
Calculating Derivative

Asst. Prof. Dr.-Ing. Sudchai Boonto
October 7, 2024

Department of Control System and Instrumentation Engineering
King Mongkut’s Unniversity of Technology Thonburi
Thailand

Objective

At the end of this chapter you should be able to:

• Describe, implement, and Calculating the Derivative.

• Finite Derivative

• Automatic Differentiation

2/18

Introduction

Three derivative calculating techniques are used in the nonlinear optimization
algorithm.

• Finite Differentiation: Based on Taylor’s theorem, this technique observes the
change in function values concerning the small perturbations of the unknown
near a given point x. Let f : Rn 7→ R with respect to the ith variable xi . The
central-difference formula can approximate the derivative.

∂f

∂xi
≈

f(x+ ϵei)− f(x− ϵei)

2ϵ
,

where ϵ is a small positive scalar and ei is the ith unit vector, that is, the vector
whose elements are all 0 except for the 1 in the ith position.

• Automatic Differentiation: This technique uses computer code to evaluate the
function that can be extracted into a composition of elementary arithmetic
operations to which we can apply the chain rule. The automatic derivative (AD)
is often used in machine learning and AI fields.

3/18

Introduction

• Symbolic Differentiation: In this technique, the algebraic specification for the
function f is manipulated by symbolic manipulation tools to produce new
algebraic expressions for each component of the gradient.

4/18

Finite Differentiation

A popular formula for approximating the partial derivative ∂f/∂xi at a given point x
is the forward-difference, or one-sided-difference, approximation, defined as

∂f

∂xi
(x) ≈

f(x+ ϵei)− f(x)

ϵ

The gradient can be built up by simply applying the formula for i = 1, 2, . . . , n. This
process requires evaluation of f at the point x as well as the n perturbed points
x+ ϵei , i = 1, 2, . . . , n: a total of (n+ 1) points.
The Taylor’s theorem

f(x+ p) = f(x) +∇f(x)Tp+
1

2
pT∇2f(x+ p)p,

If we choose L to be a bound on the size of ‖∇2f(·)‖ in the region of interest. The
last term is bounded by (L/2)‖p‖2 , so that

‖f(x+ p)− f(x)−∇f(x)Tp‖ ≤
L

2
‖p‖2 5/18

Finite Differentiation

For p = ϵei , we have that ∇f(x)Tp = ∇f(x)T ei =
∂f
∂xi

, then

∂f

∂xi
(x) =

f(x+ ϵei)− f(x)

ϵ
+ δϵ, where |δϵ| ≤

L

2
ϵ

• In theory the smaller ϵ, the more accuracy. Unfortunately, this expression
ignores the roundoff errors that are introduced when the function f is
evaluated on the real computer, in floating-point arithmetic.

• the quantity u known as unit roundoff is crucial. u is about 1.1× 10−16 in
double precision IEEE floating-point arithmetic.

• The computed values of f(x) and f(x+ ϵei) are related to the exact values in
the following way:

|comp(f(x))− f(x)| ≤ uLf ,

|comp(f(x− ϵei))− f(x− ϵei)| ≤ uLf ,

where comp(·) denotes the computed value, and Lf is a bound on the value of
|f(·)| in the region of interest.

6/18

Finite Differentiation

Then the approximation derivative is bounded by

L

2
ϵ+ 2u

Lf

ϵ
and

d

dϵ

(
L

2
ϵ+ 2u

Lf

ϵ

)
=

Lϵ2 −
(

L
2
ϵ2 + 2uLf

)
ϵ2

= 0

ϵ2 =
4Lf

L
u

The best choice of ϵ is

ϵ =
√
u

7/18

Finite Differentiation

A more accurate approximation to the derivative can be obtained by using the central
difference formula, defined as

∂f

∂xi
(x) ≈

f(x+ ϵei)− f(x− ϵei)

2ϵ)

It is twice as expensive, wince we need to evaluate f at the points x and
x± ϵei, i = 1, 2, . . . , n : a total of 2n+ 1 points. I can be proved as

f(x+ ϵei) = f(x) + ϵ
∂f

∂xi
+

1

2
ϵ2

∂2f

∂x2
i

+O(ϵ3)

f(x− ϵei) = f(x)− ϵ
∂f

∂xi
+

1

2
ϵ2

∂2f

∂x2
i

+O(ϵ3)

Subtracting the second equation from the first and dividing by 2ϵ, we get

∂f

∂xi
(x) =

f(x+ ϵei)− f(x− ϵei)

2ϵ)
+O(ϵ2), where ϵ = u

1
3

8/18

Finite Differentiation: example

Consider the following function with two variables and two functions of interest:

f(x) =

[
f1(x1, x2)

f2(x1, x2)

]
=

[
x1x2 + sinx1

x1x2 + x2
2

]

We can differentiate this symbolically to obtain exact reference values:

∂f

∂x
=

[
x2 + cosx1 x1

x2 x1 + 2x2

]

We evaluate this at x =
(
π
4
, 2

)
, which yields

∂f

∂x
=

[
2.707 0.785

2.00 4.785

]

9/18

Finite Differentiation: Matlab code

1 % esp is a spacing of floating point numbers.
2 epw = sqrt(eps)
3 epc = eps^(1/3)
4
5 f1 = @(x) x(1)*x(2) + sin(x(1)); f2 = @(x) x(1)*x(2) + x(2)^2;
6 f = {f1, f2}
7
8 x = [pi/4; 2]; e = eye(2);
9 nablafw = zeros(2,2); nablafc = zeros(2,2);
10
11 for i = 1:2
12 for j = 1:2
13 nablafw(j,i) = (f{j}(x + epw*e(:,i)) - f{j}(x))/epw;
14 nablafc(j,i) = (f{j}(x + epc*e(:,i)) - f{j}(x - epc*e(:,i)))...
15 /(2*epc);
16 end
17 end
18
19 nablafc
20 nablafw

10/18

Automatic Differentiation

Automatic differentiation (AD) is the generic name for techniques that use the
computational repreentation of a function to produce analytic values for the
derivatives.

• AD techniques are founded on the observation that any function is evaluated by
performing a sequence of simple elementary operations involving just one or
two arguments at a time.

• Two-argument operations include addition, multiplication, division, and the
power operation ab .

• Single-argument operations include the trigonometric, exponential, and
logarithmic function: sinx, cosx, ex , log x etc.

• Using chain rule, if h is a function of the vector y ∈ Rm , which is in turn a
function of the vector x ∈ Rn , the derivative of h with respect to x is

∇xh(y(x)) =
∂h

∂y1
∇y1(x) + · · ·+

∂h

∂ym
∇ym(x) =

m∑
i=1

∂h

∂yi
∇yi(x)

11/18

Example

Consider f(x) = (x1x2 sin x3+ex1x2)
x3

x1

x2

x3

x4 = x1x2

x5 = sin(x3)

x6 = ex4

x7 = x4x5 x8 = x6 + x7 x9 = x8
x3

x4 = x1x2, x5 = sin(x3), x6 = ex4

x7 = x4x5, x8 = x6 + x7, x9 =
x8

x3

12/18

Forward-mode AD

For a more convenient notation, we define a new variable that represents the total
derivative of variable i with respect to a fixed input j as ẋi = dxi/dxj and rewrite the
chain rule as

ẋi =

i−1∑
k=j

∂xi

∂xk
ẋk

ẋ1 = 1, ẋ2 =
∂x2

∂x1
ẋ1 ẋ3 =

∂x3

∂x1
ẋ1 +

∂x3

∂x2
ẋ2,

ẋ4 =
∂x4

∂x1
ẋ1 +

∂x4

∂x2
ẋ2 +

∂x4

∂x3
ẋ3, ẋ5 =

∂x5

∂x1
ẋ1 +

∂x5

∂x2
ẋ2 +

∂x5

∂x3
ẋ3 +

∂x5

∂x4
ẋ4

ẋ6 =
∂x6

∂x1
ẋ1 +

∂x6

∂x2
ẋ2 +

∂x6

∂x3
ẋ3 +

∂x6

∂x4
ẋ4 +

∂x6

∂x5
ẋ5

...

ẋ9 =
df

dx

13/18

Forward-mode AD

ẋ1 = 1, ẋ2 = 0, ẋ3 = 0, ẋ4 = x2ẋ1 + x1ẋ2 = x2

ẋ5 = cos(x3)ẋ3 = 0, ẋ6 = ex4 ẋ4 = x2e
x4 = x2e

x1x2

ẋ7 = x5ẋ4 + x4ẋ5 = x2x5,

ẋ8 = 1ẋ6 + 1ẋ7 = x2e
x1x2 + x2x5 = x2e

x1x2 + x2 sin(x3)

ẋ9 =
∂x9

∂x3
ẋ3 +

1

x2
ẋ8 =

x2

3
(ex1x2 + sin(x3)) =

df

dx1

We can find df
dx2

and df
dx3

by setting ẋ2 = 1 and ẋ3 = 1 respectively.

df

dx2
=

x1

x3
(sinx3 + ex1x2)

df

dx3
=

1

x3
x1x2 cosx3 −

1

x2
3

(ex1x2 + x1x2 sinx3)

14/18

Reverse-mode AD

The reverse mode is also based on the chain rule but uses the alternative form:

dxi

dxj
=

i∑
k=j+1

∂xk

∂xj

dxi

dxk
,

where the summation happens in reverse (starts at i and decrements to j + 1). This is
less intuitive than the forward chain rule, but it is equally valid.
We defined a more convenient notation for the variables that carry the total
derivatives with a fixed i as x̄j = dxi/dxj , which are sometimes called adjoint
variables. Then we can rewrite the chain rule as

x̄j =
i∑

k=j+1

∂xk

∂xj
x̄k

15/18

Reverse-mode AD

f(x) =

[
f1(x1, x2)

f2(x1, x2)

]
=

[
x1x2 + sinx1

x1x2 + x2
2

]
,x =

[π
4
, 2

]
x3 = x1x2, x4 = sinx1, x5 = x3 + x4 = f1

x6 = x2
2, x7 = x3 + x6 = f2

We have

x̄7 = 1, x̄6 =
∂x7

∂x6
x̄7 = x̄7 = 1, x̄5 =

∂x7

∂x5
x̄7 +

∂x6

∂x5
x̄6 = 0

x̄4 =
∂x5

∂x4
x̄5 = 0, x̄3 =

∂x7

∂x3
x̄7 +

∂x5

∂x3
x̄5 = x̄7 + x̄5 = 1

x̄2 =
∂x6

∂x2
x̄6 +

∂x3

∂x2
x̄3 = 2x2x̄6 + x1x̄3 = 2x2 + x1 = 4.785 =

∂f2

∂x2

x̄1 =
∂x4

∂x1
x̄4 +

∂x3

∂x1
x̄3 = cosx1x̄4 + x2x̄3 = 2 =

∂f2

∂x1

For ∂f1
∂x1

and ∂f1
∂x2

, we can find by setting x̄5 = 1. 16/18

Forward-mode or Reverse-mode AD

The difference between the forward and the reverse approaches is that:

• The forward mode computes the Jacobian column by column. Thus, the cost of
the forward mode is proportional to the number of the input nx

• The reverse mode computes the Jacobian row by row. The cost of the reverse
mode is proportional to the number of the output function nf .

• If we have more outputs (e.g., objective and constraints) than inputs (design
variables), the forward mode is more efficient.

• If we have many more input than outputs, then the reverse mode is more
efficient, as normally using in Machine Learning fields.

In Julia, there are packages like ForwardDiff.jl and ReverseDiff.jl. For
Matlab, the deep learning toolbox contains functions to do the AD.

17/18

Reference

1. Joaquim R. R. A. Martins, and Andrew Ning, ”Engineering Design Optimization,”

Cambridge University Press, 2021.

2. Jorge Nocedal, and Stephen J. Wright, ”Numerical Optimization,” 2nd, Springer,

2026

18/18

