}_1 = -\mathbf{c}_B$$
 for $\boldsymbol{\lambda}_1$, we obtain $\boldsymbol{\lambda}_1 = \begin{bmatrix} -\frac{7}{2} & -\frac{1}{2} \end{bmatrix}^T$ which leads to
 $\hat{\boldsymbol{\mu}}_1 = \mathbf{c}_N + \mathbf{N}^T \boldsymbol{\lambda}_1 = \begin{bmatrix} 2\\0\\0 \end{bmatrix} + \begin{bmatrix} -2 & 1\\0 & -1\\-1 & 0 \end{bmatrix}^T \begin{bmatrix} -\frac{7}{2}\\-\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{17}{2}\\\frac{1}{2}\\\frac{7}{2} \end{bmatrix}$

Since $\hat{\mu}_1 > 0$, \mathbf{x}_1 is the unique vertex minimizer.

For LP problems of very small size, the simple method can be applied in terms of a tabular form in which the input data such as **A**, **b**, and **c** are used to form a table. Consider the standard form LP problem:

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} \quad \mathbf{c}^{T}\mathbf{x} \\ \text{subject to} \quad \mathbf{A}\mathbf{x} \quad = \mathbf{b} \\ \mathbf{x} \quad \geq 0 \end{array}$

- Assume that at vertex \mathbf{x}_k the equality constraints are expressed as

$$\mathbf{x}_{k}^{(\mathbf{B})} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{k}^{(\mathbf{N})} = \mathbf{B}^{-1}\mathbf{b}$$

From $\mathbf{c} = -\mathbf{A}^T oldsymbol{\lambda}_k + oldsymbol{\mu}_k$, the objective function is given by

$$\mathbf{c}^T \mathbf{x}_k = \boldsymbol{\mu}_k^T \mathbf{x}_k - \boldsymbol{\lambda}_k^T \mathbf{A} \mathbf{x}_k = \mathbf{0}^T \mathbf{x}_k^{(\mathbf{B})} + \hat{\boldsymbol{\mu}}_k^T \mathbf{x}_k^{(\mathbf{N})} - \boldsymbol{\lambda}_k^T \mathbf{b}$$

The important data at the kth iteration can be put together in a tabular form as a table. $(\mathbf{B}^T \boldsymbol{\lambda}_k = -\mathbf{c}_B, \hat{\boldsymbol{\mu}}_k = \mathbf{c}_N + \mathbf{N}^T \boldsymbol{\lambda}_k)$

\mathbf{x}_B^T	\mathbf{x}_N^T	
I	$\mathbf{B}^{-1}N$	$\mathbf{B}^{-1}\mathbf{b}$
0^T	$\hat{oldsymbol{\mu}}_k^T$	$oldsymbol{\lambda}_k^T \mathbf{b}$

- $\cdot \;$ If $\hat{oldsymbol{\mu}} \geq 0$, \mathbf{x}_k is a minimizer.
- Otherwise, and appropriate rule can be used to choose a negative component in $\hat{\mu}_k$, say $(\hat{\mu})_l < 0$. The column in $\mathbf{B}^{-1}\mathbf{N}$ gives $-\mathbf{d}_k^{(\mathbf{B})}$. This column will be referred to as the pivot column. The variable in \mathbf{x}_N^T that corresponds to $(\hat{\mu})_l$ is the variable chosen as a basic variable.
- Since $\mathbf{x}_k^{(\mathbf{N})} = 0$, $\mathbf{x}_k^{(\mathbf{B})} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_k^{(\mathbf{N})} = \mathbf{B}^{-1}\mathbf{b}$ implies that $\mathbf{x}_k^{(\mathbf{B})} = \mathbf{B}^{-1}\mathbf{b}$. Therefore, the far-right *p*-dimensional vector gives $\mathbf{x}_k^{(\mathbf{B})}$.
- Since $\mathbf{x}_{k}^{(\mathbf{N})} = 0$, $\mathbf{c}^{T} x_{k} = 0^{T} \mathbf{x}_{k}^{(\mathbf{B})} + \hat{\boldsymbol{\mu}}_{k}^{T} \mathbf{x}_{k}^{(\mathbf{N})} \boldsymbol{\lambda}_{k}^{T} \mathbf{b}$ implies that the number in the lower-right corner of the table is equal to $-f(\mathbf{x}_{k})$.

The important data at the *k*th iteration can be put together in a tabular form as a table.

Basic vari	Basic variables		Nonbasic variables			
x_2	x_5	x_1	x_3	x_4	$\mathbf{B}^{-1}\mathbf{b}$	
1	0	-1	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	
0	1	-5	3	-2	1	
0	0	11	$-\frac{3}{2}$	$\frac{9}{2}$	$-\frac{9}{2}$	$\leftarrow \boldsymbol{\lambda}_k^T \mathbf{b}$

- From the previous example with x_0 , since $(\hat{\mu})_2 < 0$, x_0 is not a minimizer. x_3 is the variable in $\mathbf{x}_0^{(\mathbf{N})}$ that will become a basic variable, and the vector above $(\hat{\mu})_2$, $\begin{bmatrix} \frac{1}{2} & 3 \end{bmatrix}^T$ is the pivot column $-\mathbf{d}_0^{(\mathbf{B})}$.
- From $\mathcal{I}_k = \{i : (\mathbf{d}_k^{(\mathbf{B})})_i < 0\}$, the positive components of the pivot column should be used to compute the ratio $(\mathbf{x}_0^{(\mathbf{B})})_i/(-\mathbf{d}_0^{(\mathbf{B})})_i$ where $\mathbf{x}_0^{(\mathbf{B})}$ is the far-right column $(\mathbf{B}^{-1}\mathbf{b})$ in the table. The minimum ratio is $i^* = 2$. The second basic variable, x_5 , should be exchanged with x_3 to become a nonbasic variable.

Basic variables N		Nonbasic	Nonbasic variables			
x_2	x_5	x_1	x_3	x_4	$\mathbf{B}^{-1}\mathbf{b}$	
1	$-\frac{1}{6}$	$-\frac{1}{6}$	0	$-\frac{1}{6}$	$\frac{1}{3}$	
0	$\frac{1}{3}$	$-\frac{5}{3}$	1	$-\frac{2}{3}$	$\frac{1}{3}$	
0	0	11	$-\frac{3}{2}$	$\frac{9}{2}$	$-\frac{9}{2}$	$\leftarrow \boldsymbol{\lambda}_k^T \mathbf{b}$

• To transform x_3 into the second basic variable, we use row operations to transform the pivot column into the i^* th coordinate vector. Here we can add -1/6 times the second row to the first row, and then multiply the second row by 1/3

Basic variables		Nonbasic variables				
x_2	x_3	x_1	x_5	x_4	$\mathbf{B}^{-1}\mathbf{b}$	
1	0	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	
0	1	$-\frac{5}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{1}{3}$	
0	0	$\frac{17}{2}$	$\frac{1}{2}$	$\frac{7}{2}$	-4	$\leftarrow \boldsymbol{\lambda}_k^T \mathbf{b}$

- We interchange the columns associated with variable x_3 and x_5 to form the updated basic and nonbasic variables, and then add 3/2 times the second row to the last row to eliminate the nonzero Lagrange multiplier associated with variable x_3 . Then swap x_3 and x_5 .
- The Lagrange multipliers $\hat{\mu}_1$ in the last row of the tale are all positive and hence \mathbf{x}_1 is the unique minimizer. Vector \mathbf{x}_1 is specified by $\mathbf{x}_1^{(\mathbf{B})} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \end{bmatrix}^T$ in the far-right column and $\mathbf{x}_1^{(\mathbf{N})} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$.

- In the conjunction with the composition of the basic and nonbasic variables, ${\bf x}_1^{({\bf B})}$ and ${\bf x}_1^{({\bf N})}$ yield

$$\mathbf{x}_1 = \begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 \end{bmatrix}^T$$

At \mathbf{x}_1 , the lower-right corner of the table gives the minimum of the objective function as $f(\mathbf{x}_1) = -\boldsymbol{\lambda}_k^T b = 4$.

- 1. Joaquim R. R. A. Martins, Andrew Ning, "Engineering Design Optimization," Cambridge University Press, 2021.
- Mykel J. kochenderfer, and Tim A. Wheeler, "Algorithms for Optimization," The MIT Press, 2019.
- 3. Ashok D. Belegundu, Tirupathi R. Chandrupatla, "Optimization Concepts and Applications in Engineering," Cambridge University Press, 2019.
- Laurent Lessarn, "Introduction to Optimization," Lecture Note, University of Wisconsin–Madison.
- Andreas Antoniou and Wu-Sheng Lu, "Practical Optimization: Algorithms and Engineering Applications," 2nd edition, Springer, 2021.