
Gradient Based Optimization III

Asst. Prof. Dr.-Ing. Sudchai Boonto
Department of Control System and Instrumentation Engineering
King Mongkut’s University of Technology Thonburi
Thailand

September 3, 2025

Objective

At the end of this chapter you should be able to:
▶ Mathematically define the optimality conditions for an unconstrained problem.
▶ Describe, implement, and use line-search-based methods.
▶ Gradient Descent based method

2 / 15

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a variant of gradient descent that scales to very
high dimensional optimization problems, making it suitable for large-scale neural
network training.

▶ SGD makes the most sense in the context of machine learning, where we are
optimizing the parameters θ of a function fθ(x), such as a neural network, to
best fit observed data.

▶ For a given pairs of input-output data {xi, yj}Ni=1 , we seek to find the
parameters θ so that fθ(xj) best approximates yj , averaged over the data:

minimize
θ

N∑
j=1

∥fθ(xj)− yj∥2

▶ This is a nonlinear least squares problem, which may be approaches via
iterative descent methods. It is possible to compute the gradient of the loss
function L(x, y;θ) = ∥fθ(x)− y∥2 with respect to θ.

3 / 15

Stochastic Gradient Descent

From the objective function

V (θ) =
1

N

N∑
i=1

(
θT x(i) − y(i)

)2

x(i) means x of batch i. The gradient descent step (negative gradient)

θk+1 = θk − α∇θV (θ)

We need to calculate the gradients for the whole dataset to perform just one update,
batch gradient descent can be very slow and is intractable for datasets that do not fit
in memory. Batch gradient descent also does not allow us to updata our model online.

∇θV (θ) =


∂

∂θ1
V (θ)

∂
∂θ2

V (θ)

...
∂

∂θn
V (θ)

 =
2

N
XT (Xθ − y)

4 / 15

Stochastic Gradient Descent

The SGD can improve the speed of the batch gradient descent

θ(k+1) = θ(k) − α∇θV (θ, x(i), y(i)),

where x(i) , and y(i) are each random training sample instant.
▶ It is must fast than the batch GD. It is possible to train on huge training sets,

sinch only oine instance needs to be in memory at iteration.
▶ The algorithm is much less regular than batch GD: instead of gently decreasing

until it reaches the minimum, the cost function will bounce up and down,
decreasing only on average.

▶ Over time it will end up very close to the minimum, but one it gets there it will
continue to bounce around, never settling down.

▶ The SGD can jump out of local minima from the random manner, so SGD has a
better chance of finding the global minimum than batch GD.

5 / 15

Mini-Batch Gradient Descent

We want to minimize an objective function (loss): J(θ) = 1
N

∑N
i=1 ℓ(f(xi; θ), yi)

where θ is parameters (weights, bias, etc.), f(xi; θ) is a prediction for input xi , ℓ(·, ·) is
a loss function, and Data: {(xi, yi)}Ni=1

Mini-Batch Gradient Descent
Require: Training data {(xi, yi)}Ni=1 , learning rate η, batch size m, number of

epochs T , initial parameters θ
Ensure: Optimized parameters θ
1: for epoch← 1 to T do
2: Shuffle training data
3: Partition data into batches of sizem

4: for all batch B do
5: Compute predictions f(x; θ) for x ∈ B

6: Compute loss JB(θ)← 1
m

∑
(x,y)∈B ℓ(f(x; θ), y)

7: Compute gradient ∇θJB(θ)

8: Update parameters: θ ← θ − η · ∇θJB(θ)

9: end for
10: end for
11: return θ 6 / 15

Stochastic Gradient Descent

Stochastic Gradient Descent
Require: Initial learning rate η0 , Decay rate k, Training data D = {(xi, yi)}Ni=1 ,

Epochs T , Initial parameters θ
Ensure: Optimized parameters θ
1: for epoch t← 1 to T do
2: ▷ Update the learning rate for the current epoch
3: ηt ← η0/(1 + k · t)
4: Shuffle the training data D randomly.
5: for i← 1 to N do
6: Compute gradient for a single example: g ← ∇θJ(θ;xi, yi)

7: Update parameters: θ ← θ− ηt · g ▷ Use the newly calculated learning
rate

8: end for
9: end for
10: return θ

7 / 15

Adaptive Moment Estimation (Adam)

Adam is a highly effective and widely used optimization algorithm that combines the
best features of two other popular methods: Momentum and RMSprop.
The core of the Adam optimizer is its parameter update rule, where the parameters θ
at time-step k are updated from the previous step k − 1 according to the following
equation

xk = xk−1 − α
m̂k√
v̂k + ϵ

(1)

▶ The update is driven by the learning rate, α, which scales the overall step size.
▶ The numerator, m̂t is the bias-corrected first moment estimate of the gradient.

This term acts like momentum, accumulating an exponentially decaying average
of past gradients to help accelerate in a consistent direction. It is calculated
from the gradient ∇f(xk) and the decay rate β1 :

mk+1 = β1mk + (1− β1)∇f(xk), m̂k =
β1mk−1 + (1− β1)∇f(xk)

1− βk−1
1

8 / 15

Adaptive Moment Estimation (Adam)

▶ The denominator,
√
v̂k provides adaptive, per-parameter scaling. It is the

square root of the bias-corrected second moment estimate, which accumulates
an exponentially decaying average of past squared gradient, effectively creating
an individual learning rate for each parameter. It is calculated using the decay
rate β2 :

vk+1 = β2vk + (1− β2)(∇f(xk))2, v̂k =
β2vk−1 + (1− β2)(∇f(xk))2

1− βk−1
2

▶ Finally, ϵ is a very small constant added to the denominator to ensure numerical
stability by preventing division by zero.

Note: (∇f(xk))2) is an element-wise square.

9 / 15

Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam)
Require: Learning rate α, decay rates β1, β2 , stability constant ϵ
Require: Initial parameters θ, Objective function J(θ)

1: Initialize 1st moment vector: m← 0, Initialize 2nd moment vector: v ← 0

2: Initialize time-step: k ← 0

3: while θ has not converged do
4: k ← k + 1

5: Compute gradient: g ← ∇θJk(θ)

6: m← β1 ·m+ (1− β1) · g
7: v ← β2 · v + (1− β2) · g2 ▷ g2 is element-wise
8: ▷ Compute bias-corrected moment estimates
9: m̂← m/(1− βt

1)

10: v̂ ← v/(1− βt
2)

11: ▷ Update parameters
12: θ ← θ − α · m̂/(

√
v̂ + ϵ) ▷

√
v̂ is element-wise

13: end while
14: return θ

10 / 15

Example: Linear Regression

To see the performance of SGD, consider a linear model y = Ax + b with a
two-dimensional state x. The three methods under comparison; standard (full-batch)
gradient descent, mini-batch stochastic gradient descent, and stochastic gradient
descent with n = 1.

0 20 40

0

10

20

30

0 20 40

10−0.5

100.0

100.5

101.0

101.5

 GD (full-batch)

 Mini-Batch GD

 SGD (batch = 1)

 GD (full-batch)

 Mini-Batch GD

 SGD (batch = 1)

11 / 15

Example: Linear regression

▶ The mini-batch and SGD algorithms converge in many fewer epochs than
full-batch gradient descent.

▶ The epoch in each method implies a single pass through all data, so an epoch
of SGD with batch size 1 involves 2000 single steps with a single data point
(consider faster)

▶ SGD and full-batch can be considered as the extremes of mini-batch stochastic
gradient descent. It appears that a mini-batch of 10 gives a balance of
convergence and computation time.

0 20 40

0

10

20

30

 Batch size = 1

 Batch size = 10

 Batch size = 50

 Batch size = 200

 Batch size = 2000

12 / 15

Example: NonLinear regression

Now we apply SGD and Adam to a nonlinear regression problem of fitting a polynomial
of high-order to noisy data. y(x) = −10x2 + 2x4 . We will fit this polynomial in a
space of 5 degree polynomial. (After tuning)

x
0 20 40

y

−10

−5

0

x
0 20 40

y

−10

−5

0

 Train (noise)

 True function

 Full batch GD

 SGD

 ADAM

 Test (noise)

 True function

 Full batch GD

 SGD

 ADAM

13 / 15

Example: NonLinear regression

The convergence of the methods vs. epoch, again with Adam achieving the lowest
MSE. Adam outperforms full-batch gradient descent and SGD, as expected.

 Iteration
0 500 1000

 M
S
E

100

101

102

 ADAM

 Batch size = 50

 SGD

14 / 15

Reference

1. Joaquim R. R. A. Martins, and Andrew Ning, ”Engineering Design Optimization,”

Cambridge University Press, 2021

2. Mykel J. Kochenderfer, and Tim A. Wheeler, ”Algorithms for Optimization,” The

MIT Press, 2019

15 / 15

