Unconstrained Optimization Il

Asst. Prof. Dr-Ing. Sudchai Boonto
October 1, 2024
Department of Control System and Instrumentation Engineering

King Mongkut's Unniversity of Technology Thonburi
Thailand

Objective

At the end of this chapter you should be able to:
- Describe, implement, and use line-search-based methods.
- Explain the pros and cons of the various search direction methods.

- Understand steepest descent, conjugate gradient, etc.

2/73

Two Approaches to Finding and Optimum

Xo

l

Search
direction

[Update x J [Linc search

~

l

Isxa
minimum?

No

x*

Line search approach

Create model

J

Minimize
model

Isxa
No minimum? J

Update trust-
region size, A

Update x

A

Yes
a

Trust-region approach

3/73

Basic Concept

Consider a problem

minimize f(x), x¢&€R"
xX

-+ Most numerical methods require a starting design or point which we call xq.
- We then determine the direction of travel d.

- A step size ag is then determined based on minimizing f as much as possible
and the design point is updated as x; = xg + apdo.

- The process of where to go and how far to go are repeated from x; or
Xf+1 = X + apdy.

4/73

Basic Concept: Example

Given f(z1,z2) = 22 + 522, a point xo = [3 1]T, fo = f(x0) = 14.
1. construct f(a) along the direction d = [~3 — 5]T and provide a plot of f(«)
versus a, for a > 0.
We have x(a) = %o + ad = [3 — 3a, 1 — 5a]T and
fla) = (3 —3a)? + 5(1 — 5a)2.

0.0 0.1 0.2 0.3 0.4 0.5
a 5/73

Basic Concept : Example

2. Find the slope df(a)/da) at a = 0. Verify that this equal V f(x0)7'd.
We have

df (@)

- = (—6(3 —3a) — 50(1 — 5c))| o = —68

a=0

Vf(x0)"d = [2(3) 10(1)] {3] = —68

3. Minimize f(«) with respect to «, to obtain step size ag. Given the corresponding
new point x; and value of f1 = f(x1)
We have

d
];(a) = —6(3 — 3a) — 50(1 — 5a) = 0 = 2680 = 68 Or & = 0.2537
(6%

3
+ o
1

X1 =

—3] [2.2388
= , f(x1) = 5.3732, less than fp = 14.
5] |:0.2687} Joa) fo

6/73

Basic Concept : Example

2. Provide a plot showing contours of the function, steepest descent direction zg
and z1.

3
Q—A
N
< 0-
214
_2_v
-3 T
-5 0 5

7173

Basic Concept : Example

We want to design the width and height of
P=20001b the rectangular cross-section to increase
T the bending stress defined by
| D al
L=24" I
o9 = ——, where M is a moment.
wh?

With the initial design x = (w, h) = (1, 3), we have

6(2000 x 24)

— 32,000psi
13%) P

o0 =

Usingd = [-1/v/5 —2/+/5]T and a = 0.2 we have

1

x1 =% +ad = +0.2

—1/\/5] B [0.9106

= , o1 =T71,342 psi
—2/V/5 2.8211:| ! P

8/73

Line Search : Exact Line Search

Assume we have chosen a descent direction d. We need to choose the step factor o to
obtain our next design point. One approach is to use line search, which selects the
step factor that minimizes the one-dimensional function:

minimize f(x + ad)
«@

To inform the search, we can use the derivative of the line search objective, which is
simply the directional derivative along d at x + ad.

function LINE_SEARCH(f, d)
objective = a — f(x+ axd)
a, b = brackect_minimum(objective)
o = minimize(objective, a, b)
return x + axd
end function

The exact line search is expensive, if we need to do it every step of the optimization.

In Matlab environment, we can use commands fminbnd or fminsearch. |
9/73

Line Search : Exact Line Search

- One disadvantage of conducting a line search at each step is the computational
cost of optimizing « to a high degree of precision.

- We could quickly find a reasonable value and then move on, selecting xx41,
and then picking a new direction dj41.

- Some algorithms use a fixed step factor. Large steps will tend to result in fast
convergence but risk overshooting the minimum.

- Smaller steps tend to be more stable but can result in slower convergence.
- Afixed step factor « is sometimes referred to as a learning rate.

- Another method is to use a decaying step factor:

ap = a1y, fory € (0,1]

The decaying step factors are popular when minimizing noisy objective function,
and always used in machine learning applications.

10/73

Line Search : Exact Line Search

Consider conducting a line search on f(x1,z2,x3) = sin(zyx2) + e(*2723) — 3 from
x = [1,2, 3] in the direction d = [0, —1, —1]. The corresponding optimization problem
is:

150

minimize sin((1 + 0a)(2 — «))
«

4 el(2=a)+B=a)) _ (3 o)

g

Line search objective

which simplifies to:

e . -2
minimize sin(2 — a) +e®72%) 4 o — 3 o 05 1 15 2 25 8 o5 4 45 s
[e3 @

The minimum is at a &~ 3.127 with x ~ [1, —1.126, —1.126]. Note I:
Vf(a) = —cos(2 — a) — 2e(5=2%) 41 = 0. We can solve for a by using vpasolve in
Matlab.

Note Il: We can use Nonlinear search in Matlab or Julia like fminbnd from the original
problem.

1/73

Line Search : Exact Line Search

Nonlinear optimization using fimnbnd:

f= @(alpha) sin(2-alpha) + exp(5-2*alpha) + alpha - 3
alpha_1 = fminbnd(f, 0, 4, opts)

Solve for zero gradient vpasolve:

syms alpha
1 = -cos(2-alpha) - 2*exp(5-2*alpha) + 1;
alpha_1 = vpasolve(f1==0,alpha)

We should have the same result around 3127.

12/73

Approximate Line Search

It is often more computationally efficient to perform more iterations of a
descent method than to do an exact line search at each iteration, especially if
the function and derivative calculations are expensive.

- Many methods discussed so far can benefit from using approximate line search
to find a suitable step size with a small number of evaluations.

- Since descent methods must descend, a step size a may be suitable if it causes
a decrease in the objective function value. We need the sufficient decrease
condition. (to protect that the reductions in f values is not to small.)

- The sufficient decrease in the objective function value:

F(xpq1) < f(xx) + BaVa, f(x)

with 8 € [0, 1] often setto 8 =1 x 104,

13/73

Approximate Line Search

ufficient decrease

- If 8 =0, then any decrease is acceptable. If 8 = 1, then the decrease has to be
at least as much as what would be predicted by a first-order approximation.

- If d is a valid descent direction, then there must exist a sufficiently small step
size that satisfies the sufficient decrease condition.

- We can start with a large step size and decrease it by a constant reduction
factor until the sufficient decrease condition is satisfied.

- The algorithm is known as backtracking line search because of how it

backtracks along the descent direction.
1473

Approximate Line Search

function BACKTRACKING_LINE_SEARCH(f, V f,z,d,a;p = 0.5, 8 = le — 4)
while f(x +a*d) > f(x) + Ba(VfT(x)d) do
a = pa
end while
return o
end function

- The first condition is insufficient to guarantee convergence to a local minimum.
Very small step sizes will satisfy the first condition but can prematurely
converge.

- Backtracking line search avoids premature convergence by accepting the largest
satisfactory step size obtained by sequential downscaling and is guaranteed to
converge to ta local minimum.

15/73

Curvature Condition

The curvature condition requires the the directional derivative at the next iterate to be
shallower (« is not too close to zero):

Va, [(Xk+1) > oVa, f(xk)

- Where o controls how shallow the next directional derivative must be.

Itis common to set 8 < o < 1 with ¢ = 0.1 when approximate linear search is
used with the conjugate gradient method and to 0.9 when used with Newton's
method.

- The strong curvature condition, which is more restrictive criterion in that is also
required not to be too positive:

[Va, f(xr1)| < —oVa, f(xx)

Both sufficient decrease condition (for aiy) and strong curvature condition are
called strong Wolfe conditions.(for o). 16/73

Curvature Condition

mihmu_m of second-order approximation

reduced curvature

17/73

Wolfe Condition

Consider approximate line search on f(z1,x2) = #? + z122 + 22 from x = [1,2] in
the direction d = [—1, —1], using a maximum step size of 10, a reduction factor of 0.5,
a first Wolfe condition parameter 8 = 1 x 10~% and a second Wolfe condition
parameter o = 0.9.

The first Wolfe condition is f(x + ad) < f(z) + Ba(gTd), where g = Vf(x) = [4, 5].

a = 10 we have
1 - 1
X > <741 x107%(10) <[4 5] [J)

; 1
2
217 < 6.991 (It is not satisfied.)

a = 0.5(10) = 5 we have

+ 10

1

(s

+5

) srerenaf o[

37 < 6.996 (It is not satisfied.)
18/73

Wolfe Condition

a = 0.5(5) = 2.5, we have

1 -1 T | —1
+25 <7+1x107%425) |4 5
(b)) < eafe o[
3.25 < 6.998(The first Wolfe condition is satisfied.)
The candidate design point x’ = x + ad = [-1.5, —0.5]T is checked against the

second Wolfe condition:

Vaf(x') > oVaf(x)

oo][zl o []

6 > —8.1(The second Wolfe condition is satisfied.)

Approximate line search terminates with x = [~1.5 — 0.5]T.

19/73

The Steepest Descent Method

The steepest-descent mehtod (also called gradient descent) is a simple and intuitive
method for determining the search direction.
Direction Vector:
- Let x; be the current point at the kth iteration: £ = 0 corresponds to the
starting point.
- We need to choose a downhill direction d and then a step size o > 0 such that
the new point x; + ad is better. We desire f(x + ad) < f(xk).

- To see how d should be chosen, we use the Taylor's expansion

fk +ad) = f(xx) + aVf(xx)"d+ O0(a?)
5f = aVf(xk)"d+0(a?)

- For small enough a the term O(a?) is dominated. Consequently, we have

5f ~aVf(xy)Td
20/73

The Steepest Descent Method

- Forareduction in fordf < 0, we require d to be a descent direction or a
direction that satisfies

Vixe)Td <0

- The steepest descent method is based on choosing d at the kth iteration, which
we will denote as dy, as

dp = —Vf(xr) = Vixe)T(=Vixe) =—VIGR)]* <0

- This direction will be referred to as the steepest descent direction, and the
direction is satisfied the condition.

21/73

The Steepest Descent Method : Example

. . T o T
Given f(x) = w122, X0 = [1 2} . The gradient is Vf(x) = [x% 29&1:(:2] .

1. Find the steepest descent direction at xo

d == VI()hr, = [4 —4]T
d(normalized) = [—% —%]T

T
2. Isd = [71 2] a direction of descent?

V)T

zzzod:[4 4] [21} =40

It is not a descent direction.

22173

The Steepest Descent Method

After we have the direction vector dj, at the point x;, how far to go along this
direction?

- We need to develop a numerical procedure to determine the step size a;, along
dg.

- If we move along d;. the design variables and the objective function depen only
on « as

x(a) =xp +adg, fla) = f(xg + adg)

«ay, = arg minimize f(xg + ady)
«@

- The optimization above implies that the directional derivative equals zero. We
have

_ Vf(xk +ady)
IV f(xp 4 adp)|

df, dy =0, dyy1 anddy are orthogonal.

Vf(Xk + adk)Tdk =0, dk+1 =

23/73

The Steepest Descent Method

- In the steepest descent method, the direction vector is —V f(xj) resulting in
the slope at the current point & = 0 being

df (@)

o =Vf(xe)T(=Vfxx) = —VFf(xe)|[> <0

a=0

Implying a move in a downhill direction.

2473

The Steepest Descent Method

- Starting from an initial point, we determine a direction vector and a step size,
and obtain a new point as xx4+1 = x§ + ardg.

- The question is to know when to stop the iterative process. We have two stop
criteria to discuss here.

- First Befor performing line search, the necessary condition for optimality is
checked:

IVfxi)ll < ea,

where ¢ is a tolerance on the gradient and is supplied by the user. If the
condition is satisfied the the process is terminated.

25/73

The Steepest Descent Method : Stoping Criteria

- Second: We check the successive reductions in f as a criterion for stopping.

[f(xk11) = f(xp)| < ea +erlf(xp)

where € 4 = absolute tolerance on the change in function value and e =
relative tolerance. Only if the condition is satisfied for two consecutive
iterations is the descen process stopped.

26/73

Steepest Descent Algorithm : Algorithm

Require: xg,eG, €4,€R
k=0
while true do
Compute V f(xy)
if |V f(zk)|| < eg then

Stop
else if then

d = =V (xx)/IIVf(x)ll
end if

oy, = line_search(f, d),

Xp41 = X + agdyg,

if |f(xk+1) — F(x)| < ea +erlf(xi)| then
Stop

else
k=k+1 x5 =Xp41

end if

end while

27173

Steepest Descent Algorithm: Zig-Zags Property

- The steepest descent method zig-zags its way towards the optimum point.
Consider

flz1,22) = w% + 53;%.

/—1 —— Steepest Descent with 30 iterations

Lo

n
S
et o
=
)

Ty

28/73

Steepest Descent Algorithm: Zig-Zags Property

From the fact that ay, is obtained by minimizing f(xx + ady). Thus

Of (xp + ady)

=0
o
Of (Xp+1) _ Of (Xp+1) OXpp1 _ Of (Xp41) O(xx + ady) -0
[oJe" OXf41 oo OXpq1 [oJe"

Vf(xpg1)Td =0
Setd = —V fi , we have
~Vfxpe1)TVF(xg) =0

From the last line, it means the k + 1 direction is perpendicular to the & direction. If
you use the approximation line search, this perpendicular property is lost, but the
zig-zags are still there.

29/73

Steepest Descent Algorithm : The Bean function

Find the minimum of the bean function

(29:2 — x%)Q s

N | =

fler,ez) = (1 —21)? + (1 —22) +

using the steepest-descent algorithm with an exact line search, and a convergence

tolerance of ||V f[| < 1076,

*‘_7
2
15
g 1)

30/73

Steepest Descent Algorithm : Convergence Characteristics

- The speed of convergence of the method is related to the spectral condition
number of the Hessian matrix. The spectral condition number s of a symmetric
positive definite matrix A is defined as the ratio of the largest to the smallest
eigenvalue, or

- For well-conditioned Hessian matrices, the condition number is close to unity,
contours are more circular, and the method is a its best.

- The higher the condition number, the more ill-conditioned is the Hessian, the
contours are more elliptical, more is the amount of zig-zagging near as the
optimum is approached, the smaller are the step sizes and thus the poorer is
the rate of convergence.

31/73

Steepest Descent Algorithm : Convergence Characteristics

Consider a function f(z1,z2) = 2% + B22, we have

H(f) = V*f = F 0} , with 8 =1,5,15

0 28

~ Steepest Descent with 1 iterations /_‘1 —— Steepest Descent with 29 iterations

5
5
E} ~Steepest Descent with 90 iterations

32/73

The Conjugate Gradient Method

- The Conjugate Gradient Method [Fletcher and Powell 1963] is a dramatic
improve over the steepest descent method. The steepest descent perform
poorly in narrow valleys.

- It can find the minimum of a quadratic function of n variables in n iterations.
- The conjugate Gradient method is also powerful on general functions.

- Consider the problem of minimizing a quadratic function
s I 7 T
minimize ¢(x) = 3% Ax+b'x+c
X

where A is a symmetric and positive definite.

- The conjugate directions, or directions that are mutually conjugate with respect
to A, as vectors which satisfy

dTAd; =0, i#0<4,j<n

33/73

gate Gradient Method : The method

- The mutually conjugate vectors are the basis vectors of A. They are generally
no orthogonal to one another.
- The algorithm is started with the direction of steepest descent:

d; = —g1

- Use line search to find the next design point For quadratic functions, the step
factor o can be computed exactly. The update is then:

X2 = X1 + a1dy

34/73

The Conjugate Gradient Method : The method

- Suppose we want ot derive the optimal step factor for a line search on a
quadratic function:

minimize f(x + ad)
«

We have

of(x+ad) 0 [1

Ja da |2
=dTA(x+ad)+bTd=dTA(x+ ad) +d7b
=dT(Ax +b)+ad”Ad

(x4 ad)TA(x+ ad) + b7 (x + ad) + ¢

M = 0 results in:
«

Setting

__d"(Ax+Db)
B dTAd
35/73

The Conjugate Gradient Method : The method

- Subsequent iterations choose dy41 based on the current gradient and a
contribution from the previous descent direction:

dr = —gk + Brdr-1

for scalar parameter 3. Larger values of 3 indicate that the previous descent
direction contributes more strongly.

- To find the best value for B for a known A, using the fact that dy, is conjugate to
dk_li

dfAdy_1 =0 = (—gr +Brdr_1)TAdy_1 =0
T
T T g Ady
—gi Ady_ d Ady,_1=0 — =2k P
g, Adg—1 + Brd)_1Adg_1 Bk a7 Ady_,
- The conjugate gradient method can be applied to nonquadratic functions as
well.
36/73

The Conjugate Gradient Method : The method

We do not know the value of A that best approximates f around xj. Several choices
for B, tend to work well:

- Fletcher-Reeves:

gl gr
Br = ——F—
gL _18k—1
- Polak-Ribiére:
_gf (er—&r-1)
By =—"F—"""

gg_lgk—l

- Convergence for the Polak-Ribiére method can be guaranteed if we modify it to
allow for automatic resets:

B+ max(g,0)

37/73

The Conjugate Gradient Method : Example

T
Consider f = 22 + 422, xo = [1 1] . We will perform two iterations of the
conjugate gradient algorithm. The first step is the steepest descent iteration. Thus

T
do = —Vf(xo) = — [z 8}
Assuming the direction vectors are not normalized to be unit vectors,
f(@) = f(xo0 + ado) = (1 - 2a)* +4(1 - 8a)®

T
which yields ag = 0.1308, x1 = x¢ + apdgp = {0.7385 —0.0462] . The next
iteration (using Fletcher-Reeves method):

2
Bo = IWFCDI® _ 5 5176/68 = 0.0341

IV £ (x0)I?

38/73

The Conjugate Gradient Method : Example

—1.4770

d; = -V T (x1) + Bodo =
1 f(x1) + Bodo {0.3692

-2 —1.5451
+0.0341 =
[—8} { 0.0966 }
We have
fa) = f(x1 4+ adi) = (0.7385 — 1.5451a)? + 4(—0.0462 + 0.0966a)?
which yields
a1 = 0.4780

0.7385 —1.5451 0
X2 = X1 + a1d1 = + 0.4780 =
—0.0462 0

39/73

The Conjugate Gradient Method : Example

Ty

40/73

The Conjugate Gradient Method : Algorithm

Require: %o, eg

k=0
while ||V fx|| > ec do
if £ = 0 then
_ _ Vs
dr = — 97T
else
By = VLV fi
k= VT Vi
_ _ _Vik
di = — 7T + Arde—1
end if

oy, = line_search(f, dy)
Xp = Xgp—1 + apdy
k=k+1

end while

§1/73

The Conjugate Gradient Method : Example

The minimum of the bean function,

1 2
flor,z2) =1 —21)? + (1 —22)% + 5 (222 — 1’%)

3 3

-e- CG with 18 iterations r -e- SD with 31 iterations r
9y T—

£ 14

Ty
OA\
’1 \ T T T

-2 -1 0 1

42/73

Newton’s Method

- The function value and gradient can help to determine the direction to travel,
but it does not directly help to determine how far to step to reach a local
minimum.

- Second-order information allows us to make a quadratic approximation of the
objective function and approximate the right step size to reach a local minimum.

- As we have seen with a quadratic fit search, we can analytically obtain the
location where a quadratic approximation has a zero gradient. We can use that
location as the next iteration to approach a local minimum.

- The quadratic approximation about a point x;, comes from the second-order
Taylor expansion (scalar case):

Jlan+8) = flor) + £/ @r)s + 5521 (o)

D b+ 5) = 0+ f(ax) + sf" (@x) = 0

ds
=)
£

where s is the step size

- z)’
I'(xr)
I (k)

Thi1 =Tk — 43/73

Newton’s Method : Example

Suppose we want to minimize the following single-variable function:

fl@)=(x—2)* +222 —dx+4, f'(z) =4(z—2)5+ 4z —4,
() =12(x —2)2 +4

with zg = 3, we can form the quadratic using the function value and the first and
second derivatives evaluated at the point.

L) R O C.)

0— — 11842, 3 = 1.3039, z* =1.3177
fr(zxo) Jr(zr)

T =

44[73

Newton’ s Method : Disadvantage

- The update rule in Newton’s method involves dividing by the second derivative.
The update is undefined if the second derivative is zero, which occurs when the
quadratic approximation is a horizontal line.

Instability also ocurs when the second derivative is very close to zero, in which
case the next iterate will lie very far from the current design point, far from
where the local quadratic approximation is valid.

Poor local approximations can lead to poor performance with Newton's method.

Oscillation Overshoot Negative curvature

3.0

2.54

2.0 -1

Ty

)

45/73

Newton’s Method : Multivariate Optimization

- The multivariate second-order Taylor expansion at zy, is

Jx+9) & fOu) + Y/ (1) + 55T Hs

d
—(xx +8) = Vf(xx) +Hgs =0
dx

We then solve for the next iterate, thereby obtaining Newton's method in
multivariate form:

s=—H; 'V[(xx)

Xpi1 = xx — H 'V f(x)

- If f(x) is quadratic and its Hessian is positive definite, then the update
converges to the global minimum in one step. For general functions, Newton's
method is often terminated once x ceases to change by more than a given
tolerance.

46/73

Newton’s Method : Example

With x1 = {9 8], we will use Newton's method to minimize Booth's function:
f(x) = (21 4+ 222 — 7)% + (221 + 22 — 5)2,

T 10 8
Vf(x)= [10:1:1 + 8xo — 34, 8x1 + 10zo — 38] , H(x)= s 10

The first iteration of Newton's method yields:

S
[0) -0

The gradient at x5 is zero, so we have converged after a single iteration. The Hessian
is positive definite everywhere, so x» is the global minimum.

8(9) + 10(8) — 38

10(9) + 8(8) — 34}

47/73

Newton’s Method : Multivariate Optimization

.| =+ Newton's method with 1 iterations

—=— Steepest Descent with 6 iterations

-3 T — —
-5 0 5
x,
P
-
-
.
-
3.051 .-
.
-

£ 3.00 1
2.954

-~ Steepest Descent with 6 iterations

= Newton's method with 1 iterations

T T
1.0 1.1
Ty

48/73

Newton’s Method : Algorithm

lets = Tk4+1 — Tk

Require: xg, e, V fx, Hy

k=0

while ||V f&|| > e¢ and k < kmax do
s=H(x)"'V/f(x)
X=X-+S8
k=k+1

end while

return x

49173

Quasi-Newton Methods

Newton's method is efficient because the second-order information results in
better search directions. Two main steps in Newton's method

- Need to compute Hessian H

- Solve the system of equations

Hs = -Vf(x) = Xpq11 =% — H71Vf(x)
For the Quasi-Newton method
- We can use first-order information (gradients) along each step in the iteration

path to build an approximation of Hessian.

- Scalar version

/) ! .
= M secant equation

fllc/+1(') - Tha1 — T
s <f;2+1(93k+1) - f;@(%))

Fres1(@rpr +8) & fopr(@rin) + sfip (@rg1) +
2 Th41 — Tk

difk+l(xk:+1 +S) _ f/(xk+1 +8) _ f)g+1($k+1) +s <fk:+1(xk+l) - fk(xk);
s Tt1 — Tk 0/73

Quasi-Newton Methods

- For s =0, we have fkﬂ(zkﬂ) = f,;+1(zk+1), which mean the slope of the
approximation matches the slope of the actual function at z41 as expect.

- Stepping backward s = — (41 — z1), we have

ﬂ;+1(1k+1 — (Tpt1 — k) = f1/¢+1($k)

Tp+1 — Tk

= foq1(@rt1) — (Tpy1 — z) (fkﬂ(mkﬂ) — fk(mk))

= fr.(xx)

Thus, thenature of this approximation is such that it catches the slope of the
actual function at the last two points.

51/73

Quasi-Newton Methods: Multivariable case

The quadratic approximation of the objective funcition

Fox +) = f00) + V£ Ge) "p + ol Fyp

where H is an approximation of the Hessian. Minimize this quadratic with respect to
p, we have

Hyp, = —V/f(xk)
We get the py, direction and update the point using x,41 = xj, + o Pk.
Quasi-Newton methods update the approximate Hessian at every iteration based on
the latest information using an update of the form

Hjq = Hy, + AHy,

The approximation of the Hessian must match the slope of the actual function at the
last two point. 52/73

Quasi-Newton Methods: Multivariable case

Using x, in the direction of py, we have

_ 1
Fxhg1 +P) = Fxpr1) + VFxer) T pr + §P£Hk+1pk

Vf(Xkt1 +P) = VI(xnt1) + Hep1pk
If p =0, we have Vf(xp41) = VF(xpt1). If p=Xp — Xp1 = —Pr
Vf(xps1 — axpr) = VF(xx) = VF(xkt1) — 1Pk
To enforce that the Vf(x) = V f(x}), we need
Vf(xes1) — oeHpp1pe = V() = apHiy1pe = VI (xpq1) — V(%)

Simplify the notation, using sy, = xx4+1 — X, = axPk, and
Vi = Vf(Xk41) — Vf(xk). We have

H;. 15, =y, secant equation 53/73

Quasi-Newton Methods: Multivariable case

We need H to be positive definite then
Hij1se =yr = spHppisp =sgyp >0

The latter is called the curvature condition, and it is automatically satisfied if the line
search finds a step that satisfies the strong Wolfe conditions.

- The original quasi-Newton update, known ad DFP, was first proposed by Davidon
and then refined by Fletcher and slso Powell. The DFP update formula has been
superseded by the BFGS formula, which was independently developed by
Broyden, Fletcher, Goldfarb, and Shanno.

- The BFGS is currently considered the most effective quasi-Newton update.

54/73

Quasi-Newton Methods

- As the secant method approximates f’/ in the univariate case, quasi-Newton
methods approximate the inverse Hessian. Quasi-Newton method updates have
the form:

X1 = Xk — Qi V f,

where ay, is a scalar step factor and Q. approximates the inverse of the
Hessian at x;,

- These methods typically set Qg to the identity matrix, and they then apply
updates to reflect information learned with each iteration. To simplify the
equations for the various quasi-Newton methos, we define the following:

Yi+1 = Vi1 — Vi

Sk+1 = Xk+1 — Xk

55/73

Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

In stead of starting with the update for the Hessian, we use the inverse Hessian Q.

Q+1 = Qi + auu” + gvvT

Hipisp =yr = Qri1Yr =Sk

Setting u = s and v = Qg yx, we have

Qi1 = Qu + asisi + BQryry; QF
sk = Quryk + aspst yr + BQryryF Qyy from secant equation
sk — asksLyr = Qryk + BQRYKYL QrYE
se(l—aspyr) = Quyk(l + Byi Quyi)

The last equation is correct if both sides are zero or

1 1
styr’ Y Qryk

56/73

Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

The Davidon-Fletcher-Powell (DFP) method uses:

SpSE 7 QiyryYE Qi

Qi1 =Qr +
sTyrk YFQryr

The update for Q in the DFP method havs three properties:
- Q remains symmetric and positive definite.

< If f(x) = 3xTAx + bTx + ¢, then Q = A~1. Thus the DFP has the same
convergence properties as the conjugate gradient method.

- For high-dimensional problems, storing and updating Q can be significant
compared to other methods like the conjugate gradient method.

- The DPF algorithm does not guarantee the positiveness of the Hessian H.

57173

Quasi-Newton Methods : Davidon-Fletcher-Powell (DFP)

Require: xo, g, f, Vf(xo0)

k=0,Q=1

while |V f(xk)|| > eq && k < kmax do
g = Vf(xx)
x' = line_search(f,x;, —Q * g)
g = Vi(x)
s=x" —xi
vy=g'-g
Q=Q - Qyry{ Q/yL Qv +sis] /s{yk
k=k+1
X = x’

end while

return x’

58/73

Quasi-Newton Methods : Broyden-Fletcher-Goldfarb-Shanno

(BFGS)

In addition to the secant equation, we would like
- Hyp, 1 is symmetric
- Hy, is close to Hy,
- His positive definite the Hj, , ; is positive definite.

Using rank-1 update (Hy; = Hy 4+ auu” is satisfied the secant equation, but is not
guaranteed to be positive definite. The BFGS is a rank-2 update
I:IkJrl = I:I;C + auu” + 6VVTI:Ik+1Sk =Yr = I:Iksk + ozuuTs;C + 6vask =Yk

Setting u = y and v = Hs yields

- - - T
Hysy + ayryi s, + BHysk (Hksk> Sk =Yk

Yk (1 - aygsk) = Hysy, <1 + Bsfﬁksk)

1
we need o = ,and B = —
sk g

59/73

1
STHys,

Quasi-Newton Methods : Broyden-Fletcher-Goldfarb-Shanno

(BFGS)

We get the BFGS update:

It is more efficient to approximate the inverse of the Hessian directly instead. The
inverse can be found analytically from the update H using the
Sherman-Morrison-Woodbury formula.

Qi1 = (I — Ukskyz) Qs <1 - (Tkyksg) + opsgst,

where o}, = ——. We have
yEsk

X1 = X — aQi V f(x)

60/73

Broyden-Fletcher-Goldfarb-Shanno (BFGS) proof

Starting with the matrix version of the update equation,
z z 7 T —1 z T T -1
H, , =H;, — H,U, (I +v} HkUk) ViVoH,, Vive =vE v =UuT, Bt = q

Vi 1
0 T
Yi Sk

I S
_ sTQpsy
Yk

} , Vo = [ngk} » U = [kak Yk»}v

letv = H,U = (VoH,)T = [sk I:Ikyk]and

st QHy

vor) T = { vl H), } = {Sk I:IkYk]s M = (I+Vgﬁkvk)7lvl

- - T
Hy 1 =Hp — VMV

M= (14 Vi) V= (Vi vaRvE) T

1 -1
- 0
T T
-1 -1 = T s Qs sEp Qk | 5
M7 =V +VaHV, = { k ok § 1 - [};,T Hy, [kak yrc}
Tk K
T T T
— | 7Sk Qpsk 0 + si, Qk [Sk I:IkYk} _ 0 Sk Yk
0 yE sk yF yEse Yisk+yiHpyk

61/73

Broyden-Fletcher-Goldfarb-Shanno (BFGS) proof

M — -1 ykTSk +ykTI:Ikyk —s{yk = 1+pygl:lkyk —1 o= 1
yEsestyn —yi sk 0 -1 0 sTyk
T T
- ~ T T _ 5 ~ 1+ ppyp Heyr —1 Sk
Hyy =Hp — VMV, =Hy + pg {Sk Hkyk] [kl ol |y lﬁ
_ TH,

T Th T A T T
k+ Pk (Sksk + pkseY Hyyrsy, — Hipyrs, — spyy Hk)

T T
(prkswk) (I*pkyksk) + PrSKSE

1

2
where p7 = ——t7+—
Byl seslve

62/73

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Require: %o, ec, f, Vfx

k=0,Q=1

while ||V f(xz)|| > eg && k < kmax do
g = Vf(xk)
x’ = line_search(f,x, —Q * g)
g = Vi)
s =x' —xp
vy=g'-g
o=1/sTyy
Q= (I —owsky?) Qi (I — oryrst) + opsisy
k=k+1
xp = x’

end while

return x’

63/73

Compare Four Methods

Minimizing of bean function f(z1,22) = (1 — 21)? + (1 — 22)? + 0.5(2z2 — 2%)?

- SD with 22 iterations -0 CG with 4 iterations

24 — . - 24/ —
& &

& &

0 0

Ty For
o . - _— o _
—2 -1 0 1 2 —2 -1 0 1 2
T T

<o Newton+ex LS with 4 iterations
- Newton+app LS with 5 iterations

2- - - 2
0- 0-
iy iy
_9] - L : o] - L
—2 -1 0 1 2 —2 -1 0 1 2

o o 64/73

Compare Four Methods

Minimizing the total potential energy for a spring system:

L LR LS DI AL L LT L] R el DL LI DAL R L DL

K K

2

1 2
minimize —k <1/(l1 +x1)2 + :p% — ll> + —ko ((la —z1)% + :p% — lg) — mgza
T1,T2 2 2

By letting I1 = 12,15 = 8, k1 = 1, ko = 10, mg = 7 (with appropriate units). 6517

Compare Four Methods

24 — — = 24 — —
\ Iv %
& &
04 04
Ty Ty
—2 = —21 <
-2 —1 0 1 2 -2 —1 0 1 2
@ T,
- Newton with 5 iterations - Newton+-ex LS with 4 iterations
- Newton+app LS with 5 iterations
24/ S ’ - 24 / — >
\ fin
& &
04 04
o >
—2 = L —21 <
-2 —1 0 1 2 -2 —1 0 1 2
A z

66/73

Limited-Memory Quasi-Newton Methods

- When the problem is large whose Hessian matrices cannot be computed at a
reasonable cost.

- Instead of storing fully dense n x n approximations, we can save only a few
vectors of length n that represent the approximations implicitly.

- Here we introduce the limited-Memory BFGS or L-BFGS.
- The BFGS method has the form

X1 =Xk — @y Qi V fi, Qri1 = VI Qi + pisgs) , where
1
Pk = 750’ Vi =1—ppyksy, and s, = Xp41 — Xk, Yk = Ver1 — Ve
k Ok

- The inverse Hessian approximation Qg will generally be dense, the cost of
storing and manipulating it is prohibitive when the number of variables is large.

- To solve this problem, we store a modified version of Qy, implicitly, by storing a
certain number m of the vector pairs {s;,y;}. The product Q;V fx can be
obtained by performing a sequence of inner products and vector summations

involving V fi, and the pairs {s;,yi}. 67/73

Limited-Memory Quasi-Newton Methods

Recall and expand the BFGS update:

Q. =VF Qu 1 Ve 1 +pe_isk_1st
=VE VI Qu_oVi—aVi—1 + pr—2Vi—2Sp_aSt_o Vi1 + pr—1Sk—15p_1
= (V£71ng2 e szm) Qi—m (Vie—mVik—m41-++ Vi_1)
+ Pk—m (VkT_l - VkT_m+1) Sk—mSp—m Vi—ms1+ Vi_1)
+ Pr—m41 (VEA i ng'mﬁ»Q) Sk-m415t—m+1 (Vi—mia- - Vi_1)
+ N

T T T
+pr—2Vi_1Sk—2S;_oVi—1+ Pk—1Sk—1Sj_1-

In L-BFGS, we replace Qj_,, (a dense d x d matrix) with some sparse matrix Q?, e.g,,
a diagonal matrix. Thus, Qj, can be constructe using the most recent m < d pairs

{si,yi}F2L . Thatis

68/73

Limited-Memory Quasi-Newton Methods

Qi = (V]{_lvg_g c Vz_m> Q(}g (karnkanrkl e Vk*l)
+ Pk—m (Vf,l e VkT,mH) Sk—mSp—m (Vi—mi1- Vi_1)
+ Pk—m41 (ngl t VkT,,n+2) Sk—m-’—lszferl (Vk—m+2 t Vk—l)

T T T
+ Pk—2vk715k—25k72Vk—1 + Pr—1SKk—1Sk_1-

- We only need the d-dimensional vector Q. V f(xx) to update
X1 = Xp — 0 QrpV f(x).

- We only stor the vectors {si,yi}f;£7m from which Qg V f(xj) can be
computed using only vector-vector multiplications.
T
- A popular choice for QY is Q) = I, where y;, = % This choice
1YE—
appears to be quite effective in practice.

69/73

Limited-Memory Quasi-Newton Methods

Algorithm 1 L-BFGS two-loop recursion

set q = V f(xy) want to compute QxV f(x)
fori=k—-1,k—2...,k=m do

o = pisiTq
a=q—aqa;y; //RHS=q—p;sTqy; = (I = Pi}’iSzT> q
Vi,
end for
r=Qlq
fori=k—mtok—1:do
B=piylr

r=r+s;(a; — B)
I/ RHS = r + pia; — piyFrs; = (I = p¢Siyf) r+pioy
————
vT

i

end for
return r // which equals QxV f(xx)

70/73

Limited-Memory Quasi-Newton Meth

Require: xg, m, eg

k=0

while ||V f(xx)|| < e do
Choose QY
Pr = —QrVf(xx), where QxV f(xy) is compute using Algorithm 1
Xp4+1 = X + apPk, Where oy, satisfies Wolfe Conditions
if kK > m: then

discard {sg—m,Ykr—m } from storage

end if
Compute and store sy, = xg+1 — X and yr, = V f(xgr1 — Vf(xk)
k=k+1

end while

/73

Compare Four Methods

20 20
-0 Newton with 7 iterations <O Newton+ex LS with 5 iterations
- Newton+app LS with 6 iterations
10+ 104 =
@
0414 o4t Ly
—10-= T T T T —10-= i T T T
-5 0 5 10 15 -5 0 5 10 15
))
20 20
© L-BFGS m=3 with 8 iterations
©- L-BFGS m=1 with 9 iterations
10+ = 3 10+ =
&
0\ < 0\
—10-= - : T . —10-+= - : - :
-5 0 5 10 15 -5 0 5 10 15
£ T

72/73

Reference

1. Joaquim R. R. A. Martins, and Andrew Ning, "Engineering Design Optimization,

Cambridge University Press, 2021.

2. Jorge Nocedal, and Stephen J. Wright, "Numerical Optimization,” 2nd, Springer,
2026

73/73

