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Objective

At the end of this chapter you should be able to:

• Describe, implement, and use line-search-based methods.

• Explain the pros and cons of the various search direction methods.

• Understand steepest descent, conjugate gradient, etc.
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Two Approaches to Finding and Optimum

Line search approach Trust-region approach

3/73



Basic Concept

Consider a problem

minimize
x

f(x), x ∈ Rn

• Most numerical methods require a starting design or point which we call x0 .

• We then determine the direction of travel d0 .

• A step size α0 is then determined based on minimizing f as much as possible
and the design point is updated as x1 = x0 + α0d0 .

• The process of where to go and how far to go are repeated from x1 or
xk+1 = xk + αkdk .
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Basic Concept: Example

Given f(x1, x2) = x2
1 + 5x2

2 , a point x0 = [3 1]T , f0 = f(x0) = 14.

1. construct f(α) along the direction d = [−3 − 5]T and provide a plot of f(α)
versus α, for α ≥ 0.
We have x(α) = x0 + αd = [3− 3α, 1− 5α]T and
f(α) = (3− 3α)2 + 5(1− 5α)2 .
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Basic Concept : Example

2. Find the slope df(α)/dα) at α = 0. Verify that this equal ∇f(x0)Td.
We have

df(α)

dα

∣∣∣∣
α=0

= (−6(3− 3α)− 50(1− 5α))|α=0 = −68

∇f(x0)
Td =

[
2(3) 10(1)

] [−3
−5

]
= −68

3. Minimize f(α) with respect to α, to obtain step size α0 . Given the corresponding
new point x1 and value of f1 = f(x1)

We have

df(α)

dα
= −6(3− 3α)− 50(1− 5α) = 0 =⇒ 268α = 68 or α = 0.2537

x1 =

[
3

1

]
+ α0

[
−3
−5

]
=

[
2.2388

−0.2687

]
, f(x1) = 5.3732, less than f0 = 14.
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Basic Concept : Example

2. Provide a plot showing contours of the function, steepest descent direction x0

and x1 .
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Basic Concept : Example

We want to design the width and height of
the rectangular cross-section to increase
the bending stress defined by

σ0 =
6M

wh2
, whereM is a moment.

With the initial design x = (w, h) = (1, 3), we have

σ0 =
6(2000× 24)

1(32)
= 32, 000psi

Using d = [−1/
√
5 − 2/

√
5]T and α = 0.2 we have

x1 = x0 + αd =

[
1

3

]
+ 0.2

[
−1/
√
5

−2/
√
5

]
=

[
0.9106

2.8211

]
, σ1 = 71, 342 psi

8/73



Line Search : Exact Line Search

Assume we have chosen a descent direction d. We need to choose the step factor α to
obtain our next design point. One approach is to use line search, which selects the
step factor that minimizes the one-dimensional function:

minimize
α

f(x+ αd)

To inform the search, we can use the derivative of the line search objective, which is
simply the directional derivative along d at x+ αd.

function LINE_SEARCH(f,d)
objective = α→ f(x+ α ∗ d)
a, b = brackect_minimum(objective)
α = minimize(objective, a, b)
return x+ α ∗ d

end function

The exact line search is expensive, if we need to do it every step of the optimization.
In Matlab environment, we can use commands fminbnd or fminsearch.
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Line Search : Exact Line Search

• One disadvantage of conducting a line search at each step is the computational
cost of optimizing α to a high degree of precision.

• We could quickly find a reasonable value and then move on, selecting xk+1 ,
and then picking a new direction dk+1 .

• Some algorithms use a fixed step factor. Large steps will tend to result in fast
convergence but risk overshooting the minimum.

• Smaller steps tend to be more stable but can result in slower convergence.

• A fixed step factor α is sometimes referred to as a learning rate.

• Another method is to use a decaying step factor:

αk = α1γk−1 for γ ∈ (0, 1]

The decaying step factors are popular when minimizing noisy objective function,
and always used in machine learning applications.
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Line Search : Exact Line Search

Consider conducting a line search on f(x1, x2, x3) = sin(x1x2) + e(x2+x3) − x3 from
x = [1, 2, 3] in the direction d = [0,−1,−1]. The corresponding optimization problem
is:

minimize
α

sin((1 + 0α)(2− α))

+ e((2−α)+(3−α)) − (3− α)

which simplifies to:

minimize
α

sin(2− α) + e(5−2α) + α− 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

50

100

150

The minimum is at α ≈ 3.127 with x ≈ [1,−1.126,−1.126]. Note I:
∇f(α) = − cos(2− α)− 2e(5−2α) + 1 = 0. We can solve for α by using vpasolve in
Matlab.
Note II: We can use Nonlinear search in Matlab or Julia like fminbnd from the original
problem.
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Line Search : Exact Line Search

Nonlinear optimization using fimnbnd:

f = @(alpha) sin(2-alpha) + exp(5-2*alpha) + alpha - 3
alpha_1 = fminbnd(f, 0, 4, opts)

Solve for zero gradient vpasolve:

syms alpha
f1 = -cos(2-alpha) - 2*exp(5-2*alpha) + 1;
alpha_1 = vpasolve(f1==0,alpha)

We should have the same result around 3.127.
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Approximate Line Search

• It is often more computationally efficient to perform more iterations of a
descent method than to do an exact line search at each iteration, especially if
the function and derivative calculations are expensive.

• Many methods discussed so far can benefit from using approximate line search
to find a suitable step size with a small number of evaluations.

• Since descent methods must descend, a step size α may be suitable if it causes
a decrease in the objective function value. We need the sufficient decrease
condition. (to protect that the reductions in f values is not to small.)

• The sufficient decrease in the objective function value:

f(xk+1) ≤ f(xk) + βα∇dk
f(xk)

with β ∈ [0, 1] often set to β = 1× 10−4 .
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Approximate Line Search

• If β = 0, then any decrease is acceptable. If β = 1, then the decrease has to be
at least as much as what would be predicted by a first-order approximation.

• If d is a valid descent direction, then there must exist a sufficiently small step
size that satisfies the sufficient decrease condition.

• We can start with a large step size and decrease it by a constant reduction
factor until the sufficient decrease condition is satisfied.

• The algorithm is known as backtracking line search because of how it
backtracks along the descent direction.
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Approximate Line Search

function BACKTRACKING_LINE_SEARCH(f,∇f, x, d, α; p = 0.5, β = 1e− 4)

while f(x+ α ∗ d) > f(x) + βα(∇fT (x)d) do
α = pα

end while
return α

end function

• The first condition is insufficient to guarantee convergence to a local minimum.
Very small step sizes will satisfy the first condition but can prematurely
converge.

• Backtracking line search avoids premature convergence by accepting the largest
satisfactory step size obtained by sequential downscaling and is guaranteed to
converge to ta local minimum.
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Curvature Condition

The curvature condition requires the the directional derivative at the next iterate to be
shallower (α is not too close to zero):

∇dk
f(xk+1) ≥ σ∇dk

f(xk)

• Where σ controls how shallow the next directional derivative must be.

• It is common to set β < σ < 1 with σ = 0.1 when approximate linear search is
used with the conjugate gradient method and to 0.9 when used with Newton’s
method.

• The strong curvature condition, which is more restrictive criterion in that is also
required not to be too positive:

|∇dk
f(xk+1)| ≤ −σ∇dk

f(xk)

• Both sufficient decrease condition (for αU ) and strong curvature condition are
called strong Wolfe conditions.(for αL). 16/73



Curvature Condition
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Wolfe Condition

Consider approximate line search on f(x1, x2) = x2
1 + x1x2 + x2

2 from x = [1, 2] in
the direction d = [−1,−1], using a maximum step size of 10, a reduction factor of 0.5,
a first Wolfe condition parameter β = 1× 10−4 and a second Wolfe condition
parameter σ = 0.9.
The first Wolfe condition is f(x+ αd) ≤ f(x) + βα(gTd), where g = ∇f(x) = [4, 5].
α = 10 we have

f

([
1

2

]
+ 10

[
−1
−1

])
≤ 7 + 1× 10−4(10)

([
4 5

] [−1
−1

])
217 ≤ 6.991 (It is not satisfied.)

α = 0.5(10) = 5 we have

f

([
1

2

]
+ 5

[
−1
−1

])
≤ 7 + 1× 10−4(5)

[
4 5

] [−1
−1

]
37 ≤ 6.996 (It is not satisfied.)
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Wolfe Condition

α = 0.5(5) = 2.5, we have

f

([
1

2

]
+ 2.5

[
−1
−1

])
≤ 7 + 1× 10−4(2.5)

[
4 5

]T [−1
−1

]
3.25 ≤ 6.998( The first Wolfe condition is satisfied.)

The candidate design point x′ = x+ αd = [−1.5,−0.5]T is checked against the
second Wolfe condition:

∇df(x
′) ≥ σ∇df(x)[

−3.5 −2.5
] [−1
−1

]
≥ σ

[
4 5

] [−1
−1

]
6 ≥ −8.1( The second Wolfe condition is satisfied. )

Approximate line search terminates with x = [−1.5 − 0.5]T .
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The Steepest Descent Method

The steepest-descent mehtod (also called gradient descent) is a simple and intuitive
method for determining the search direction.
Direction Vector:

• Let xk be the current point at the kth iteration: k = 0 corresponds to the
starting point.

• We need to choose a downhill direction d and then a step size α > 0 such that
the new point xk + αd is better. We desire f(xk + αd) < f(xk).

• To see how d should be chosen, we use the Taylor’s expansion

f(xk + αd) = f(xk) + α∇f(xk)
Td+O(α2)

δf = α∇f(xk)
Td+O(α2)

• For small enough α the term O(α2) is dominated. Consequently, we have

δf ≈ α∇f(xk)
Td
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The Steepest Descent Method

• For a reduction in f or δf < 0, we require d to be a descent direction or a
direction that satisfies

∇f(xk)
Td < 0

• The steepest descent method is based on choosing d at the kth iteration, which
we will denote as dk , as

dk = −∇f(xk) =⇒ ∇f(xk)
T (−∇f(xk)) = −∥∇f(xk)∥2 < 0

• This direction will be referred to as the steepest descent direction, and the
direction is satisfied the condition.
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The Steepest Descent Method : Example

Given f(x) = x1x2
2, x0 =

[
1 2

]T
. The gradient is ∇f(x) =

[
x2
2 2x1x2

]T
.

1. Find the steepest descent direction at x0

d = − ∇f(x)|x=x0
=
[
−4 −4

]T
d(normalized) =

[
− 1√

2
− 1√

2

]T

2. Is d =
[
−1 2

]T
a direction of descent?

∇f(x)T
∣∣∣
x=x0

d =
[
4 4

] [−1
2

]
= 4 > 0

It is not a descent direction.
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The Steepest Descent Method

After we have the direction vector dk at the point xk , how far to go along this
direction?

• We need to develop a numerical procedure to determine the step size αk along
dk .

• If we move along dk the design variables and the objective function depen only
on α as

x(α) = xk + αdk, f(α) = f(xk + αdk)

αk = argminimize
α

f(xk + αdk)

• The optimization above implies that the directional derivative equals zero. We
have

∇f(xk + αdk)
Tdk = 0, dk+1 = −

∇f(xk + αdk)

∥∇f(xk + αdk)∥

dT
k+1dk = 0, dk+1 and dk are orthogonal.
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The Steepest Descent Method

• In the steepest descent method, the direction vector is −∇f(xk) resulting in
the slope at the current point α = 0 being

df(α)

dα

∣∣∣∣
α=0

= ∇f(xk)
T (−∇f(xk)) = −∥∇f(xk)∥2 < 0

Implying a move in a downhill direction.
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The Steepest Descent Method

• Starting from an initial point, we determine a direction vector and a step size,
and obtain a new point as xk+1 = xk + αkdk .

• The question is to know when to stop the iterative process. We have two stop
criteria to discuss here.

• First Befor performing line search, the necessary condition for optimality is
checked:

∥∇f(xk)∥ ≤ εG,

where ϵG is a tolerance on the gradient and is supplied by the user. If the
condition is satisfied the the process is terminated.
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The Steepest Descent Method : Stoping Criteria

• Second: We check the successive reductions in f as a criterion for stopping.

|f(xk+1)− f(xk)| ≤ εA + εR|f(xk)|

where εA = absolute tolerance on the change in function value and εR =

relative tolerance. Only if the condition is satisfied for two consecutive
iterations is the descen process stopped.
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Steepest Descent Algorithm : Algorithm

Require: x0, εG , εA, εR

k = 0

while true do
Compute ∇f(xk)

if ∥∇f(xk)∥ ≤ εG then
Stop

else if then
dk = −∇f(xk)/∥∇f(xk)∥

end if
αk = line_search(f, d),
xk+1 = xk + αkdk ,
if |f(xk+1)− f(xk)| ≤ εA + εR|f(xk)| then

Stop
else

k = k + 1, xk = xk+1

end if
end while
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Steepest Descent Algorithm: Zig-Zags Property

• The steepest descent method zig-zags its way towards the optimum point.
Consider

f(x1, x2) = x2
1 + 5x2

2.

x1

-5 0 5 10

x
2

-5

0

5

x0

x ¤

Steepest Descent with 30 iterations
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Steepest Descent Algorithm: Zig-Zags Property

From the fact that αk is obtained by minimizing f(xk + αdk). Thus

∂f(xk + αdk)

∂α
= 0

∂f(xk+1)

∂α
=

∂f(xk+1)

∂xk+1

∂xk+1

∂α
=

∂f(xk+1)

∂xk+1

∂(xk + αdk)

∂α
= 0

∇f(xk+1)
Tdk = 0

Set d = −∇fk , we have

−∇f(xk+1)
T∇f(xk) = 0

From the last line, it means the k + 1 direction is perpendicular to the k direction. If
you use the approximation line search, this perpendicular property is lost, but the
zig-zags are still there.
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Steepest Descent Algorithm : The Bean function

Find the minimum of the bean function

f(x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x2

1

)2
,

using the steepest-descent algorithm with an exact line search, and a convergence
tolerance of ∥∇f∥ ≤ 10−6 .

-3 -2 -1 0 1 2 3
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x∗ =

[
1.2134

0.8241

]
, f(x∗) = 0.0919
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Steepest Descent Algorithm : Convergence Characteristics

• The speed of convergence of the method is related to the spectral condition
number of the Hessian matrix. The spectral condition number κ of a symmetric
positive definite matrix A is defined as the ratio of the largest to the smallest
eigenvalue, or

κ =
λmax
λmin

• For well-conditioned Hessian matrices, the condition number is close to unity,
contours are more circular, and the method is a its best.

• The higher the condition number, the more ill-conditioned is the Hessian, the
contours are more elliptical, more is the amount of zig-zagging near as the
optimum is approached, the smaller are the step sizes and thus the poorer is
the rate of convergence.
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Steepest Descent Algorithm : Convergence Characteristics

Consider a function f(x1, x2) = x2
1 + βx2

2 , we have

H(f) = ∇2f =

[
2 0

0 2β

]
, with β = 1, 5, 15
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The Conjugate Gradient Method

• The Conjugate Gradient Method [Fletcher and Powell 1963] is a dramatic
improve over the steepest descent method. The steepest descent perform
poorly in narrow valleys.

• It can find the minimum of a quadratic function of n variables in n iterations.

• The conjugate Gradient method is also powerful on general functions.

• Consider the problem of minimizing a quadratic function

minimize
x

q(x) =
1

2
xTAx+ bTx+ c

where A is a symmetric and positive definite.

• The conjugate directions, or directions that are mutually conjugate with respect
to A, as vectors which satisfy

dT
i Adj = 0, i ̸= j, 0 ≤ i, j ≤ n
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The Conjugate Gradient Method : The method

• The mutually conjugate vectors are the basis vectors of A. They are generally
no orthogonal to one another.

• The algorithm is started with the direction of steepest descent:

d1 = −g1

• Use line search to find the next design point For quadratic functions, the step
factor α can be computed exactly. The update is then:

x2 = x1 + α1d1
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The Conjugate Gradient Method : The method

• Suppose we want ot derive the optimal step factor for a line search on a
quadratic function:

minimize
α

f(x+ αd)

We have

∂f(x+ αd)

∂α
=

∂

∂α

[
1

2
(x+ αd)TA(x+ αd) + bT (x+ αd) + c

]
= dTA(x+ αd) + bTd = dTA(x+ αd) + dTb

= dT (Ax+ b) + αdTAd

Setting ∂f(x+αd)
∂α

= 0 results in:

α = −
dT (Ax+ b)

dTAd
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The Conjugate Gradient Method : The method

• Subsequent iterations choose dk+1 based on the current gradient and a
contribution from the previous descent direction:

dk = −gk + βkdk−1

for scalar parameter β. Larger values of β indicate that the previous descent
direction contributes more strongly.

• To find the best value for β for a knownA, using the fact that dk is conjugate to
dk−1 :

dT
k Adk−1 = 0 =⇒ (−gk + βkdk−1)

TAdk−1 = 0

−gT
k Adk−1 + βkd

T
k−1Adk−1 = 0 =⇒ βk =

gT
k Adk−1

dT
k−1Adk−1

• The conjugate gradient method can be applied to nonquadratic functions as
well.
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The Conjugate Gradient Method : The method

We do not know the value of A that best approximates f around xk . Several choices
for βk tend to work well:

• Fletcher-Reeves:

βk = −
gT
k gk

gT
k−1gk−1

• Polak-Ribière:

βk =
gT
k (gk − gk−1)

gT
k−1gk−1

• Convergence for the Polak-Ribière method can be guaranteed if we modify it to
allow for automatic resets:

β ← max(β, 0)

37/73



The Conjugate Gradient Method : Example

Consider f = x2
1 + 4x2

2 , x0 =
[
1 1

]T
. We will perform two iterations of the

conjugate gradient algorithm. The first step is the steepest descent iteration. Thus

d0 = −∇f(x0) = −
[
2 8

]T
Assuming the direction vectors are not normalized to be unit vectors,

f(α) = f(x0 + αd0) = (1− 2α)2 + 4(1− 8α)2

which yields α0 = 0.1308, x1 = x0 + α0d0 =
[
0.7385 −0.0462

]T
. The next

iteration (using Fletcher-Reeves method):

β0 =
∥∇f(x1)∥2

∥∇f(x0)∥2
= 2.3176/68 = 0.0341
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The Conjugate Gradient Method : Example

d1 = −∇fT (x1) + β0d0 =

[
−1.4770
0.3692

]
+ 0.0341

[
−2
−8

]
=

[
−1.5451
0.0966

]

We have

f(α) = f(x1 + αd1) = (0.7385− 1.5451α)2 + 4(−0.0462 + 0.0966α)2

which yields

α1 = 0.4780

x2 = x1 + α1d1 =

[
0.7385

−0.0462

]
+ 0.4780

[
−1.5451
0.0966

]
=

[
0

0

]
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The Conjugate Gradient Method : Example

x1
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Conjugate gradient with 2 iterations
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The Conjugate Gradient Method : Algorithm

Require: x0 , εG
k = 0

while ∥∇fk∥ > εG do
if k = 0 then

dk = − ∇fx
∥∇fk∥

else
βk =

∇fT
x ∇fk

∇fT
k−1

∇fk−1

dk = − ∇fk
∥∇fk∥

+ βkdk−1

end if
αk = line_search(f,dk)
xk = xk−1 + αkdk

k = k + 1

end while
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The Conjugate Gradient Method : Example

The minimum of the bean function,

f(x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x2

1

)2
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CG with 18 iterations SD with 31 iterations
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Newton’s Method

• The function value and gradient can help to determine the direction to travel,
but it does not directly help to determine how far to step to reach a local
minimum.

• Second-order information allows us to make a quadratic approximation of the
objective function and approximate the right step size to reach a local minimum.

• As we have seen with a quadratic fit search, we can analytically obtain the
location where a quadratic approximation has a zero gradient. We can use that
location as the next iteration to approach a local minimum.

• The quadratic approximation about a point xk comes from the second-order
Taylor expansion (scalar case):

f(xk + s) = f(xk) + f ′(xk)s+
1

2
s2f ′′(xk)

d

ds
f(xk + s) = 0 + f ′(xk) + sf ′′(xk) = 0

s = −
f ′(xk)

f ′′(xk)
, where s is the step size

xk+1 = xk −
f ′(xk)

f ′′(xk)
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Newton’s Method : Example

Suppose we want to minimize the following single-variable function:

f(x) = (x− 2)4 + 2x2 − 4x+ 4, f ′(x) = 4(x− 2)3 + 4x− 4,

f ′′(x) = 12(x− 2)2 + 4

with x0 = 3, we can form the quadratic using the function value and the first and
second derivatives evaluated at the point.

x1 = x0 −
f ′(x0)

f ′′(x0)
= 2.25, x2 = x1 −

f ′(x1)

f ′′(x1)
= 1.1842, x3 = 1.3039, x∗ = 1.3177
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Newton’ s Method : Disadvantage

• The update rule in Newton’s method involves dividing by the second derivative.
The update is undefined if the second derivative is zero, which occurs when the
quadratic approximation is a horizontal line.

• Instability also ocurs when the second derivative is very close to zero, in which
case the next iterate will lie very far from the current design point, far from
where the local quadratic approximation is valid.

• Poor local approximations can lead to poor performance with Newton’s method.
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Newton’s Method : Multivariate Optimization

• The multivariate second-order Taylor expansion at xk is

f(xk + s) ≈ f(xk) +∇(f(xk)
T s+

1

2
sTHks

d

dx
(xk + s) = ∇f(xk) +Hks = 0

We then solve for the next iterate, thereby obtaining Newton’s method in
multivariate form:

s = −H−1
k ∇f(xk)

xk+1 = xk −H−1
k ∇f(xk)

• If f(x) is quadratic and its Hessian is positive definite, then the update
converges to the global minimum in one step. For general functions, Newton’s
method is often terminated once x ceases to change by more than a given
tolerance.
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Newton’s Method : Example

With x1 =
[
9 8

]
, we will use Newton’s method to minimize Booth’s function:

f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2,

∇f(x) =
[
10x1 + 8x2 − 34, 8x1 + 10x2 − 38

]T
, H(x) =

[
10 8

8 10

]

The first iteration of Newton’s method yields:

x2 = x1 −H−1
1 g1 =

[
9

8

]
−
[
10 8

8 10

]−1 [
10(9) + 8(8)− 34

8(9) + 10(8)− 38

]

=

[
9

8

]
−
[
10 8

8 10

]−1 [
120

114

]
=

[
1

3

]

The gradient at x2 is zero, so we have converged after a single iteration. The Hessian
is positive definite everywhere, so x2 is the global minimum.
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Newton’s Method : Multivariate Optimization
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Newton’s Method : Algorithm

Let s = xk+1 − xk

Require: x0 , εG , ∇fk ,Hk

k = 0

while ∥∇fk∥ > εG and k ≤ kmax do
s = H(x)−1∇f(x)
x = x+ s

k = k + 1

end while
return x
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Quasi-Newton Methods

• Newton’s method is efficient because the second-order information results in
better search directions. Two main steps in Newton’s method

• Need to compute HessianH

• Solve the system of equations

Hs = −∇f(x) ⇒ xk+1 = xk −H−1∇f(x)
For the Quasi-Newton method

• We can use first-order information (gradients) along each step in the iteration
path to build an approximation of Hessian.

• Scalar version

f ′′
k+1(·) =

f ′
k+1(·)− f ′

k(·)
xk+1 − xk

secant equation

f̃k+1(xk+1 + s) ≈ fk+1(xk+1) + sf ′
k+1(xk+1) +

s2

2

(
f ′
k+1(xk+1)− f ′

k(xk)

xk+1 − xk

)
d

ds
f̃k+1(xk+1 + s) = f̃ ′(xk+1 + s) = f ′

k+1(xk+1) + s

(
f ′
k+1(xk+1)− f ′

k(xk)

xk+1 − xk

)
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Quasi-Newton Methods

• For s = 0, we have f̃k+1(xk+1) = f ′
k+1(xk+1), which mean the slope of the

approximation matches the slope of the actual function at xk+1 as expect.

• Stepping backward s = −(xk+1 − xk), we have

f̃ ′
k+1(xk+1 − (xk+1 − xk)) = f̃ ′

k+1(xk)

= f ′
k+1(xk+1)− (xk+1 − xk)

(
f ′
k+1(xk+1)− f ′

k(xk)

xk+1 − xk

)
= f ′

k(xk)

Thus, thenature of this approximation is such that it catches the slope of the
actual function at the last two points.
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Quasi-Newton Methods: Multivariable case

The quadratic approximation of the objective funcition

f̃(xk + p) = f(xk) +∇f(xk)
Tp+

1

2
pT
k H̃kpk

where H̃ is an approximation of the Hessian. Minimize this quadratic with respect to
p, we have

H̃kpk = −∇f(xk)

We get the pk direction and update the point using xk+1 = xk + αkpk .
Quasi-Newton methods update the approximate Hessian at every iteration based on
the latest information using an update of the form

H̃k+1 = H̃k +∆H̃k

The approximation of the Hessian must match the slope of the actual function at the
last two point. 52/73



Quasi-Newton Methods: Multivariable case

Using xk in the direction of pk , we have

f̃(xk+1 + p) = f(xk+1) +∇f(xk+1)
Tpk +

1

2
pT
k H̃k+1pk

∇f̃(xk+1 + p) = ∇f(xk+1) + H̃k+1pk

If p = 0, we have ∇f̃(xk+1) = ∇f(xk+1). If p = xk − xk+1 = −αkpk

∇f̃(xk+1 − αkpk) = ∇f̃(xk) = ∇f(xk+1)− αkH̃k+1pk

To enforce that the ∇f̃(xk) = ∇f(xk), we need

∇f(xk+1)− αkH̃k+1pk = ∇f(xk) ⇒ αkH̃k+1pk = ∇f(xk+1)−∇f(xk)

Simplify the notation, using sk = xk+1 − xk = αkpk , and
yk = ∇f(xk+1)−∇f(xk). We have

H̃k+1sk = yk secant equation 53/73



Quasi-Newton Methods: Multivariable case

We need H̃ to be positive definite then

H̃k+1sk = yk ⇒ sTk H̃k+1sk = sTk yk > 0

The latter is called the curvature condition, and it is automatically satisfied if the line
search finds a step that satisfies the strong Wolfe conditions.

• The original quasi-Newton update, known ad DFP, was first proposed by Davidon
and then refined by Fletcher and slso Powell. The DFP update formula has been
superseded by the BFGS formula, which was independently developed by
Broyden, Fletcher, Goldfarb, and Shanno.

• The BFGS is currently considered the most effective quasi-Newton update.
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Quasi-Newton Methods

• As the secant method approximates f ′′ in the univariate case, quasi-Newton
methods approximate the inverse Hessian. Quasi-Newton method updates have
the form:

xk+1 = xk − αkQk∇fk,

where αk is a scalar step factor and Qk approximates the inverse of the
Hessian at xk

• These methods typically set Q0 to the identity matrix, and they then apply
updates to reflect information learned with each iteration. To simplify the
equations for the various quasi-Newton methos, we define the following:

yk+1 = ∇fk+1 −∇fk

sk+1 = xk+1 − xk
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Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

In stead of starting with the update for the Hessian, we use the inverse Hessian Q.

Qk+1 = Qk + αuuT + βvvT

H̃k+1sk = yk ⇒ Qk+1yk = sk

Setting u = sk and v = Qkyk , we have

Qk+1 = Qk + αsks
T
k + βQkyky

T
k QT

k

sk = Qkyk + αsks
T
k yk + βQkyky

T
k Qyk from secant equation

sk − αsks
T
k yk = Qkyk + βQkyky

T
k Qky

T
k

sk(1− αsTk yk) = Qkyk(1 + βyT
k Qky

T
k )

The last equation is correct if both sides are zero or

α =
1

sTk yk

, β =
−1

yT
k Qkyk
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Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

The Davidon-Fletcher-Powell (DFP) method uses:

Qk+1 = Qk +
sks

T
k

sTk yk

−
Qkyky

T
k Qk

yT
k Qkyk

The update for Q in the DFP method havs three properties:

• Q remains symmetric and positive definite.

• If f(x) = 1
2
xTAx+ bTx+ c, then Q = A−1 . Thus the DFP has the same

convergence properties as the conjugate gradient method.

• For high-dimensional problems, storing and updating Q can be significant
compared to other methods like the conjugate gradient method.

• The DPF algorithm does not guarantee the positiveness of the Hessian H̃.
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Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

Require: x0 , εG , f,∇f(x0)

k = 0,Q = I

while ∥∇f(xk)∥ > εG && k ≤ kmax do
g = ∇f(xk)

x′ = line_search(f,xk,−Q ∗ g)
g′ = ∇f(x′)

s = x′ − xk

y = g′ − g

Q = Q−Qyky
T
k Q/yT

k Qyk + sks
T
k /sTk yk

k = k + 1

xk = x′

end while
return x′
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Quasi-Newton Methods : Broyden-Fletcher-Goldfarb-Shanno
(BFGS)

In addition to the secant equation, we would like

• H̃k+1 is symmetric

• H̃k+1 is close to H̃k

• H̃ is positive definite the H̃k+1 is positive definite.

Using rank-1 update (H̃k+1 = H̃k + αuuT is satisfied the secant equation, but is not
guaranteed to be positive definite. The BFGS is a rank-2 update

H̃k+1 = H̃k + αuuT + βvvT H̃k+1sk = yk ⇒ H̃ksk + αuuT sk + βvvT sk = yk

Setting u = y and v = H̃s yields

H̃ksk + αyky
T
k sk + βH̃ksk

(
H̃ksk

)T
sk = yk

yk

(
1− αyT

k sk

)
= H̃ksk

(
1 + βsTk H̃ksk

)
we need α = 1

yT
k
sk
, and β = − 1

sT
k
H̃ksk

. 59/73



Quasi-Newton Methods : Broyden-Fletcher-Goldfarb-Shanno
(BFGS)

We get the BFGS update:

H̃k+1 = H̃k +
yky

T
k

yT
k sk

−
H̃ksks

T
k H̃k

sTk H̃ksk

It is more efficient to approximate the inverse of the Hessian directly instead. The
inverse can be found analytically from the update H̃ using the
Sherman-Morrison-Woodbury formula.

Q̃k+1 =
(
I − σksky

T
k

)
Q̃k

(
I − σkyks

T
k

)
+ σksks

T
k ,

where σk = 1
yT
k
sk
. We have

xk+1 = xk − αQ̃k∇f(xk)
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) proof

Starting with the matrix version of the update equation,

H̃k+1 = H̃k − H̃kUk

(
I + V

T
k H̃kUk

)−1
V1V2H̃k, V1V2 = V

T
k , V2 = U

T
, H̃

−1
= Q

V1 =

− 1

sT
k

Qksk
0

0 1

yT
k

sk

 , V2 =

[
sTk Qk

yT
k

]
, Uk =

[
Qksk yk

]
,

Let v = H̃kU = (V2H̃k)
T =

[
sk H̃kyk

]
, and

(V2H̃k)
T

=

[
sTk QkH̃k

yT
k H̃k

]
=

[
sk H̃kyk

]
, M =

(
I + V

T
k H̃kVk

)−1
V1

H̃k+1 = H̃k − VkMV
T
k

M =
(
I + V

T
k H̃

−1
k

)
V1 =

(
V

−1
1 + V2H̃kV

T
2

)−1

M
−1

= V
−1
1 + V2H̃kV

T
2 =


−1

sT
k

Qksk
0

0 1

yT
k

sk


−1

+

[
sTk Qk

yT
k

]
H̃k

[
Qksk yk

]

=

[
−sTk Qksk 0

0 yT
k sk

]
+

[
sTk Qk

yT
k

] [
sk H̃kyk

]
=

[
0 sTk yk

yT
k sk yT

k sk + yT
k H̃kyk

]
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) proof

M =
−1

yT
k
sks

T
k
yk

[
yT
k sk + yT

k H̃kyk −sTk yk

−yT
k sk 0

]
= −ρ

[
1 + ρyT

k H̃kyk −1

−1 0

]
, ρ =

1

sT
k
yk

H̃k+1 = H̃k − V
T
k MV

T
k = H̃k + ρk

[
sk H̃kyk

] [
1 + ρky

T
k H̃kyk −1

−1 0

] [
sTk

yT
k H̃k

]

= H̃k + ρk

(
sks

T
k + ρksky

T
k H̃kyks

T
k − H̃kyks

T
k − sky

T
k H̃k

)
=

(
I − ρksky

T
k

)
Q̃k

(
I − ρkyks

T
k

)
+ ρksks

T
k ,

where ρ2k = 1

yT
k

sksT
k

yk
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Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Require: x0 , εG , f , ∇fk
k = 0,Q = I

while ∥∇f(xk)∥ > εG && k ≤ kmax do
g = ∇f(xk)

x′ = line_search(f,x,−Q ∗ g)
g′ = ∇f(x′)

s = x′ − xk

y = g′ − g

σ = 1/sTk yk

Q =
(
I − σksky

T
k

)
Q̃k

(
I − σkyks

T
k

)
+ σksks

T
k

k = k + 1

xk = x′

end while
return x′
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Compare Four Methods

Minimizing of bean function f(x1, x2) = (1− x1)2 + (1− x2)2 + 0.5(2x2 − x2
1)

2

x1

−2 −1 0 1 2

x 2

−2

0

2

x0

x ∗

x1

−2 −1 0 1 2

x 2

−2

0

2

x0

x ∗

x1

−2 −1 0 1 2

x 2

−2

0

2

x0

x1

−2 −1 0 1 2

x 2

−2

0

2

x0

x ∗

CG with 4 iterationsSD with 22 iterations

Newton with 5 iterations Newton+ex LS with 4 iterations
Newton+app LS with 5 iterations
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Compare Four Methods

Minimizing the total potential energy for a spring system:

minimize
x1,x2

1

2
k1

(√
(l1 + x1)2 + x2

2 − l1

)2

+
1

2
k2

(√
(l2 − x1)2 + x2

2 − l2

)2

−mgx2

By letting l1 = 12, l2 = 8, k1 = 1, k2 = 10,mg = 7 (with appropriate units).
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Compare Four Methods

x1

−2 −1 0 1 2

x 2

−2

0

2

x0

x ∗

x1

−2 −1 0 1 2

x 2

−2

0

2

x0

x ∗

x1

−2 −1 0 1 2

x 2

−2

0

2

x0

x1

−2 −1 0 1 2

x 2

−2

0

2

x0

x ∗
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Limited-Memory Quasi-Newton Methods

• When the problem is large whose Hessian matrices cannot be computed at a
reasonable cost.

• Instead of storing fully dense n× n approximations, we can save only a few
vectors of length n that represent the approximations implicitly.

• Here we introduce the limited-Memory BFGS or L-BFGS.

• The BFGS method has the form

xk+1 = xk − αkQk∇fk, Qk+1 = VT
k QkVk + ρksks

T
k , where

ρk =
1

yT
k sk

, Vk = I− ρkyks
T
k , and sk = xk+1 − xk, yk = ∇fk+1 −∇fk

• The inverse Hessian approximation Qk will generally be dense, the cost of
storing and manipulating it is prohibitive when the number of variables is large.

• To solve this problem, we store a modified version of Qk implicitly, by storing a
certain numberm of the vector pairs {si,yi}. The product Qk∇fk can be
obtained by performing a sequence of inner products and vector summations
involving ∇fk and the pairs {si,yi}. 67/73



Limited-Memory Quasi-Newton Methods

Recall and expand the BFGS update:

Qk = VT
k−1Qk−1Vk−1 + ρk−1sk−1s

T
k−1

= VT
k−1V

T
k−2Qk−2Vk−2Vk−1 + ρk−2Vk−2sk−2s

T
k−2Vk−1 + ρk−1sk−1s

T
k−1

=
(
VT

k−1V
T
k−2 · · ·V

T
k−m

)
Qk−m (Vk−mVk−m+1 · · ·Vk−1)

+ ρk−m

(
VT

k−1 · · ·V
T
k−m+1

)
sk−msTk−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
VT

k−1 · · ·V
T
k−m+2

)
sk−m+1s

T
k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·

+ ρk−2V
T
k−1sk−2s

T
k−2Vk−1 + ρk−1sk−1s

T
k−1.

In L-BFGS, we replace Qk−m (a dense d× d matrix) with some sparse matrix Q0
k , e.g.,

a diagonal matrix. Thus, Qk can be constructe using the most recentm≪ d pairs
{si,yi}k−1

i=k−m . That is
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Limited-Memory Quasi-Newton Methods

Qk =
(
VT

k−1V
T
k−2 · · ·V

T
k−m

)
Q0

k (Vk−mVk−m+1 · · ·Vk−1)

+ ρk−m

(
VT

k−1 · · ·V
T
k−m+1

)
sk−msTk−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
VT

k−1 · · ·V
T
k−m+2

)
sk−m+1s

T
k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·

+ ρk−2V
T
k−1sk−2s

T
k−2Vk−1 + ρk−1sk−1s

T
k−1.

• We only need the d-dimensional vector Qk∇f(xk) to update
xk+1 = xk − αkQk∇f(xk).

• We only stor the vectors {si,yi}k−1
i=k−m from which Qk∇f(xk) can be

computed using only vector-vector multiplications.

• A popular choice for Q0
k is Q0

k = γkI, where γk =
sTk−1yk−1

yT
k−1

yk−1
. This choice

appears to be quite effective in practice.
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Limited-Memory Quasi-Newton Methods

Algorithm 1 L-BFGS two-loop recursion

set q = ∇f(xk) want to compute Qk∇f(x)
for i = k − 1, k − 2,. . ., k = m do

αi = ρis
T
i q

q = q− αiyi // RHS = q− ρis
T
i qyi =

(
I− ρiyis

T
i

)
︸ ︷︷ ︸

Vi

q

end for
r = Q0

kq

for i = k −m to k − 1 : do
β = ρiy

T
i r

r = r+ si(αi − β)

// RHS = r+ ρiαi − ρiy
T
i rsi =

(
I− ρisiy

T
i

)
r︸ ︷︷ ︸

VT
i

+ρiαi

end for
return r // which equals Qk∇f(xk)
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Limited-Memory Quasi-Newton Methods

Require: x0 ,m, εG
k = 0

while ∥∇f(xk)∥ ≤ εG do
Choose Q0

k

pk = −Qk∇f(xk), where Qk∇f(xk) is compute using Algorithm 1
xk+1 = xk + αkpk , where αk satisfies Wolfe Conditions
if k > m: then

discard {sk−m,yk−m} from storage
end if
Compute and store sk = xk+1 − xk and yk = ∇f(xk+1 −∇f(xk)

k = k + 1

end while
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Compare Four Methods
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